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Abstract—In social communities the composition of thematic
groups varies over time due to changes occurring in users’
behaviors. To study the time evolution of such a process, we
design a conceptual framework exploiting a distributed algorithm
driving group formation. The results of tests carried out on real
data extracted by the social network CIAO, show as groups
formed by combining similarity and trust measures are i) more
time-stable, independently by the weight of the trust component,
and ii) more time-homogeneous, independently by the presence
of uncorrelated random agents’ behaviors affecting the similarity
component.

Index Terms—Homogeneity, Similarity, Social Communities,
Trust.

I. INTRODUCTION

Many online communities include thematic groups [1] and
many studies investigated on the users motivations to join
with groups [2], as well as the impact of their growth [3],
[4] and failure [1]. Important issues in forming groups re-
quire to an agent of selecting those groups able to satisfy
its expectation [5]–[8] and, in a complementary way, the
members of a group search to accept only new agents able
to improve their utility. Many studies present algorithms
effective in driving such group formation processes (e.g., by
using diffusion processes [3], [4]) by analyzing i) the group
evolution in terms of surviving or failure and ii) the reasons
for which an agent will join with/left a group. Many of such
studies assume that groups should be formed by like-minded
members. To this aim, many measures exist to evaluate the
similarity degree among the groups members (e.g., based
on the number of affiliations to groups [7], member/group
interests [5], individual preferences [6] and so on).

In such a context, the aptitude of a group to retain its
members (i.e., time stability) [9], [10] is a major factor for
its survival or extinction. The evolution of these groups is,
in the most part of the cases, driven only by the mutual
similarity criterion [11], although it has evident limitations.
Indeed, the problem of recommending groups to a potential
member usually relies only on the mutual similarity between
the profile features of a candidate at the time t and the interests
of a group. When such interests vary in a relatively short time
frame then groups selected at the time t could not be the best
choice at the time t+ ∆t.

Based on data of the social network CIAO [12], we verified
as the mutual similarity alone does not ensure the group
homogeneity over time. In particular, when uncorrelated (e.g.,
random) users’ behavior aspects assume a relevant weight.
Consequently, we investigated on improving the time-stability

of the group homogeneity in terms of similarity. In this
respect, recent studies on group formation processes consider
trust [13]–[15] to increase the level of the group member’s
engagement over time and avoiding the group failure [16].
However, all the approaches reviewed in [16] do not face the
problem of combining similarity with trust.

In [17]–[20] we proposed to integrate similarity and trust
in a unique measure to form groups and finding those most
suitable for joining with. In this paper, we extended this
work to study how changes occurring in the similarity and
trust measures impact on the groups formation over time. To
test this approach, we used a new conceptual framework by
means of which we verified, always by using the data of the
social network CIAO, that groups formed by considering both
similarity and trust have higher time-stable homogeneity, in
terms of similarity, than groups formed by adopting the only
similarity criterion. This result is valid also when both the
weight assigned to the trust component is low or random (i.e.,
“uncorrelated”) behavior components considered in computing
the similarity have a relevant weight. We assume that this
behavior is mainly due to the effect of trust in balancing
potential incongruence of the similarity measures. Besides, we
found as the function used to aggregate similarity and trust
measures is not fundamental. Therefore, for a good trade-off
between the need of producing accurate results and that of
having an easy interpretation model, we aggregated similarity
and trust by simply computing their weighted sum, as in [17].

The remaining of the paper is structured as follows: in
Section II we present the related literature, in Section III the
adopted reference scenario is introduced, while in Section IV
deal with the similarity and trust measures computation. Sec-
tions V and VI illustrate the A2G algorithm and our conceptual
framework. Section VII describes the experimental campaign,
discuss its results and, finally, conclusions ends the paper.

