
Automatic Change Recommendation of Models and Meta
Models Based on Change Histories

Stefan Kögel, Raffaela Groner, and Matthias Tichy
Institute of Software Engineering and Programming Languages

Ulm University
D-89069 Ulm

[stefan.koegel|raffaela.groner|matthias.tichy]@uni-ulm.de

ABSTRACT
Model-driven software engineering uses models and meta
models as key artefacts in the software development pro-
cess. Typically, changes in the models (or meta models) do
not come in isolation but are part of more complex change
sets where a single change depends on other changes, e.g., a
component is added to an architectural model and thereafter
ports and connectors connect this component to other com-
ponents. Furthermore, these sets of related and depending
changes are often recurring, e.g., always when a component
is added to an architecture, it is highly likely that ports are
added to that component, too. This is similar for changes
in meta models. Our goal is to help engineers by (1) au-
tomatically identifying clusters of related changes on model
histories and (2) recommending corresponding changes after
the engineer performs a single change. In this position pa-
per, we present an initial technique to achieve our goal. We
evaluate our technique with models from the Eclipse GMF
project and present our recommendations as well as the rec-
ommendation quality. Our evaluation found an average pre-
cision between 0.43 and 0.82 for our recommendations.

Keywords
Model-driven development; Change recommendation; Revi-
sion history mining

1. INTRODUCTION
As models are key artefacts in model-driven software en-

gineering, software engineers typically spend much time cre-
ating and evolving models. Hence, they need good tool sup-
port to efficiently work with models.

There exist many simple or more complex tools in inte-
grated development environments or code editors to improve
the productivity of software engineers, for example, auto
completion, quick fixes, refactorings, and templates for of-
ten used language constructs. These tools aim at improving
development speed and quality. However, such tools are
typically not available for changing models in model-driven
software engineering (with the exception of autocompletion,
e.g., in Xtext [6] based textual editors).

In our personal experience in modeling, we often had to
perform repetitive and recurring changes when evolving the
models. Furthermore, we sometimes forgot some individual
changes in a model when performing complex changes.

Our hypothesis is that we can improve modeling speed and
quality of model changes by recommending model changes to
the engineer based on current changes and historical changes.

For example, after adding a transition to a state machine,
guards or actions are added to the transition afterwards.

Please note that the same argumentation holds for meta
models as well. For example, often meta classes need to
subclass a certain superclass. Therefore, after creating the
meta class, it might be beneficial to recommend the addition
of a generalization relationship to that meta class.

Recommender Systems aim at supporting users in making
decisions. They recommend items of interest to users based
on explicitly or implicitly expressed preferences [15]. An
example of a recommender system in software engineering
aims at proposing reuse possibilities in writing test cases [9].
Related to model-driven engineering, Brosch et al. presented
a recommender addressing the conflict resolution in merging
models [3]. However, there does not exist a recommender
system to recommend modeling changes to the engineer as
discussed before.

In this position paper, we propose a preliminary approach
for generating live recommendations to engineers modify-
ing models. Specifically, the approach recommends model
changes to the engineer based on his currently performed
changes where the to-be-recommended changes have been
linked to the currently performed changes in historical change
sets of the model.

The aims of our approach are that it (G1) automatically
produces recommendations, (G2) aggregates the recommen-
dations in order to not overwhelm the user with too much
information, and (G3) does not make too many wrong rec-
ommendations to prevent users from losing confidence.

As the approach requires a set of historical model changes,
we mine model changes from version control systems and use
SiLift [10, 11] to compute the individual model changes for
each version. Our evaluation on several meta model histories
show that we can reach medium to high precision.

We describe our approach for automatic change recom-
mendation and several extensions in Section 2. In Section 3,
we present an evaluation of our technique using several meta
models from Eclipse Projects. Related work is discussed in
Section 4. Section 5 concludes our paper and discusses fu-
ture work.

