
Approaching Collaborative Modeling
as an Uncertainty Reduction Process

Romina Eramo
Università degli Studi

dell’Aquila, Italy
romina.eramo@univaq.it

Alfonso Pierantonio
Università degli Studi

dell’Aquila, Italy
alfonso.pierantonio@univaq.it

Gianni Rosa
Università degli Studi

dell’Aquila, Italy
gianni.rosa@univaq.it

ABSTRACT
Model-Driven Engineering (MDE) technologies aim to support the
growing complexity of software systems. Models are increasingly
becoming large and unmanageable, and hence difficult to be under-
stood by humans and processed by machines. As a consequence,
multi-user environments are necessary to enable designers to cre-
ate and refine large models in a collaborative manner enabling the
engineering, modularization and reuse.

In this paper, we propose a model-driven approach to represent,
manage and manipulate models edited in a collaborative manner. In
particular, we propose to represent the solutions space (i.e, model
versions) in an intensional manner by adopting a model with uncer-
tainty. We define a plan to manage the uncertainty by selecting the
desired design, to manipulate their collaborative models in manu-
ally or automatic way, and to exploit a collaborative environment
for real time multi-user editing. The approach is showed by means
of a motivating example that involves business models demonstrat-
ing the advantages of the proposed approach.

Keywords
Model-Driven Engineering, Collaborative Modeling, Uncertainty

1. INTRODUCTION
Complex software systems demand for both effective and specific
approaches to keep under control the increasing software function-
alities, heterogeneity, team sizes and geographical distribution of
the developers. The growing maturity of Model-Driven Engineer-
ing (MDE) [27] technologies is leading industry to take advantage
of their benefits in terms of productivity, quality and reuse [22, 7].
However, applying MDE in this setting requires research effort in
order to achieve industry-scale tools.

As observed in [19], scalability is a critical concern for the indus-
trial adoption of MDE. Large-scale tools have to cope with different
topics; among many, creating and refining large models in a collab-
orative manner, working with model fragments obtained from par-
titions of large models, enabling the engineering, modularization
and reuse of models and fragments, having transformation tools to

cope with versioned models, and having infrastructures to storage
and manage large models.

When projects and teams are large, modeling activity requires
designers to divide their models in smaller partitions and work on
them in a collaborative manner. In a typical scenario, multiple
developers work on the same model in multiple branches, where
each developer (or sub team) may initialize a repository branch
and make modifications to this model; thus, versions grow rapidly.
Traditional text based version control systems (e.g., SVN, Git) al-
low programmers to write code by locking a portion of work or
to edit code collaboratively; in this case, programmers tend to fre-
quently perform merge operations involving different versions of
the same textual artifacts. Conversely, in software design, that is
a complex and non-linear process, decisions are made at different
development stages and obtaining the merged version early could
not be desired. In fact, sometimes designers have not the complete,
consistent and accurate information required to make a decision
at design-time (or when the conflict occurs), that can be regarded
as a source of uncertainty [24]. For instance, they could perform
some analysis or wait for different view models before to be able to
choose the best strategy. In these cases, they could be interested in
postponing the version merging and continuing to operate on their
model versions separately.

Figure 1: The Check Application (CA) sub-process

In this paper, we propose a model-driven approach to represent
and manage models edited in a collaborative manner by leverag-
ing uncertainty to a first-class status. To this end, we propose a
metamodel-independent approach to represent the solutions space
(i.e, multiple versions) in a compact and intensional manner by
adopting a model with uncertainty. We define a plan to manage
the uncertainty by selecting the desired design, to manipulate their
collaborative models in manually or automatic way, and to exploit a
collaborative environment for real time multi-user editing and han-
dling of models. The technique is applied to a running example
that involves business process models in the domain of Public Ad-
ministrations (PAs) demonstrating the advantages of the proposed
approach.
Structure of the paper. The paper is organized as follows. Sec-
tion 2 sets the context of the paper through a motivating example
that is used throughout the paper to demonstrate the approach. In



Figure 2: Parallel dependent changes in CA sub-process

Sect. 3 the model-driven approach to represent and manage collab-
orative models with uncertainty is presented and related challenges
are discussed. In Sect. 4, related works are presented and finally
Sect. 5 draws some conclusions.

