8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

Rosemary: A Flexible Programming Framework to
Build Science Gateways

Shayan Shahand* and Silvia D. Olabarriaga*
*Department of Clinical Epidemiology, Biostatistics, and Bioinformatics
Academic Medical Center of the University of Amsterdam, The Netherlands
Email: {s.shahand | s.d.olabarriaga}@amc.uva.nl

Abstract—The lessons learned during six years of experience
in design, development, and operation of four Science Gateway
(SG) generations motivated us to develop yet another generation
of platforms coined “Rosemary”. At the core of Rosemary the
three fundamental SG functions, namely related to data, com-
puting, and collaboration management, are integrated together.
Our earlier studies showed that complete integration between
these functions is a feature that is usually overlooked in the
existing SG platforms. Rosemary provides a generic data model,
RESTful API, and responsive Ul that can be customized through
programming to build customized SGs. Moreover, Rosemary is
designed and implemented to be flexible to changes in e-In-
frastructures and user community requirements. The software
frameworks, tools and libraries employed in the realization of
Rosemary streamline the development, deployment and operation
of customized SGs for the users needs. So far the platform
has been used to implement prototypes of three SGs for high-
throughput analysis and management of neuroimaging data,
sharing of data in in-vitro fertilization research, and provenance
tracking of DNA sequencing data. This paper presents the design
considerations, data model, and system architecture of Rosemary
and highlights some of the features that are intrinsic to its design
and implementation with examples from the three prototypes.

Keywords—Science Gateway, Science Gateway Platform, Pro-
gramming Framework, Data Management, Computing Manage-
ment, Collaboration Management

I. INTRODUCTION

Science Gateways (SGs) are web-based enterprise informa-
tion systems that provide scientists with customized and easy
access to community-specific data collections, computational
tools, and collaborative services on e-Infrastructures [1], [2].
The construction of SGs is challenging because they include
a large number of heterogeneous, distributed, and evolving
software components and services. Moreover, there is a plethora
of evolving and alternative technologies and platforms to choose
from, as well illustrated by the rich information contained in
the EGI Science Gateway Primer [3] and the XSEDE Science
Gateway cookbook [4].

In this paper we present yet another SG framework, Rose-
mary, that was designed in response to lessons learned during 6
years of SG development and operation at the Academic Med-
ical Center (AMC) of the University of Amsterdam. Rosemary
addresses the need of flexible and light platform to address
modern user interface requirements while integrating data,
processing and collaboration functions as first-class concepts.
The paper details the motivation and presents the requirements
and system design of Rosemary in Sections II and III. The

data model and system architecture of Rosemary are described
in Sections IV and V. The current SGs implemented based on
Rosemary are introduced in Section VI followed by a discussion
in Section VIII and conclusion in Section IX.

II. MOTIVATION

Between 2010 and 2015 we have designed, developed, and
deployed four SG generations at the AMC. The first and
second generations were prototypes and exploratory, which
were evaluated with a small number of users in scientific
projects and courses [5]. They consisted of simple web
applications implemented in JSP that could start scripts to
run an image analysis tool on the Dutch grid infrastructure.
The third generation was based on a custom platform built on
the Spring framework and the MOTEUR workflow management
system [6]. It focused on providing computing power to biomed-
ical scientists for neuroimaging, genomics and proteomics
data analysis [7]. The fourth generation enriched SGs utility
by integrating data management, in addition to facilitating
access to the Dutch grid infrastructure. This generation was
based on the WS-PGRADE/gUSE SG framework [8], and used
to build customized SGs for neuroimaging data analysis [9]
and molecular docking simulations [10]. Both the third and
fourth generations were deployed and used daily in biomedical
research projects, and helped researchers to handle large
computations, for example refer to [11].

These SG generations were developed and studied in
partnership with the computational neuroscience, bioinfor-
matics, and medical chemistry research communities from
AMC and Amsterdam region. The lessons learned in this
process motivated the development of yet another generation
of SG coined Rosemary, which are described in the following
sections.

III. REQUIREMENTS AND SYSTEM DESIGN

To better introduce Rosemary SG platform, the user com-
munity requirements and the functions to address them are
explained in Section III-A. Additionally, the considerations
during the design phase are explained in Section III-B to
support its design, implementation, and technology choices.