II. RELATED WORK

In the group formation the common identity and bond
theory [21] identifies as main mechanisms to join with a group
(i) the strong personal ties and (ii)) the shared interests with
other group members. Differently, in [2] the authors applied
the community detection algorithms to identify clusters into
OSNs and comparing their structural features with user-defined
communities. A study on the group affiliation mechanisms is
presented in [3], where in two different kind of networks the
authors noted as the act to join with a group can be modeled
in terms of new ideas spreading for both the networks.
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Kairam et al. [4] compared the growth processes in which
groups attract new members in presence/absence of social ties
with existing/any group members. Their main finding is that
more a group is highly clustered and more likely it grows for
a diffusion process. It is in accord with [1], where 500,000
Facebook groups created in an 8-day period were monitored
for 3 months after which the most part of groups were inactive.
The analysis of [1] highlighted that group survival depends
on the social capital brought by group founders and of their
behavior. Differently from us, any of the papers above explored
the homogeneity of such groups to verify if they result time-
stable homogeneous in terms of similarity.

Homogeneous processes are defined as those whose pa-
rameters are time-stable with respect to some measure. Usual
group formation processes do not assure that properties like
to similarity, social identity and so on, will be time-stable.
Conversely, some affiliation recommendation [7] processes
suggest to an OSN user only time-stable groups. From a
wide experimentation involving Social Identity and Cohesion
theories on more Twitter datasets, the authors of [22] verified
that groups based on the users’ social identity and formed by
users interested in a great variety of topics are less cohesive
over time in presence of transient events.

A flexible framework in which group affiliation is treated
as an event impacting on user’s preferences is proposed and
validated in [6], where a probabilistic framework provides
to model the individual preferences when he/she joins with
a group. In other words, it affiliates to a group those users
maintaining a high similarity level into the group over time
and keeping homogeneous the group under this point of view.
In this scenario, we note as friendships and time-homogeneity
of their relationships strictly depend by the mutual trust among
individuals. Differently, in the literature the most part of the
proposals to form time-stable groups consider it as a problem
essentially involving some form of similarity among users.

Among the cited contributions, only [9] indirectly refers to
trust, in the mean derived by the social theories [23], while the
other consider some form of similarity as the unique criteria
to form possible time-stable homogeneous groups.

III. THE REFERENCE FRAMEWORK SCENARIO

Our framework involves a community C = 〈A,G〉, where
A and G are the sets of agents and groups active in C. Let
I a set of available items, each one belonging to a specific
category x, belonging to the set of categories X 1, that in C
can be reviewed by each agent a ∈ A with an integer in
the range [0, 5]. Moreover, let ra,i be the generic review of
an item i ∈ I released by a, which consists of: (i) a rating
assigned to i by a; (ii) a category x ∈ X associated with
i; (iii) a numerical score specifying the helpfulness2 of ra,i;
(iv) a timestamp. Finally, we denote by ra the set of reviews
associated with a, called review history, and by R the set of
all the review history in C. In such a scenario, we assume to
adopt a multi-agent platform where, each agent au assists a

1The set of categories associated with C only depends by the goals of C
2The helpfulness is a measures of the utility of the rating of a review is

useful in making a decision and it is computed as the average of the scores.

user u, whereas an administrator agent ag assists a group g.
The agents knowledge representation, the agent tasks and our
definitions of similarity and trust will be introduced below.

A. The agents’ knowledge representation

Interests and preferences of each owner (i.e., u, g) are taken
into account by the associated agent a ∈ A and stored into its
profile pa consisting of (i) interests, (ii) behaviors, (iii) access
modes and (iv) trust levels, as follows:

Interests: The interest of the agent a in a category x is a
function Ia(x) : A×X → [0, 1] ∈ R computed as the overall
ratio of reviews for items belonging to x. More formally, Ia(x)
is expressed by Ia(x) = |{ra,i : i ∈ x}|/|ra|, where ra is
the review history of a, and we denote by ra,i each review
contained in ra and referred to an item i.

Behaviors: The behavior field informs us about the activ-
ities admitted or not within a group. It is assumed to be a
statement of the form “The average rating of items is greater
than 3.0” and so on. Targets (e.g., average rating, frequency
of posts, etc.) and goals (e.g., discriminating thresholds) of
the statements depend on the specific considered community.
Therefore, let b be a behavior (e.g., performed by a user,
admitted into a group) and let B = {b1, b2, . . . , bp} be a
given a set of behaviors. We assume to dispose of a function
ζa(b) : A×B → {True, False} which takes an agent a ∈ A
and a behavior b ∈ B and checks whether the behavior b
matches with the a’s past behaviors. The set of behaviors
associated with an agent a will be defined as Ba, i.e., we
set Ba = {ζa(b)| b ∈ B}.