2. MOTIVATING EXAMPLE
As aforesaid, the management of large models raises not obvious
issues mainly related to the collaborative use of models. In order to
illustrate our proposal, we consider a motivating example that takes
place in the public administrations (PAs) sector.

In modern society, the role of PAs is undergoing a transformation
from controller to proactive service provider. In most cases, the
provisioning of services is a collaborative activity shared among
different, possibly many, organizations that are in general quite
interrelated. In order to provide efficient services to citizens and
companies, public servants have to manage extremely complex pro-
cesses and a large amount of information due to changes in law and
regulations, societal globalization and fast technology evolution.

In this context, the Learn PAd1 project [8] aims at developing a
social, collaborative and holistic e-learning platform that enables

1Model-Based Social Learning for Public Administrations is part
of the program FP7-ICT-2013.8.2 Technology-enhanced learning.
The project started on Feb 1, 2014 and terminate on Jul 31, 2016
with a cost of e3,535,000. For further detail please refer to http:
//www.learnpad.eu

process-driven learning and improvement of the process on a user-
friendly basis of wiki pages enriched with additional documenta-
tion for a clearer understanding of the process together with guid-
ance based on formalized models. The specification of business
processes is usually done by means of standard notations like BPMN
2.0 [23] and concerns a sequence of activities that the adminis-
tration executes in order to produce a service for the end user.
Typically, it starts with i) receiving of some input (i.e. request,
documentation), then ii) performing activities that add value (i.e.,
checks) using resources (i.e., humans, structures), and finally iii)
producing an output.

For instance, Fig. 1 depicts a sub-process of a standard process,
called Titolo Unico, where a citizen makes a request to municipality
and third parties in order to obtain the permission to start a business
activity according to the Italian law. Specifically, in the sub-process
Check Application (CA) the employee in charge checks the received
documents and verifies their validity. After that, the valid requests
are sent to third party in PA in order to undergo the final verification
and eventually to be accepted.

Models in PA are constantly updated and shared among different
organizations, thus public servants daily deal with a large amount
of data and a multitude of model versions, that is tedious and error-
prone. In order to better understand the context, let us to consider
the following scenario of collaborative modeling in PAs. Figure 2
depicts a scenario in which some modelers work collaboratively on
the model in Fig. 1, that is considered as initial model. Then, it



Figure 3: The overall architecture

is extended, refactored and splitted in a set of versions, so that the
changes are parallel dependent causing conflict issues.

Let us to suppose that, Modeler A and Modeler B are two em-
ployees of the same organization and they are working together
in a collaborative manner. Both of them consider the sub-process
Check Application (CA) depicted in Fig. 1 from the Learn PAd
repository. The Modeler A is an expert of PAs procedures and
adds to the initial model a BPMN element of type Lane, named
Municipal Desk, in order to establish the unit responsible for the
activity and improve the process execution (see Fig. 2(a)). Then,
an expert of the BPMN language, called Modeler B, modifies the
model and adds a pair of Inclusive Gateway to logically sepa-
rate the existing message flows between Application valid and
Application not valid, as showed in Fig. 2(b).

In meanwhile, an other organization decides to re-use models
stored in the Learn PAd repository. In particular, as depicted in
Fig. 2(c), the Modeler C acquires the model in Fig. 2(a) and re-
names the lane Municipal desk into District Desk; in this
way, the responsibility of the activities is given to a different orga-
nizational unit.

Finally, as shown in Fig. 2(d), in a third organization, the Modeler
D performs same changes on the model in Fig. 2(b) in order to
improve the quality of the business process. In particular, the el-
ement First Integration Check of type Task is modified in
Integration Check of type SubProcess in order to modeling a
more complex process that includes a set of activities.

Let us to suppose that, modelers continue to work on the model
and at a later time each organization requires to merge the modelers
versions and obtain the proper organization version.

In this scenario, the same model is modified by different organi-
zations and for each of them one or more modelers worked on it.
Furthermore, for the scope of the Learn PAd repository, models and
their versions has to be maintained and traced, so that further orga-
nizations can access and re-use it. For these reasons, it is crucial
to have a comprehensive model representation that enable the in-
formation tracing and the management of different model versions
in an automatic manner. The scope of this paper is to represent the
multitude of generated models into a model with uncertainty capa-
ble of encoding all the alternatives in one instance and allowing the

management.