A. Three Pillars of Requirements and Functions

During the life cycle of a research project, several researchers
collaborate with a wide spectrum of complementary background

8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

and expertise, such as domain-specific science, statistics, data
processing, and information technology. These collaborators
take various roles along the project life cycle, such as data
collector, data analyst, support, and principal investigator.
Moreover, researchers perform several tasks in different phases
of the research life cycle based on their roles. Finally, on top
of all that, some characteristics may vary in each discipline,
depending on local culture and research project setup. All these
characteristics translate to an overwhelming and complex set
of requirements for a science gateway that can efficiently and
effectively support research activities.

In spite of all this diversity, in our research we identified
three foundational groups of functional requirements at the core
of any SG, namely related to data, computing, and collaboration.
These are extensively described in [12] and summarized below:

« Data-related requirements concern management of com-
plex, distributed, and heterogeneous datasets on e-
Infrastructures. Examples of data-related requirements
include storing, annotating, searching, retrieving, replicat-
ing, and archiving datasets, as well as capturing metadata
and provenance.

« Computing-related requirements concern management of
complex, computationally demanding, distributed and
coordinated data processing on e-Infrastructures. Examples
of such requirements include negotiating resources, instan-
tiating and setting up computer programs from application
repositories, scheduling as well as managing the execution
order and data flow between computer programs and
handling failures.

o Collaboration-related requirements concern management
of communications and interactions among scientists
involved in a research project. Such collaborations entail,
among others, definition of team membership; sharing
or reusing data, computer programs, and resources; and
exchanging information with reference to data and com-
puting.

We experienced that it is easier to discover and see through
the complex set of requirements of the research communities
in the context of SGs when organizing them explicitly around
data, computing, and collaboration requirements. For example,
we started in the first generation motivated by the need for high-
throughput computing. It was only when we deployed the third
SG generation, which addressed the most prominent computing-
related requirements, that the scientists and ourselves under-
stood that there was a second dimension to consider, namely
the data-related requirements. Likewise, when the data-related
requirements were better addressed in the fourth generation, the
need for more sophisticated collaboration mechanisms became
evident, motivating for a fifth SG generation.

Furthermore, we found that all of the three functional
requirement groups should be considered in the design. The SG
should integrate data, computing, and collaboration resources
seamlessly. Failing to integrate any of these resources will result
in a SG that is not effective and will find limited use. A high-
level illustration of SGs is depicted in Figure 1, where the SG

functions related to these three functional requirement groups
are shown by columns that are rooted on data, computation and
collaboration. The rows represent the e-Infrastructure resources
and the integration and enrichment layer implemented by the
SG. Integration functions cross-cut and manage the complex
relations and interplay among data, computing, and community
management functions. These functions for example capture of
data and process provenance, coordination of computation and
data-related tasks, security, monitoring, notification, discussion
among users, analytics of domain data and SG activity, and
billing management. The detailed explanation of these functions
and a comparison of some of the well-known SGs based on
their provided functions can be found in [12].

It is also worth noting that SG design should be flex-
ible enough to accommodate potential changes in the e-
Infrastructure resources and in the three functional requirement
groups due to expected evolution of research practices.

F ; ;= 3

1 Data 1 1 Computation : : Collaboration 1

1 S 1

] Pl 1

1|38 9 Provenance ﬁ Monitoring 0 Notification |1

11§38 1

1= §' Og Coordination ﬂ Security 1

} }

1 il Analytics E Billing Q Discussion [}

Science 1 |
1 L }

Gateway [= 11 O 1 i[2eS .
1 = Data L === Computing 1 1| @ Community 1

1 Management 1 Management 11 Management |,

| (I} 11 |

(I}

| 1 e :

1 L ~ 1

[Cyber/e- . @Déj) ¢ 1 |m.

. (I |
Infrastructure]: Data 11 Computing A ‘ 1
Resources . Infrastructure 1 | Infrastructire : & Community :
i

Figure 1. High-level illustration of SGs. Data, computation, and collaboration
functions provided by e-Infrastructure resources are integrated together and
enriched by SGs. Integrated functions cross-cut and manage the complex
relations and interplay among data, computing, and community management
functions. These functions can be further categorized into more specific groups
as discussed in [12].

The design of Rosemary considers all the three functional
requirement groups. It provides a metadata-rich abstract in-
tegration layer in which data, computing, and collaboration
management functions are integrated together at its core. The
rich metadata and integration level provided by Rosemary foster
its capabilities to supply data provenance, increase automation,
and unlock advanced features such as full search, user guidance,
and data mash-up. Moreover, its implementation aims to
ensure flexibility to accommodate changing requirements and
e-Infrastructures.