Access modes: An access mode identifies a modality for
accessing/allowing the access to a group, arbitrarily set by
the agent owner, like to open, closed or secret, and let L be
a list specifying such accessing modes. More in general, we
supposed that a function M : A → L is available to associate
an agent a ∈ A with a mode l ∈ L for accessing to a group.
This components of the user profiles can be considered as fully
random, and not correlated with the other components.

Trust levels: We suppose that an asymmetric trust function
returning how much an agent j perceives another agent k as
trustworthy is available (i.e., in general if j trusts k it does
not mean that k trusts h too, tj→k 6= tk→j). Trust levels
are assigned during the agent interactions and mostly depend
on the specific community. For instance, in CIAO everyone
can explicitly declare the own trust about each other member.
Similarly, the trust perceived by an agent au with respect to a
group g of agents can be defined as tau→g =

∑

v∈g
tau→av/|g|.

Note that for a group g: (i) its administrator sets the admitted
behaviors access modalities (denoted as Mg); (ii) the interest
for a category x ∈ X is computed as the average of the
interests of its agent members for x that are stored in their
profiles; (iii) how the members of g perceive as trustworthy
an agent au is computed as tg→au

=
∑

av∈g
tav→au

/|g|.

B. The agents’ tasks

An agent updates its profile when an action involving
information stored therein is performed. More precisely:
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• After each performed action, an agent au updates in
its profile the interests and the boolean values of the
involved behavioral variables. Similarly, an agent ag in
its profile updates the behavioral variables every time the
administrator of g changes the associated rules. Besides,
each time that the preferred access modes change then
the associated agent updates its profile.

• When u expresses his/her evaluation about another user
v then au updates the trust measure.

We also assume that a Distributed Directory Facilitator
agent (DDF) supports the other agents in C with an Agent
Indexing Service and a Communication Layer enabling the
agent message exchange.

IV. SIMILARITY AND TRUST

To investigate the time-stability of groups in terms of
similarity, by means of the model previously presented, we
consider agents’ similarities and trust relationships, as follows.

A. Similarity measure

Let su,v be the measure of similarity between the profiles
of agents au and av computed as a weighted mean of the
contributions of interests (cI ), behaviors (cB) and access
modes (cM ) normalized in [0, 1]. More formally,

sau,av
= (wI · cI + wB · cB + wM · cM )/(wI + wB + wM )

where wI , wB , wM ∈ [0, 1] ∈ R are system weights for the
contributes cI , cB and cM , in turn, are computed as follows:
• cI is based on the average difference between the interest

values of au and av for each category x ∈ X :
cI = 1−

∑

c∈C
|Iau(x)− Iav (x)|/|X |

• cB is computed on the average difference between the
boolean variables contained in Bau

and Bav
. This dif-

ference is 0/1 if the two corresponding variables are
equal/different.

• cA is set to 1/0 if Mau is equal/different to Mau .
The similarity su,g between an agent and a group is

computed in the same manner described above, simply by
substituting av with ag .

B. Trust and compactness measures

We view trust as two terms specifying how much an
agent trusts another agent, and how much the community
perceives an agent as trustworthy. A feedback mechanism
usually allows each agent to record its satisfaction for its
interactions with other agents in order to compute/update
its trust measures [24]–[26] based on the concept of social
capital [27]. In fact, a high rate of positive interactions means
that an agent can receive an advantage to interact with another
agent and, therefore, trust should increase/decrease in presence
of positive/negative interactions. The first component, known
in the trust theory as reliability, represents the satisfaction of
au about av , i.e. relau→av

, and can specify several types of
trust relationships (e.g., the honesty, the dependability or, as in
this work, how much au is satisfied by the services provided by

av). Usually, reliability can assume values ranging in [0..1] ∈
R and the higher relau→av