2. TECHNIQUE
Our goal is to recommend further changes to a model

based on current and historic changes. To achieve this goal
we use the SiLift Tool [10] to compute the differences be-
tween historic versions of the same model. These differ-
ences are consistency preserving [11]. Figure 1 gives a high
level overview of our technique. Rectangles represent data

14

Figure 1: Diagram of our technique

CreateEClassInEPackage�

selectedEObject: gmfgraph�

New: LayoutRef

(a) Create a new EClass

AddEClassTgtEClass�

selectedEObject: LayoutRef�

NewTarget: Layout

(b) Creates a super class relationship

CreateEAnnotationInEModelElement�

selectedEObject: LayoutRef�

New: LayoutRef/GenModel

(c) Create an EAnnotation in an element

CreateEStringToStringMapEntryInEAnnotation�

selectedEObject: LayoutRef/GenModel�
New: LayoutRef/GenModel/details

(d) Create string entry in EAnnotation

Figure 2: Excerpt from a difference with four Henshin rule
applications and some of their arguments.

and rounded blocks represent operations on this data. We
have divided our technique into three phases: (1) finding
historic precedents for current user changes, (2) finding
related rules for the historic precedents, and (3) updat-
ing the arguments of the historic precedents so that they
match the current user changes. In the following, we will
motivate and explain our technique using a running exam-
ple. Note that the presented technique is a proof of concept
and needs to be developed further.

2.1 Running Example
Figure 2 shows an excerpt from the difference between two

historic model versions. The figure shows four Henshin [1]
rule applictions, that consist of the rule names and a set of
named arguments that contain, among other things, refer-
ences to elements in models. In this example, the user has
created an EClass identified by LayoutRef in the package
gmfgraph (Figure 2a), set Layout as the superclass of Lay-
outRef (Figure 2b), created an EAnnotation in LayoutRef
(Figure 2c), and created an entry in the EAnnotation (Fig-
ure 2d). Given this historic difference, suppose that a user
adds a new EClass to the gmfgraph package. Our technique
should then recommend that the new EClass should have a

super class, an EAnnotation and an entry in this EAnnota-
tion.

2.2 Basic Technique
In the following, M is a model and Mi, 1 ≤ i ≤ n are its n

different versions. The differences produced by SiLift δi,i+1

contain partially ordered sets of Henshin [1] rule applications
(rules(δi,i+1)).

We will now explain our basic technique for making rec-
ommendations based on historic differences between model
versions.

Phase 1: Find historic precedents: When a user
makes a change to the latest model version, we compute the
difference δcurrent between the latest model version and the
current version. Then we look at every Henshin rule appli-
cation in this difference and try to make a recommendation
for it. Let hcurrent ∈ rules(δcurrent) be a current Henshin
rule application, for example, the addition of a new EClass
to the gmfgraph package.

First, we need to find historic rule applications that are
related to our current rule application. Thus, we search
for all historical differences ∆hcurrent that contain a rule
application with the same name as hcurrent:

∆hcurrent = {δi,i+1|
h ∈ rules(δi,i+1), name(h) = name(hcurrent), 1 ≤ i ≤ n}

The technique will generate at least one recommendation for
every historical difference that contains a rule application
with the same name as hcurrent.

Phase 2: Find related rules: Given a rule application
hhist ∈ δ, δ ∈ ∆hcurrent with the same name as hcurrent, we
now have to determine which other rule applications in the
same difference are related to it. To do this, we search for
all rule applications that have an argument in common with
hhist, i.e., they both have a reference to the same model ele-
ment. Note that the steps in Phase 2 are repeated for every
historical rule application with the same name as hcurrent.

Hhhist = {h|h ∈ δ, δ ∈ ∆hcurrent , args(h) ∩ args(hhist) 6= ∅}

In our running example, we determine that the rule appli-
cations in Figures 2a, 2b, and 2c are related because they
have LayoutRef in common, which is not the case for the
rule application in Figure 2d.