B. Software Design Considerations

In general, there are two approaches to develop Science
Gateways: a) to customize existing SGs or b) to develop from
scratch, for example based on web application frameworks or
Content Management Systems (CMS) [3], [13]. Customizing
the existing SGs enables utilization of already provided SG
functions such as integration and management of computing
resources, which reduces development time. However, this

8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

approach also confines the developers to a certain software
stack and SG functions, which implies understanding the
architecture and details of the existing SG before being able to
customize it or add new functions. For example, take the
case of the Distributed Research Infrastructure for Hydro-
Meteorology project (DRIHM) science gateway, where they
report that building a SG based on a sophisticated modular
and extensible SG framework was not smooth because of
the amount of necessary modifications to address the user
requirements, being confined in a certain software stack, and
lack of integration between main entities [14]. In contrast to this
approach, developing SGs from scratch gives the developers
full control over the software stack and SG functions, but
it increases the development time. However, even then it is
possible to integrate with existing software components, for
example from other SG frameworks, when these are decoupled
and provide a clear abstraction layer. It is therefore important
to choose the approach that suits best the requirements based
on available resources and expertise.

Our third SG generation was developed from scratch based
on the Spring framework [7], while in the fourth generation
we customized the WS-PGRADE/gUSE SG framework [8]
to develop our specific SGs [9], [10]. In the fifth generation,
Rosemary, we opted for developing it from scratch based on
the Play framework to be able to have full control over the
implementation of the new SG data model (see Section IV)
and its software stack. Note that we only implemented an
“integration layer” from scratch that integrates data, computing,
and collaboration functions seamlessly. Base on our previous
analysis in [9], this level of integration is not offered by existing
SG frameworks, as explained in Section VIIL.

In summary, the following items were the key features
considered in the design and implementation of Rosemary:

« Fully integrate the three pillars of SG and provide func-

tions for data, computing, and collaboration management.

« Maximize utilization of existing services and software

components.

« Maximize flexibility for accommodating changes in e-In-

frastructures and user community requirements.

e Minimize changes when customizing the SG for various

disciplines.

« Streamline software development, deployment, and opera-

tion.

« Provide an easy-to-use and ubiquitous user interface (UI).

These features have various consequences on the design
and implementation of Rosemary. The most prominent conse-
quences are the effect on the data model and its implementation,
utilization of a Service Oriented Architecture (SOA) and
microservices, and use of modern software platforms and tools.

The new data model was essential to take into account all
the three functional requirements and to integrate them all into
the SG. When designing the new data model we also aimed
at maximizing flexibility and generality so that it can cope
with the changes and can be customized to address various
requirements of different research disciplines. More details are
presented in Section IV.

Although we opted for developing Rosemary SG framework
from scratch, we didn’t (still don’t) intend to repeat ourselves
and others [15]. It was our goal to maximize reusing code
and software components developed for the previous gener-
ation of our SGs and by others. Therefore we used a SOA
through microservices and wrapped and packaged (existing)
software components into independent services. More details
are presented in Section V.

In our previous SG generations a big portion of development
time was spent on integration tests. Moreover, operation
of those SGs turned out to be challenging because of the
complexity of the system. We aimed at mitigating these
challenges by utilizing modern web application frameworks
(Play Framework for the back-end and AngularJS for the front-
end) and compartmentalizing system components (using Docker
and Ansible). Rapid development is facilitated by utilization of
high-level programming languages (Scala, CoffeeScript) and
the availability and richness of tools and libraries (Bootstrap,
SBT, Gulp, Bower, Apache Lucene, Akka). These modern
software platforms and libraries also enabled us to provide a
Rich Internet Application (RIA) and responsive UI that can
be used from various devices with various dimensions. More
details are presented in Section V.

IV. BASIC CONCEPTS: DATA MODEL

The basic concepts of the data model are explained through
the three pillars (see Section III-A) and the integration layer
between them. The simplified Entity Relationship (ER) diagram
is depicted in Figure 2, where the most relevant attributes that
are explained in this paper are highlighted. Note that all entities
have a set of <key, value, unit> attribute attached to them to
store metadata.

A. Data Management

Datum entity holds the domain data and metadata. Datum
objects can form a hierarchical structure by declaring other
objects as their children. One Datum object can be declared as
child of multiple Datum objects. This relationship is used to
capture the notion of association and derivatives, for example,
multiple samples that belong to a subject or a 3D model that
is reconstructed from multiple brain scans.