, the higher the perception of the
reliability of av by au. Note that reliability is an asymmetric
measure. The second trust component, named reputation and
denoted it by repa in the interval [0..1] ∈ R, is a global
measure of the trust perceived by the whole community about
each other agent. The reputation is computed by averaging all
the reliability values relau→av

for each av ∈ A.
The two trust components are joined in a unique value to

compute the trust au about av as tau→av = αau · relau→av +
(1−αau

)·repav
, where αau

∈ [0..1] ∈ R is set by au to weight
the relevance it assigns to the first trust term with respect to the
second one. Note that trust is an asymmetric measure because
in the formulation it takes into account the reliability. Besides,
each time a reliability value is updated by au, it sends the new
value to the DF that, in turn, returns a reputation value to au
when it needs to compute a trust measure.

As defined in [17], compactness is a measure combining
trust and similarity, say γau→av

, able to exploit importance
given to the mutual similarity with respect to the mutual trust.
We model this level of importance by the coefficient Ws,
ranging in [0..1] ∈ R and, consequently, we define γau→av

as
γau→av = Ws · sau,av + (1−Ws) · tau→av . Remember that
trust is an asymmetric measure γu→v 6= γv→u.

In Table I the meaning of the symbols is reported.

TABLE I
MAIN SYMBOLS USED IN THE PAPER AND THEIR MEANING.

Symbol Meaning
tu→v level of trust perceived by the user u w.r.t. the user v
tu→g level of trust perceived by user u w.r.t. the group g
tg→u level of trust perceived by the group g w.r.t. the user u
su,v similarity between users u and v
su,g similarity between the user u and the group g

relu→v reliability perceived by the user u w.r.t. av
repu reputation of the user u
αu weight that au assigns to the reliability w.r.t. the reputation
γu→v compactness perceived by au w.r.t. av
Wsu weight that au assigns to the similarity w.r.t. the trust
WI weights the interest in computing su,v
WB weights the behavior in computing su,v
WM weights the access mode in computing su,v

V. A2G: MATCHING AGENTS WITH GROUPS

In this section the algorithm (A2G), enabling user agents to
select the groups to join with, is presented.

Let G = {g1, g2, . . . , gn} be the groups of C, with |G| =
n. Moreover, let kau

MAX be the upper bound ranging in [0, n]
which specifies the number of groups au desires to join with
and reasonably it will be kMAXau << n. In the following, for
convenience, the notation kMAX will be used instead of kau

MAX.
Algorithm A2G selects kMAX groups having the largest value

of compactness of au vs the joined groups. We assume
that au continues to receive the whole benefit from all the
K ⊆ G groups which it is joined with, so that the overall
received benefit in joining with all the K groups, in term
of compactness, is given by

∑

gi∈K
γu→gi . Finding the subset

K? ⊆ G producing the best benefit for au under the constraint
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|K?| = kMAX is equivalent to solve an optimization problem.
In this work, we assume that each user agent au is unable
to know, in advance, the compactness of all groups in G.
Furthermore, we assume that: (i) au is able to sample m
random groups from G; (ii) au will record into an internal
cache, denoted as H the profiles of the groups au joined with
in the past; (iii) m is the number of the group agents that at
each epoch must be contacted by au. Algorithm 1 describes
the steps au performs to find the kMAX groups it can join with,
while the Algorithm 2 runs on the group agent. In particular,
it is assumed that (i) the size of each group g ∈ G is ≤ than
a threshold nMAX; (ii) nMAX is fixed by the group administrator;
(iii) each agent ag stores into an internal cache the profiles of
the agents who joined with g;

VI. THE PROPOSED COMPUTATIONAL FRAMEWORK

In our framework, a community is associated with a tem-
poral dataset of events consisting of a matrix EM , where
each row represents an event containing a timestamp, an agent
identifiers and the event attributes. An events can be an action
performed by an agent or an external event changing the state
of the community. Furthermore, we assume that a (non time-
varying) matrix TM of trust relationships is available, where
each row is a pair of agent IDs (au, av) representing a trust
relationship among agent au and agent av . Moreover, A2G-
Comp and A2G-Sim are two versions of the algorithm A2G. In
the former the compactness γ is computed by setting Ws < 1
(i.e., it is driven by similarity and trust) and for the latter
Ws = 1 (i.e., it is driven only by similarity).