3. A MODEL-DRIVEN APPROACH TO
COLLABORATIVE MODELING

In collaborative modeling, decisions may be made at different de-
velopment stages requiring the designers to work with their model
versions as long as uncertainty can be solved and a merged version
can be obtained. In order to reduce the burden of managing a mul-
titude of model alternatives, we present a metamodel-independent
approach able to represent and manage uncertainty in collaborative
modeling based on a revised basis in [24].

During the modeling, the same model is edited by multiple users.
Changes introduced by modelers are maintained as alternative el-
ements in the model producing uncertainty. During the manage-
ment, modelers increasingly reduce (until resolve) such uncertainty
by choosing among the alternatives. In particular, at each step, the
modeler selects the desired alternative (i.e., making a model ele-
ment in the solution space as certain), so that the uncertainty is
gradually resolved by considering choices and dependencies. Note
that, the two phases are not necessarily consecutive, in fact, at any
time a modeler may decide to manipulate or manage the model or
a part of it.

The overall architecture of the approach is depicted in Fig. 3.
The Metamodel generation is realized by means of a model-to-
model transformation written in ATL2, called MM2UMM . It
takes as input a metamodel MM conforms to Ecore3 and gener-
ate the correspondent metamodel with uncertainty UMM . At this
point, modelers may specify their collaborative models with un-
certainty conform to UMM (see the UM model in the Modeling
box). An UM model is semantically equivalent to a set of mod-
els {M1..Mn} conform to MM (i.e., all the candidate solution
models represented in UM ). The component Management allows
modelers to select the desired solution models by means of two
operations: Filter and Concr. The Filter operation allows to
select elements in the solution space parametrically. It is based on
an ATL model-to-model transformation; it takes as input the UM

2ATL Transformation Language: https://eclipse.org/atl/
3EMF Ecore: http://www.eclipse.org/modeling/emf/



(a) (b)

Figure 4: The Uncertainty Metamodel (UMM) Structure

model and a parameter (represented by a model PM conforms to
the metamodel PMM ), and outcomes another model conforms to
UMM . In particular, the model UM is filtered by the transforma-
tion, so that the generated model UM1 is semantically equivalent
to a subset of the models {M1..Mn} according to the parameter ex-
pressed in PM . The Concr operation allows to select the desired
final model conforms to MM ; it takes as input the UM model and
outcomes all the solution space, i.e. a set of models conforms to
MM . The overall architecture has been implemented within the
Eclipse Modelling Framework (EMF)4 5.

3.1 Uncertainty metamodel
The uncertainty metamodel UMM is obtained by extending a base
metamodel MM with specific connectives able to represent mul-
tiple alternatives asisen from collaborative modeling. These con-
nectives denote the points of uncertainty where model elements be-
longing to a certain version are attached. Moreover, such points of
uncertainty are traceable in order to permit the identification of spe-
cific merge strategies. The approach is metamodel independent, in
fact its construction is realized by means of a model transformation
and applies to any Ecore metamodel [14].

The uncertainty metamodel UMM structure is depicted in Fig. 4.
As in the left-hand side of the figure, the metamodel is composed
of two packages, the Base package that contains the elements of
the base metamodel and the Uncertainty package that contains the
elements that extend the base metamodel in order to allow the spec-
ification of points of uncertainty.

In particular, the uncertainty metamodel UMM is generated ex-
tending the base metamodel as following:

1) the metaclass User with attribute username that specifies
the author making the editing is added;

2) the metaclass OperatorType that enumerates the logical op-
erator literals AND, OR and XOR is added;

3) for each parent class C in base metamodel, such that it does
not specialize other metaclasses:

4.1) a corresponding abstract metaclass IC is created such
that C specializes IC. Such interface allows to choose
among a certain element or an uncertain one.