Phase 3: Update arguments: Given all the related
rule applications Hhhist from a historic difference δ, we need
to update their arguments so as to fit to the current user

15

CreateEClassInEPackage�

selectedEObject: gmfgraph�

New: RealFigure

(a) Create a new EClass

AddEClassTgtEClass�

selectedEObject: RealFigure�

NewTarget: Layout

(b) Creates a super class relationship

CreateEAnnotationInEModelElement�

selectedEObject: RealFigure�

New: LayoutRef/GenModel

(c) Create an EAnnotation in an element

Figure 3: Figure 3a is a rule application describing a user
change. Figures 3b and 3c are recommendations based on
the user change and the history in Figure 2.

change hcurrent. We use the current rule application hcurrent

and its historic counterpart hhist ∈ δ with the same name
as a guide to compute a substitution subst between their
arguments.

subst(value(phist)) = value(pcurr) where

phist ∈ args(hhist), pcurr ∈ args(hcurrent),

name(phist) = name(pcurr)

Applying this substitution to all rule applications inHhhist

results in a set of updated Henshin rule applications that
can be applied to the current model (assuming there are no
constraint violations).

Recommend(hcurrent, hhist, δ) = {subst(h)|h ∈ Hhhist}

This new set of Henshin rule applications is one of our rec-
ommendations. Note that our technique makes a recommen-
dation for every historic rule application hhist with the same
name as the current rule application hcurrent.

In our running example, Figure 3a shows the rule appli-
cation CreateEClassInEPackage with an argument value of
RealFigure. When we use the rule application as a user
change and Figure 2 as historic rule applications, our tech-
nique would find the related historic rule applications in Fig-
ures 2a, 2b, and 2c, because they have LayoutRef in com-
mon. Note that the rule in Figure 2d has no arguments in
common with the one in Figure 2a and, hence, would not be
found. The corresponding substitution would be:

subst = [gmfgraph→ gmfgraph,LayoutRef→ RealFigure]

This would lead to the recommendations shown in Figures 3b
and 3c. Note that both recommendations now reference Re-
alFigure instead of LayoutRef, while they have kept their
references to Layout and LayoutRef/GenModel.

There are two problems with these recommendations: (1)
There is no recommendation for Figure 2d, even though it is
related to the recommendation in Figure 3c via its LayoutRe-
f/GenModel argument. (2) The historic references Layout
and LayoutRef/GenModel are carried over to the recommen-
dation without changes. It is possible that these historic
references lead to correct recommendations, for example, if
most newly created EClasses are sub classes of Layout. But
it would still be better if we could control their inclusion

via a tuning parameter, e.g., by keeping or replacing them
with a placeholder value. In the next section, we will present
extensions to our technique that deal with these problems.

2.3 Extensions to our Technique
We have implemented extensions to our technique to im-

prove the quality of our recommendations with respect to
our quality goals (G1-G3).

2.3.1 Intersection of recommendations
So far, we have only described how recommendations are

generated. If there are multiple applicable recommendations
(from multiple historical rule applications of the same rule),
we have to aggregate them before presenting them, because
showing too many recommendations will frustrate users. A
simple solution would be to count recommendations that
contain the same rules and to rank them accordingly. This
is similar to frequency based completion in [4].

In this extension, we propose a different solution. Because
recommendations are sets of rule applications, we can com-
pute the intersection between all recommendations. To do
this, we define that two rule applications are equal if their
names are equal 1. In this way, we merge several recommen-
dations, originating from the same current user change, into
a single one (G2). Furthermore, by reducing the amount of
rule applications in a recommendation, we reduce the chance
that a recommendation will recommend changes that are not
intended by the user (G3). This extension takes place after
Phase 3.