The framework provides the weights wI and Ws in the
range [0, 1] ∈ R influencing the A2G algorithm results. wI

represents the weight assigned to the agent interest, while
1 − wI is divided between wB , representing the weight
assigned to the agents behavior (see Section IV), and wM .
cM is set as random not being into the original dataset.
The lower the value of wI , the higher the incidence of the
component cM in computing the similarity, in other words
cM is an “uncorrelated component”. Furthermore, the higher
the value of Ws, the lower the impact of the trust relationship
in computing the compactness γ.

In this perspective, the MAC (Mean Average Compactness)
and MAS (Mean Average Similarity) measures have been
used to perform experiments, in dependence of wI and Ws.

Data: au: an agent, H the current set of groups of au, m: an integer
in [0, n], kMAX: the number of groups au can join with

Result: The new set S of groups of au
Y = a set of m random groups extracted from DF; Z = H

⋃
Y ;

for (g ∈ Z) {au sends a message to ag and let pg be the profile of g};
S = the set of kMAX groups of Z with the highest compactness values;
for (g ∈ S) do

if (g /∈ H) then {au sends a join request with its profile to ag};
else {au left g};

end
return S

Algorithm 1: The User Agent Task

Data: r: an agent which has asked to join with the group, K, the set of
agents in g

for (au ∈ K) do {ag sends a message to au};
for (au ∈ K

⋃
{r}) do {Compute γg→u};

Let π =

∑
ui∈g

∑
uj∈g γui→uj

|g|2 ∀〈ui, uj〉 ∈ g and let S = ∅;

for (u ∈ K
⋃
{r}) do {if (γg→u ≥ π) {S = S

⋃
{u}}};

Let TopS be the set of top-nMAX users in S;
if (r ∈ S) {ag accepts the join request of r};
for (u ∈ K ∧ u 6∈ S) do {ag deletes u from g};

Algorithm 2: The Group Agent Task

MAC(wI ,Ws) =

∑
g∈GACg

|G| ACg =

∑
x,y∈g,x6=y γx→y

|g| .

(1)

MAS(wI ,Ws) =

∑
g∈GASg

|G| ASg =

∑
x,y∈g,x6=y sx→y

|g| .

(2)
More in detail, ACg (resp., ASg) is defined as the Aver-

age Compactness (resp., Average Similarity), similarly to the
average dissimilarity commonly exploited in Clustering Anal-
ysis [28], since a group g can be viewed as a cluster of agents.
Note that MAC is computed in the training phase of the A2G-
Comp algorithm (i.e. it only drives group formation), while
MAS is computed in the test phase. Therefore measuring the
variation of MAS can be useful to verify the homogeneity, in
terms of similarity, of the groups formed in the training phase.

A. Experimental approach and main parameters

We considered the time-variation of the average similarity
of the groups in two different cases: (i) (Comp) Groups
formed by the A2G-Comp algorithm are driven by compact-
ness (Ws < 1). (ii) (Sim) Groups formed by the A2G-Sim
algorithm are driven by the similarity criterion (Ws = 1).

The computation of the measures are performed by follow-
ing the steps described below: (i) Rows of the matrix EM
are arranged in an increasing order, basing on the database
timestamp. (ii) The matrix EM is divided into a number of
time-windows of equal size. The first time-window is for the
training set and the remaining for the tests. (iii) The trust
network is built by loading the matrix TM and for all. (iv)
The training is performed by executing the algorithm A2G-
Comp (resp. A2G-Sim) on the first time-window, in order
to form groups of agents. (v) The training is stopped when
“stable” values of MAC for A2G-Comp (MAS for A2G-
Sim) are reach, i.e. the difference between two steps is less
than a given threshold (in our case it was 5%). (vi) Data of
the remaining time-windows is loaded in sequence for each of
them and MAS is computed without executing the algorithm
A2G, such that group composition remains the same as in the
end of the training phase. This technique allows us to study the
variation of MAS due to the addition of events representing
the execution of some further actions by the agents.
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TABLE II
PARAMETERS USED IN EXPERIMENTS ON THE CIAO DATASET.