4.2) a metaclass UC that extends IC is added. It specifies an
association alternatives of type C and multiplicity
1..* that relates the alternative elements to the uncer-
tainty point of type C; an association upoints of type

4EMF Modelling Framework: http://www.eclipse.org/modeling/emf/
5The implementation is available at http://jtl.di.univaq.it/

UC and multiplicity 0..* enabling to nest uncertainty
points; the attribute uType of type OperatorType for
specifying the logical operator connecting the alterna-
tives; the association user of type UUser with multi-
plicity 1..* for specifying the authors;

The aforementioned procedure is implemented as an endogenous
model-to-model transformation implemented in ATL.

The main advantage of such representation technique is that the
uncertainty represented by a set of alternative models is leveraged
to a first-class status. Hence, a complete set of models can therefore
be manipulated as whole, for instance with an automated transfor-
mation (as done for instance in [16]), without iterating over each
individual in the set.

3.2 Models with uncertainty
According to the scenario described Sect. 2, we assume that

in PAs, modelers are interested to specify complex processes by
means of the standard notation BPMN and to exploit the Learn PAd
repository where models are constantly updated and shared among
different organizations.

Let us considering the BPMN 2.0 6 language as mentioned in
the motivating example in Sect. 2. The language specification sup-
ports different modeling conformance levels (e.g., process model-
ing, process execution, etc.) that makes it as rich and complex. For
the sake of understanding and brevity, we provide a restricted ver-
sion of the BPMN 2.0 metamodel that concerns the process model-
ing conformance level and allows us to specify processes at a cer-
tain abstraction level and to model the running example discussed
in Sect. 2. Starting from the simplified version of the BPMN meta-
model, the correspondent uncertainty metamodel UBPMN is ob-
tained as illustrated in the previous section 7.

At this point, modelers may specify their models with uncer-
tainty. In particualr, by using the proposed approach, the model
in Fig. 2 can be represented by means of the model with uncer-
tainty depicted in Fig. 5. The sub process Check Application

is composed of a common part shared among all the modelers
(that is the lane Third Party PA) and an uncertain part in which
model elements are independently modified by the four model-
ers. In particular, the point of uncertainty of type ULane includes
the nested uncertainty point Municipal Desk edited by Modeler

A, Modeler B and Modeler D, and the nested uncertainty point
District Desk edited by the Modeler C. Each uncertainty point
is composed of a set of elements that are in common to the model-
ers and nested uncertainty points that group the modeler’s modifi-
6For reason of readability, we omit the description of the language.
The interested reader may refer to the OMG specification [23].
7The implementation is available at http://jtl.di.univaq.it/



cations. For instance, the uncertainty point edited by the Modeler
B and Modeler D is composed of common elements such as Start
Event, Send Instance to Thirdy Part, etc., and a set of nested
uncertainty points, for instance the nested uncertainty point edited
by the Modeler B include the sequence flow P12FirstIntegra-

tionCheck, the task First Integration Check, etc.

Figure 5: The CA sub-process in Fig. 2

Models with uncertainty may over-approximate the solution space
because of their combinatorial nature [24]. For instance, the sce-
nario in Fig. 2 suggests that only one lane for the same activity can
exist in the final model. However, the generated model with un-
certainty could admit also models with both the lanes giving place
to more solutions than those expected. Therefore, this outcome is
avoided by using logical operators that allowing modelers to con-
strain and restrict the solutions to the ones depicted in the Fig. 2.

Listing 1 shows a fragment of the model with uncertainty rep-
resenting the alternative solution models generated by the collab-
orative modeling in Fig. 2. It is given in its XMI 8 format. In
particular, the LaneSet is composed of a model element of type
Lane named Third Party PA (line 8) and an uncertainty point
of type ULane (line 9). The latter contains two nested uncertainty
points: the lane Municipal Desk (line 11) edited by the users
Modeler A, Modeler B and Modeler D, and the lane District
Desk (line 22) edited by the users Modeler C. Each uncertainty
point is composed of its alternative elements and/or other nested
uncertainty points. For instance, Municipal Desk contains the
element of type StartEvent (line 12) and the uncertainty point
edited from Modeler A with a set of alternative elements (such as
8http://www.omg.org/spec/XMI/

the element named First Document Check of type Task, in line
16).