As an example, suppose we have three recommendations
consisting of rule applications (ignoring arguments):
R1 = {addClass, addEdge, deleteClass},
R2 = {addClass, addAnnotation, addEdge},
and R3 = {addClass, deleteEdge, addEdge}
then the intersection of recommendations R1∩R2∩R3 would
be {addClass, addEdge}. Because addClass and addEdge
have always occurred simultaneously in all recommenda-
tions, we suspect that they should occur together again.
deleteClass, deleteEdge, and addAnnotation would not be
presented to the user, because we can not decide which of
these rule applications is the most likely to be intended and
they have never occurred simultaneously in the recommen-
dations.

A drawback of this extension is that correct recommen-
dations may be discarded. Another problem is that the in-
tersection of all recommendations may be empty, but this is
easily detected and we can fall back on a different method
of reducing the amount of recommendations.

2.3.2 Free Variables
In our running example, we cannot predict to which ele-

ment the argument LayoutRef/GenModel in Figure 2c/3c
should refer. So we extend our substitution subst from
Phase 3 to substitute the historic element with a place
holder, a free variable. Replacing all references to unpre-
dictable elements in the arguments leads to the recommen-
dation in Figure 4. Note that the rule applications in Fig-
ures 4b and 4c now refer to free variables Free1 and Free3

instead of keeping their references from Figure 2. Also note,
that rule applications in Figures 4c and 4d are now related

1We have not yet extended this equality to consider argu-
ments.

16

by the free variable Free2, instead of by LayoutRef/Gen-
Model as in Figures 2c and 2d.

The introduction of free variables removes all references
that were only part of the historic rule applications, while
preserving the relations between the rule applications. This
makes recommendations more abstract (G3), but also re-
quires users to manually fill in values for the free variables.

2.3.3 Indirect Relations
In our running example (Figures 2 and 3), we have, so

far, only recommended two rule applications (Figures 3b and
3c). Figure 2d is not part of the recommendation, because
it does not share an argument with the rule application in
Figure 2a.

In order to find more related historical rule applications
for recommendations, we also look at indirectly related rules.
Two rules are related if they have a model element in their
arguments in common. Two rules are indirectly related,
if they have no elements in common, but there is a third
rule that has arguments in common with both. For exam-
ple Figure 2a and Figure 2c have the element LayoutRef in
common, while Figure 2c and Figure 2d have the element
LayoutRef/GenModel in common.

We implement this in our technique by iterating the search
for related rule applications in Phase 2. After finding all
rule applications that are directly related to hhist, we repeat
the search for all rule applications that have been found.

Hhhist,0 = {h|h ∈ δ, δ ∈ ∆hcurrent , args(h)∩args(hhist) 6= ∅}

Hhhist,p = {h|h ∈ δ, δ ∈ ∆hcurrent , hind ∈ Hhhist,p−1,

args(h) ∩ args(hind) 6= ∅}

This search can be iterated for a user defined amount of
time or until a fixed point is reached and no more indirectly
related rule applications can be found.

Indirect relations introduce many rule applications whose
arguments will not be changed by the argument substitution
subst, because the indirectly related rules have no arguments
in common with hhist. This will lead to the recommendation
of rule applications with many historical arguments. This
can be prevented by using free variables.

This extension can also lead to a very high number of pre-
dicted rule applications that needs to be reduced again. We
found that filtering out all sets of related rule applications
for which |Hhhist,p| > x leads to a better precision.

Using indirect relations allows us to make more complex
recommendations, by including more rule applications that
are not directly related to the user’s changes (G1). This
could lead to too specific or complex recommendations that
do not fit the user’s intentions. We can control this, by
adding a parameter that limits the amount of iterations in
the search for indirectly related elements (G2). A value of 0
for this parameter turns this extension off, while a value of
1 only allows indirections through one variable (as depicted
in the example above), and a value of infinity leads to the
search for a fixed point.

3. EVALUATION
In this section, we will describe the data set we used in

our evaluation, how we evaluated our technique, and what
results we achieved.