Parameter Value Parameter Value
Number of Groups 50 kMAX 10

kMIN 0 NREQ 5
kMAX 50 Size of the Training Set 10, 000
nMIN 0 Size of the Test Set 26, 065

VII. EXPERIMENTS

Experiments exploited the described framework on a dataset
extracted from the social network CIAO [12]3 referred to
12, 375 users and consisting of two matrices (i.e., EM, TM).
Rows of matrix EM have the form {userID, productID,
categoryID, rating, helpfulness, timestamp}, where categoryID
is the commercial category of the item identified by productID
which received the rating by the reviewer identified by userID,
and helpfulness represents the level of satisfaction of the
other member for that rating (it has not been used in our
experiments). Table VII contains the parameters used to carry
out the experiments. The training set is made by the first
10, 000 events. The software used for the experiments can be
downloaded at https://github.com/fmes/simU2G.
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Fig. 1. MAS vs parameter Ws achieved by the A2G-Comp (wI = 0.1).
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Fig. 2. MAS vs parameter Ws achieved by the A2G-Comp (wI = 0.5).

3Data used in our experiments are publicly available at http://www.public.
asu.edu/∼jtang20/datasetcode/truststudy.htm
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Fig. 3. MAS vs parameter wI achieved by the A2G-Sim (Ws = 0.1).
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Fig. 4. MAS vs. parameter wI achieved by the A2G-Comp (Ws = 0.5).

A. Results

Experiments were performed by varying weights wI and
Ws in the range [0.1 − 0.9]. Figures 1 and 2 report the
execution of A2G-Comp for wI = 0.1 and wI = 0.5 and
Ws in the range [0.1 − 0.9]. In Figure 1 the values of the
MAS are relevant also when the weight of the trust component
is low (i.e., Ws > 0.5). In particular, values of MAS are
larger than 0.8 (e.g., median is 0.82 for Ws = 0.8), giving
a good time-stability with a visible bias around the median
value, if compared to the results shown in Figure 2, on which
the uncorrelated component starts to assume a less significant
weight. Figures 3-4 show the results for the 1st, 2nd, and 3rd
quartile, minimum and maximum values of MAS computed
after the training for the remaining time windows. Figure 3
shows the behavior of A2G-Sim for different values of wI ,
while Figure 4 represents the different values of MAS for
A2G-Comp with Ws = 0.5. From these Figures we note
that the lower the value of wI , the lower the value of overall
similarity at the end of the test for A2G-Sim (Figure 3), while
for A2G-Comp the values of MAS are higher of about 10%.
This first set of results say us of driving groups formation
by compactness when the weight wM is of at least 25% to
obtain homogeneous time-stable groups in terms of average
similarity.
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VIII. CONCLUSIONS

The experimental study has been conducted with a dis-
tributed algorithm for groups formation, named A2G, which
exploits the compactness measure, i.e. a combination of simi-
larity and trust. The experimental approach of the conceptual
framework permits to employ different combination of simi-
larity and trust.

Obtained results have shown that forming groups on the
basis of users’ similarity will lead to form time-stable homo-
geneous groups if the weight of the uncorrelated behavioral
components is marginal. Nevertheless, when group formation
is driven by compactness (i.e., by combining similarity and
trust) then groups result time-stable homogeneous even if
the uncorrelated components included in the computation of
similarity are relevant. Therefore, trust relationships will help
to improve the level of resilience, in terms of similarity, also
in presence of behavioral components which are not strongly
linked with the others. Interestingly, even when the weight
assigned to the trust relationship in the computation of com-
pactness is very low, group formation driven by compactness
will lead to a number of groups having a higher level of time-
stability with respect the similarity measure.
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compactness in social network groups,” Cybernetics, IEEE Transactions
on, vol. 45, no. 2, Feb 2015.

[18] A. Comi, L. Fotia, F. Messina, G. Pappalardo, D. Rosaci, and G. M. L.
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