1[...]
2<users username="Modeler_A"/>
3<users username="Modeler_B"/>
4<users username="Modeler_C"/>
5<users username="Modeler_D"/>
6[...]
7<laneSets xsi:type="LaneSet">
8 <lanes xsi:type="Lane" name="Third Party PA"/>
9 <lanes xsi:type="ULane" users="//@users.0//@users.1//

@users.2//@users.3" />
10 <upoints users="//@users.0//@users.1//@users.3" uType

="AND">
11 <alternatives name="Municipal Desk">
12 <partitionElement xsi:type="StartEvent" />
13 [...]
14 <partitionElement xsi:type="UBaseElement">
15 <upoints users="//@users.0" uType="AND">
16 <alternatives xsi:type="Task" name="First

Document Check"/>
17 [...]
18 </upoints>
19 </partitionElement>
20 [...]
21 <upoints users="//@users.2" uType="AND">
22 <alternatives name="District Desk">
23 [...]
24 </lanes>
25</laneset>
26[...]

Listing 1: A fragment of a model conforms to UBPMN

3.3 Interoperability between models
The proposed approach allows to use models with uncertainty in
order to represent design alternatives in collaborative models. The
approach aims to respond to the need for techniques indeed to the
engineering, modularization and reuse of large models and com-
plex modelling enabling their flexible combination.

As said, modelers edits their modification on the model with un-
certainty that semantically correspond to a set of models conform
to the base matamodel (solution space); then alternatives has to be
selected and/or merged in order to obtain the desired (final) model
version. Dependencies and conflicts in models cause issues related
to consistency checking that has to be tackled.

However, a number of operation may be needed to give the de-
signer a more effective support and to achieve a complete interoper-
ability between the base and the uncertainty metamodels, as shown
in the next section.

3.4 Management of models with uncertainty
Once the uncertainty metamodel UMM is generated and model-
ers start to edit the model UM conforms to it in a collaborative
manner, it is important to achieve the mean to manage the arising
uncertainty. As said, multiple editing generates multiple alterna-
tives; modelers may iteratively reduce the uncertainty by selecting
the desired alternatives in a parametric manner and finally, when
the uncertainty is totally resolved, the final model representing the
desired design model is obtained. Note that the modeler may inten-
tionally manage a sub-set of uncertainty points and postpone the
complete resolution.

To this end, we provide an operation called filter that permits to
the modelers to reduce the uncertainty according to a given prop-
erty. In particular, the filter operation is a mapping defined as
following:

filter : P × UMM → UMM

that for any model with uncertainty UM ∈ UMM and a param-
eter p defined over the metamodel MM returns a model UM ′ ∈



UMM where the uncertainty is reduced according to p (i.e., the
solution models that not satisfying a given property are removed).

The operation is implemented by means of a model-to-model
transformation called Filter written in ATL. As said, it takes as
input the UM model and a parameter (represented by a model PM
conforms to the metamodel PMM ), and outcomes a model UM1

conforms to UMM , that is filtered according to PM . In particular,
the generated model UM1 is included in UM , that is semantically
equivalent to a subset of the models {M1..Mn} according to the
parameter expressed in the model PM .

When the uncertainty is solved, the outcome is a final model
without uncertainty (i.e., concretization model). Along with an in-
cremental management, we provide to the designer the possibility
to directly select one or more (or all as well) concretization models.

The concretization operator is defined in order to return the whole
set of the concretizations represented in a model with uncertainty.
More formally, such operator concr is a mapping defined for any
base metamodel MM :

concr : UMM →MM

which takes an arbitrary model with uncertainty UM ∈ UMM
and returns its k concretizations 〈M1 · · ·Mk〉 ∈ MM . By entan-
gling the uncertainty with the specialized metamodel construction
UMM , it is of crucial relevance to be able to retrieve the con-
cretizations as instances of their base metamodel. As one can ex-
pect, the reasons why this is important can be numerous including
the necessity to keep on exploiting, utilizing, and capitalizing on
existing tools.

For instance, the uncertainty of the model in Fig. 5 can be solved
in this way: i) the versions of the Modeler A and the Modeler

B are merged together in order to obtain a final model of the first
organization, ii) the versions of the Modeler C is selected to ob-
tain a final model of the second organization, iii) the versions of the
Modeler D is selected to obtain a final model of the third organi-
zation, and iv) a new version is selected by a modeler of a different
organization.