CreateEClassInEPackage�

selectedEObject: gmfgraph�

New: RealFigure

(a) User added EClass identified by RealFigure

AddEClassTgtEClass�

selectedEObject: RealFigure�

NewTarget: Free1

(b) Recommended rule application

CreateEAnnotationInEModelElement�

selectedEObject: RealFigure�

New: Free2

(c) Recommended rule application

CreateEStringToStringMapEntryInEAnnotation�

selectedEObject: Free2�

New: Free3

(d) Recommended rule application

Figure 4: Rule application that describes a user change (4a)
and recommended rule applications (4b, 4c, 4d). Based on
the historic rule applications in Figure 2

Herrmannsdörfer et al. [8] and Langer et al. [12] have anal-
ysed the versions of three different meta models from the
Eclipse GMF Project. Kehrer et al. [11] have already ap-
plied SiLift to this data set and shown that it can compute
correct and complete differences between all versions. The
data set consists of the following meta models: (1) gmfgen

with 110 model versions from 1.139 to 1.248, (2) gmfgraph

with 10 model versions from 1.23 to 1.33, and (3) mappings

with 15 model versions from 1.43 to 1.58.
While we use meta model histories in our evaluation since

they are readily available, our approach itself is applicable
to models as well which we will evaluate in the future.

First, we created asymmetric differences between all ver-
sions with SiLift, specifically using its UUID matcher and
its atomic rule set. We found the following numbers of Hen-
shin rules per meta model: (1) gmfgen 1067, (2) gmfgraph

163, and (3) mappings 149. Then we extracted the names
of the Henshin rules and their arguments from the differ-
ences. For every difference δi,i+1 we used all previous dif-
ferences δj,j+1, j < i as historic differences and the rule ap-
plications in δi,i+1 as the current user changes. That means
the changes we wanted to recommend were not part of the
historic changes.

We used the current difference δi,i+1 to validate our rec-
ommendations. For every recommended rule application,
we tried to find a rule application with the same name and
arguments in the current difference. Free variables in the
arguments were always counted as the same. A correctly
recommended rule application, with correct arguments (or
free variables), was counted as one true positive (TP), else
it was counted as false positive (FP). Note that the usage
of free variables increases the true positive count, but that
users also need to do more manual work, which we do not
measure here.

Because we do not try to predict the absence of certain
rule applications, we can not measure true or false negatives.

We have summarised our results in Table 1 The table
shows the number of true (TP) and false positives (FP) per

17

Name TP FP Precision
gmfgen 554 217 0.72
gmfgraph 25 33 0.43
mappings 36 8 0.82
Total 615 258 -
Average 205 86 -

Table 1: Recommendation results for different models

model. The Precision metric is computed by the formula
Precision = TP

TP+FP
and can be interpreted as the percent-

age of correctly recommended rules. The results were ob-
tained using all extensions that were discussed in Section 2.3:
intersection of recommendations, free variables, and indirect
relations. The indirect relations were iterated two times and
sets of related historic rule applications with more than five
rules were ignored.

Internal validity: Our Evaluation only included three
meta models from Eclipse Projects. External validity: We
have not shown that these models are representative for all
meta models or instances of meta models. Furthermore, the
batch evaluation preformed in this paper is no substitute for
an evaluation with real users as Turpin and Hersh [16] have
shown.

4. RELATED WORK
There are many studies and tools about evolving models

and meta models, but only a few of them look at model
histories and try to automatically recommend changes based
on user changes.

Herrmannsdörfer et al. [8] have analysed meta models in
the Eclipse GMF Project and developed a set of small change
operations that can be used in aggregate to describe all
changes to the meta models. Langer et al. [12] developed
this idea further by identifying complex change operations
that consist of smaller ones. This allows the analysis of a
model’s evolution on a more abstract level. They have shown
that their complex change operations can describe all model
changes in the Eclipse GMF Project.

Kehrer et al. [11] have developed a tool that can automat-
ically generate consistency-preserving edit scripts that de-
scribe the difference between two versions of the same model.
They have implemented the small and complex change op-
erations from [8] and [12] in their tool and evaluated it on
the meta models from the Eclipse GMF Project. Their tool
could correctly produce edit scripts for all model versions.

In this paper, we have used some of the results from [8],
[12], and [11]. Mainly in the form of SiLift for generating
our differences and in the form of the Eclipse GMF meta
models for our evaluation.

Getir et al. [7] proposed a framework for model co-evolution.
Their framework uses model histories, SiLift and Henshin
rules to produce suggestions for coupled simultaneous model
changes in related instance models. The framework requires
manual intervention from developers with domain knowl-
edge. Developers have to add traces between related ele-
ments in different models, in order to enable the framework
to recognize the relations. The models’ version histories and
the traces are then used to propose further changes to one
model based on user edits in another model. A correlation
analysis between change operations in the models’ histories
is used to predict related change operations. The main dif-

ference to our work is that we analyse the arguments of rule
application in order to identify related operations. Further-
more, our technique is able to recommend some of the rule
application arguments.

Cicchetti et al. [5] present an approach for updating in-
stance models whose meta models have changed. They com-
pute a transformation from the changes in the meta model
that can be applied to the instance models so that they con-
form to the new version of the meta model. This approach
does not consider historic model changes and does not try
to recommend further changes in the same model based on
user changes.

LASE [13] is a tool that can create abstract edit scripts
from several similar source code changes made by a user.
It matches the change operations in the AST from similar
changes, keeping common change operations and abstracting
over similar change operations that differ only in variable or
method names. The tool can then search for further source
code regions that match abstract edit scripts and apply them
automatically. This is similar to our technique, although
we use historic changes to generate recommendations for a
single change made by a user.

Breckel [2] evaluated an approach for automatic error de-
tections in source code. Their approach finds similar but not
identical code fragments in a source code file and large code
bases. Frequent differences in these code fragments point
to bugs in the source code file. This approach can detect
typing and more complex errors, is programming language
independent, and does not require domain knowledge. This
is similar to our technique which automatically compares dif-
ferent versions of models without using domain knowledge
about these models.

Bruch et al. [4] developed several systems that incorpo-
rate code from repositories to improve the auto completion
features of Eclipse. Their systems rank auto completions by
finding similar code in the repositories that share variables
of the same types. They show that their systems outperform
Eclipse code completion. The systems are used to rank auto
completions recommended by Eclipse, while our technique
generates recommendations based on the change histories of
models.

Muşlu et al. [14] developed a technique to improve Eclipse
Quick Fix. Their technique automatically counts how many
errors are solved or introduced by a quick fix and displays
this information to the developer. They improve the source
code Editing capabilities of Eclipse by incorporating addi-
tional information from the compiler. This technique helps
developers to decide between different quick fixes that are
already implemented in Eclipse, but does not generate com-
pletely new recommendations on its own.

5. CONCLUSIONS AND FUTURE WORK
We have presented our technique for recommending changes

based on historical changes. The precision of our recommen-
dations in the evaluation was between 0.43 and 0.82. This
shows that our technique could possibly be used to auto-
matically recommend model changes based on user changes
and previous model versions.

We plan to improve our technique by addressing the fol-
lowing topics:

• The current aggregation of multiple recommendations
via intersections needs to be compared to other tech-

18

niques, for example from [4], for prioritizing recom-
mendations.

• The recommendations are based on single user changes.
Future work should take multiple user changes into
consideration.

• Our evaluation only included meta models. We plan to
also evaluate our technique for types of instance model
for which SiLift can generate differences.

• Our technique needs to be integrated into an intuitive
user interface and evaluated by users, because batch
evaluations alone are not sufficient [16].

• An extension of our technique that exploits model con-
straints could filter out recommendations that violate
model constraints. It could also be possible to empha-
size recommendations that fix constraint violations,
which would be similar to Eclipse’s Quick Fix rec-
ommendations. Muşlu et al. [14] have already done
similar work for Eclipse Quick Fixes.