Let us suppose that the modeler’s of the first organization need
to solve the uncertainty and obtain a final model, thus the Filter
transformation is applied as in the following:

- the modeler selects the task First Integration Check

belongs to the uncertainty point edited by the Modeler B.
Such parameter is given as input of the transformation; since
the uncertainty point is involved in a logical operation AND

all the elements in the uncertainty point are taken as certain
part of the final model;

- the modeler selects the parallel gateway P1 belongs to the un-
certainty point edited by Modeler B and Modeler D. Since
the uncertainty point is involved in a logical operation AND

both the elements Start2P1 and P1 are taken as certain and
the second point of uncertainty is solved; finally

- the lane Municipal Desk is selected and the last uncer-
tainty point is solved.

The final model is depicted in Fig. 6.

3.5 Manipulation of models with uncertainty
In this work, we aim to support designers in specifying collabora-
tive models and perform operation on them; for instance, designers
may need to performs operations of model transformation on ver-
sioned models.

Model transformation techniques typically operate under the as-
sumption that models do not contain uncertainty. Actually, when a

Figure 6: A possible resolution of the model in Fig. 5

modeler is still working on a versioned artifact, she may delay the
application of model transformations until the information needed
to perform the merge becomes available, or make premature reso-
lutions of the existing versions in order to apply the model trans-
formations, thus creating a risk that these resolutions are incorrect.
With our approach, modelers may resolve the uncertainty by con-
sidering only one version of model, otherwise they may decide to
postpone the resolution, so they they need to be supported in their
operations (e.g., model transformations should be applied on mod-
els with uncertainty [16]). To this reason, we aim to provide a
technique to adapt existing model transformations so that they can
be applied to models even if they contain uncertainty [11].

Furthermore, by means of our approach modelers can therefore
easily grasp the differences among candidate models and consis-
tently make their decision without manually inspecting each model
individually.

3.6 Modelling system
Our approach requires to be integrated on a collaborative model-

ing platform that supports multi user in real time and large models
(of the scale of millions of model elements) paying attention to ef-
ficiency and performance.

The existing model versioning systems are mainly designed as
version control systems (VCS), such as CVS or SVN. They sup-
port the long transaction model that assume that designers perform
commit of large part of the work with respect to a certain previous
version [19]. These systems are asynchronous and provide merg-
ing features and mechanisms able to automatically detect and solve
conflicts by means of primitives like push, pull, commit and merge.

A modeling system supporting our approach has to be able to
deal with models with uncertainty and to allow multi-users to col-
laboratively work with their models in a way that the uncertainty
is transparent. The architecture is designed to support both offline
and online collaboration in a multi-user and multi-device environ-
ment, and to provide a model access layer (transaction manage-
ment, queries, views and manipulation), and an adaptation layer
for the integration of access control and authentication (these may
be provided by additional middleware such as the web server that
hosts the actual communication between server and client). The
environment will be implemented as an Eclipse Plugin embedded
in the EMF framework9.

Let us to consider that modelers have access to a repository that
provide different organizations to store and manage their models
(as in the example in Sect. 2). Thus, modelers need to: i) visualize
the repository and select the desired model by exploit a standard no-
9https://eclipse.org/modeling/emf/



tation of feature diagrams [10], and ii) edit their artifact by means
of an XMI editor and/or a visual editor embedded in the EMF envi-
ronment. Going in more details, when the designer select a model,
the concr operation extract the specific model from the model with
uncertainty. Whereas, when modifications are made from a mod-
elers and the push operation is performed, the system as to conse-
quently update the model with uncertainty (i.e., changes are added
as alternatives within uncertainty points).