• We want to extend our technique to multiple meta and
instance models that are evolving simultaneously. For
this, we suspect that it is possible to find relations
between changes that are made simultaneously to dif-
ferent models. For example, if two elements are added
simultaneously to two different models, we could de-
duce a relation between them and then try to apply
our technique.

6. ACKNOWLEDGEMENTS
This work was funded by the German Research Founda-

tion (DFG) as part of the DFG Priority Programme 1593
(SPP1593).

7. REFERENCES
[1] T. Arendt, E. Biermann, S. Jurack, C. Krause, and

G. Taentzer. Henshin: advanced concepts and tools for
in-place emf model transformations. In International
Conference on Model Driven Engineering Languages
and Systems, pages 121–135. Springer, 2010.

[2] A. Breckel. Error mining: bug detection through
comparison with large code databases. In Proceedings
of the 9th IEEE Working Conference on Mining
Software Repositories, pages 175–178. IEEE Press,
2012.

[3] P. Brosch, M. Seidl, and G. Kappel. A recommender
for conflict resolution support in optimistic model
versioning. In Companion to the 25th Annual ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
SPLASH/OOPSLA, pages 43–50, 2010.

[4] M. Bruch, M. Monperrus, and M. Mezini. Learning
from examples to improve code completion systems. In
Proceedings of the the 7th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, pages 213–222. ACM, 2009.

[5] A. Cicchetti, D. Di Ruscio, R. Eramo, and
A. Pierantonio. Automating co-evolution in
model-driven engineering. In Enterprise Distributed
Object Computing Conference, 2008. EDOC’08. 12th
International IEEE, pages 222–231. IEEE, 2008.

[6] M. Eysholdt and H. Behrens. Xtext: implement your
language faster than the quick and dirty way. In
Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion, pages 307–309.
ACM, 2010.

[7] S. Getir, M. Rindt, and T. Kehrer. A generic
framework for analyzing model co-evolution. In Model
Evolution, International Conference on Model Driven
Engineering Languages and Systems, 2014.

[8] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth.
Language evolution in practice: The history of gmf. In
International Conference on Software Language
Engineering, pages 3–22. Springer, 2009.

[9] W. Janjic and C. Atkinson. Utilizing software reuse
experience for automated test recommendation. In 8th
Int. Workshop on Automation of Software Test, pages
100–106, 2013.

[10] T. Kehrer, U. Kelter, M. Ohrndorf, and T. Sollbach.
Understanding model evolution through semantically
lifting model differences with SiLift. In Software
Maintenance (ICSM), 2012 28th IEEE International
Conference on, pages 638–641. IEEE, 2012.

[11] T. Kehrer, U. Kelter, and G. Taentzer.
Consistency-preserving edit scripts in model
versioning. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on,
pages 191–201. IEEE, 2013.

[12] P. Langer, M. Wimmer, P. Brosch,
M. Herrmannsdörfer, M. Seidl, K. Wieland, and
G. Kappel. A posteriori operation detection in
evolving software models. Journal of Systems and
Software, 86(2):551–566, 2013.

[13] N. Meng, M. Kim, and K. S. McKinley. Lase: locating
and applying systematic edits by learning from
examples. In Proceedings of the 2013 International
Conference on Software Engineering, pages 502–511.
IEEE Press, 2013.

[14] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and
D. Notkin. Speculative analysis of integrated
development environment recommendations. ACM
SIGPLAN Notices, 47(10):669–682, 2012.

[15] M. P. Robillard, W. Maalej, R. J. Walker, and
T. Zimmermann, editors. Recommendation Systems in
Software Engineering. Springer, 2014.

[16] A. H. Turpin and W. Hersh. Why batch and user
evaluations do not give the same results. In
Proceedings of the 24th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 225–231. ACM, 2001.

19

	Introduction
	Technique
	Running Example
	Basic Technique
	Extensions to our Technique
	Intersection of recommendations
	Free Variables
	Indirect Relations

	Evaluation
	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