4. RELATED WORK
Uncertainty is ubiquitous within contexts such as requirements en-
gineering [12], software processes [18] and adaptive systems [26].
Uncertainty management has been studied in many works, often
with the intention to express and represent it in models. In [15],
partial models are introduced in order to let the designer specify
uncertain information by means of a base model enriched with an-
notations and first-order logic. In [25] a formal approach called
MAVO is proposed and applied to design models in order to ex-
press and allow automated reasoning in presence of uncertainty.
In [24], an approach to manage the uncertainty generated as the
outcome of a non-deterministic model transformation is proposed.
The JTL bidirectional transformation engine [9] is revised to ac-
commodate a intensional semantics, that permits a transformation
to natively generate a model with uncertainty instead of a myriad
of models. In particular, a model with uncertainty provides a com-
pact representation of the solution space for the sake of usability
and effectiveness. Model transformation techniques typically op-
erate under the assumption that models do not contain uncertainty.
Nevertheless, the work in [16] proposes a technique for adapting
existing model transformations in order to deal with models con-
taining uncertainty. In [11], the authors propose a bidirectional
model transformation framework to cover incomplete transforma-
tions producing a multitude of possible solutions to consistency
restoration. This multitude is managed in an intentional manner via
models with built-in uncertainty (as proposed in [24]) and allows to
these to be included as input in a model transformation process.

Feature models are a popular formalism for managing variability
in software product lines. In this context, the Familiar project [4]
provides an executable language that supports manipulating and
reasoning about feature models and fully integrated modeling tool.

Despite a number of works have been proposed to cope with
large and complex software systems, a new line of research is im-
perative in order to achieve scalability across the MDE technical
space and to enable MDE to remain relevant [20]. Among the ex-
isting approaches that aim to cope with different topics concerning
scalability, such as modeling languages, transformations, collab-
orative modeling, persistence and so on, we consider the follow-
ings as most related to our work. In [17] the authors aim at pro-
viding compositional technology and techniques for a language-
independent model modularization. In particular, they proposed
a way of extending modeling languages with component capabil-
ities. The implementation is based on EMF Eclipse. However,
the work does not consider issues related to consistency preserving
when models are interconnected.

The state of the art in collaborative modeling includes several
prototype attempts of collaborative systems that are more closely
aligned with version control systems (VCS), such as CVS or SVN
[21, 6, 1, 2]. Recently, the Eclipse collaborative modeling commu-
nity proposed some convergent approaches. The Eclipse Modeling
Framework Connected Data Objects (CDO) [5] is a model reposi-
tory for EMF models supporting version management. EMF Com-
pare [13] is a model comparison, differencing and merging tool
often used in combination with traditional VCS. EMFStore [3] is

a model versioning framework for EMF able to deal with conflict
management.

They provides a still immature means for collaborative work
and locking and conflict management [20]; they are more closely
aligned with version control system such as CSV and SVN and im-
plemented within EMF Eclipse. Moreover, they do not fulfill the
need to have a flexible and scalable framework able to work in-
dependently from the specific domain-specific language or ad-hoc
architecture.

5. CONCLUSION
MDE is now practiced in industry, and on very large complex sys-
tems engineering projects and problems. From this arises the need
to enable designers to create and refine large models in a collabo-
rative manner enabling the engineering, modularization and reuse.

In this paper, we proposed to deal with the uncertainty arisen
from the collaborative editing of models by means of a metamodel-
independent approach able to represent models with uncertainty.
Furthermore, we proposed to manage the uncertainty by means
of two kinds of operations to reduce or resolve the uncertainty.
We plan to realize a model transformation approach able to deal
with model with uncertainty (i.e., model with uncertainty are in-
put and/or output of the transformation engine). Finally, we plan
to integrate our approach in a collaborative environment for real
time multi-user editing. We aim to extend the framework to help
the modelers to make decisions among proposed design versions.
The versions are initially partitioned, constrained, abstracted, and
graphically visualized to the user. Then, when decisions are made,
they are stored and used to drive subsequent decisions.

6. ACKNOWLEDGMENT
This research was supported by the EU through the Model-Based
Social Learning for Public Administrations (Learn Pad) FP7 project
(619583).

7. REFERENCES
[1] The AMOR project. Adaptible model versioning project

website. 2009. http://modelversioning.org.
[2] Eclipse Modeling Team rFamework proposal. 2011.

http://www.eclipse.org/proposals/mtf/.
[3] EMFStore project. 2011. http://eclipse.org/emfstore.
[4] FAMILIAR (for FeAture Model scrIpt Language for

manIpulation and Automatic Reasoning). 2011.
http://familiar-project.github.io/.

[5] Connected Data Objects model repository (CDO) project.
2012. http://eclipse.org/cdo.

[6] K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger,
M. Seidl, W. Schwinger, and M. Wimmer. Amor–towards
adaptable model versioning. In 1st International Workshop
on Model Co-Evolution and Consistency Management, in
conjunction with MODELS, volume 8, pages 4–50, 2008.

[7] P. Baker, S. Loh, and F. Weil. Procs of MoDELS 2005,
chapter Model-Driven Engineering in a Large Industrial
Context – Motorola Case Study, pages 476–491. 2005.

[8] A. Bertolino. Model-Based Social Learning for Public
Administrations (Learn PAd). EU-FP7 project. Description
of Work, 2014.

[9] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio.
JTL: a bidirectional and change propagating transformation
language. In SLE10, pages 183–202, 2010.



[10] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration using feature models. In International
Conference on Software Product Lines, pages 266–283.
Springer, 2004.

[11] Z. Diskin, R. Eramo, A. Pierantonio, and K. Czarnecki.
Incorporating uncertainty into bidirectional model
transformations and their delta-lens formalization. In Procs
of the Bx 2016 Workshop, co-located with ETAPS 2016,
pages 15–31, 2016.

[12] C. Ebert and J. D. Man. Requirements uncertainty:
influencing factors and concrete improvements. In Procs. of
ICSE, pages 553–560. ACM Press, 2005.

[13] Eclipse Foundation. EMF Compare. 2010.
http://www.eclipse.org/modeling/emft/?project=compare.

[14] R. Eramo, A. Pierantonio, and G. Rosa. Uncertainty in
bidirectional transformations. In Procs. of MiSE 2014, 2014.

[15] M. Famelis, R. Salay, and M. Chechik. Partial models:
Towards modeling and reasoning with uncertainty. In ICSE,
pages 573–583, 2012.

[16] M. Famelis, R. Salay, A. D. Sandro, and M. Chechik.
Transformation of models containing uncertainty. In
MoDELS’13, pages 673–689, 2013.

[17] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler.
Transactions on Aspect-Oriented Software Development VI,
chapter On Language-Independent Model Modularisation,
pages 39–82. 2009.

[18] H. Ibrahim, B. H. Far, A. Eberlein, and Y. Daradkeh.
Uncertainty management in software engineering: Past,
present, and future. In CCECE, pages 7–12. IEEE, 2009.

[19] D. S. Kolovos, R. F. Paige, and F. Polack. The grand
challenge of scalability for model driven engineering. In
Models in Software Engineering, Workshops and Symposia
at MODELS 2008, pages 48–53, 2008.

[20] D. S. Kolovos, L. M. Rose, N. D. Matragkas, R. F. Paige,
E. Guerra, J. S. Cuadrado, J. de Lara, I. Ráth, D. Varró,
M. Tisi, and J. Cabot. A research roadmap towards achieving
scalability in model driven engineering. In Procs of BigMDE
2013, page 2, 2013.

[21] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer,
W. Retschitzegger, and W. Schwinger. Towards a semantic
infrastructure supporting model-based tool integration. In
Procs of GaMMa 2006, pages 43–46. ACM, 2006.

[22] P. Mohagheghi, M. A. Fernandez, J. A. Martell,
M. Fritzsche, and W. Gilani. Models in Software
Engineering: Workshops and Symposia at MODELS 2008,
chapter MDE Adoption in Industry: Challenges and Success
Criteria, pages 54–59. 2009.

[23] B. P. M. OMG. Notation (BPMN) 2.0. Object Management
Group: Needham, MA, 2494:34, 2011.

[24] G. R. Romina Eramo, Alfonso Pierantonio. Managing
uncertainty in bidirectional model transformations. In SLE
2015, 2015.

[25] R. Salay, M. Chechik, J. Horkoff, and A. D. Sandro.
Managing requirements uncertainty with partial models.
Requir. Eng., 18(2):107–128, 2013.

[26] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and
A. Finkelstein. Requirements-aware systems: A research
agenda for re for self-adaptive systems. In RE, pages 95–103.
IEEE, 2010.

[27] D. Schmidt. Guest Editor’s Introduction: Model-Driven
Engineering. Computer, 39(2):25–31, 2006.