B. Computing Management

Recipe entity captures what can be done with data and is
meant to store data processing functions. Examples of Recipe
objects are program (or workflow) descriptions or simply a
document that describes how one sort of Datum can be derived
from another one. Recipe objects may also have a set of input
abstract ports that describe the inputs expected from users. A
Recipe object may have a program description attached to it,
and in that case, it also includes a) the abstract input and output
ports as expected and generated by that program; and b) a
transformer that specifies how user inputs could be validated
and transformed into program inputs, and how program outputs
should be interpreted and transformed by the system to Datum
objects.

8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

children

T

Processing

iPorts

AbstractPort

children
Inputs / outputs y origin
Datum pPO——OH Resource
X replicas t g
7 3
3
kind =
T .
rights: owner / members
Tag DO 04 User
\
T '7785 5
Sages §
R e
:attribute for all entities Notification Thread

Figure 2. Simplified ER diagram with highlighted attributes. All entities have a set of <key, value, unit> attribute to store metadata. Tag entity is located at the
heart of the data model and is one of the key factors that make the data model flexible and customizable.

Processing entity captures the actual application of Recipe(s)
on data. A Processing object has one or multiple Datum as
inputs and outputs, a set of status, and one or multiple Recipes
to specify which data processing functions have been used.
Examples of Processing objects are program (or workflow)
executions or a user action such as manual file edit. Processing
objects can form a hierarchical structure to group them together
and capture multiple levels of abstraction. For example, the
Datum selected by the user in the SG as the input of one
Processing can be (automatically) transformed based on the
domain information into multiple files that will be used in
multiple processings organized into a group.

C. Collaboration Management

User entity captures user information such as their name,
email address, and preferences.

Thread entity stores an array of messages (see Tags in
Section IV-D) to capture the communication between users
around a specific topic involving SG activity. For example,
users can discuss the outputs of a certain data processing or
receive a domain or system expert opinion for troubleshooting
a data processing.

Notification entity holds the information about a system
event or a user action, for example, when a Processing has
been completed, or a message has arrived on a Thread.

D. Integration of the Three Pillars

Integration between the three pillars is managed by two
entities, Tag and Resource, and the relationships between these
entities and the rest of the entities.

Tag entity is located at the heart of the data model and
is one of the key factors that make the data model flexible
and customizable. Tags are used to annotate objects to create
groups and deliver functions such as filtering, access control,

and communication. Access to Tags is controlled by defining
their owner and members. Examples of the usage of Tags
include:

o Create workspaces in which users collaborate with each
other. The access to Datum, Recipe, Processing, Resource,
Thread, and Notification objects is controlled through
the access control of the workspace tags. This means
that when an object is annotated with a workspace Tag it
would become accessible to anybody that has access to that
Tag. Workspace-specific information, such as community
credentials for resources, can also be stored in these Tags.

« Annotate Datum or Processing objects with a category
name that can be used for filtering during search. Tag
labels are used to customize the SGs for specific domains.

« Group together or filter some Datum or Processing objects
based on user-defined Tags.

« Annotate Datum and Processing objects with messages
and form a discussion around them. A message in a
communication Thread is indeed a Tag.

Resource entity stores the information about various data
resources or computing platforms. Datum entities are originated
from, and have replicas on, data Resources. Recipes can also
have replicas on data Resources, i.e., to specify the location of
program binaries or Recipe descriptions. Additionally, Recipes
can be eligible to be executed on a certain computing platform.
Regarding credentials to access Resources, users could also
have their own personal credential in addition to community
credentials.

V. SYSTEM ARCHITECTURE AND IMPLEMENTATION

System Architecture of Rosemary is depicted in Figure 3. It
consists of three layers: front-end, back-end and the resource
layer provided by the e-Infrastructures.

8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

Collaboration
Management Views

Data Management
Views

Computing
Management Views

Twitter Bootstrap |

| Google AngularJS |

| RESTful API |

| Security |

Lucene Search

Engine
(models)

Controllers -
MongoDB

Data Source
Manager

Processing
Manager

Information
Manager

Back-end

Data plug-in

£
o
3
Q
Q
<
o
(a)]

WebDAV plug-in

=
T
(=)
=
Q
=
<
<
X

iRODS plug-in

Figure 3. Rosemary system architecture showing Front-end, Back-end, and e-In-
frastructure layers The back-end provides a secure RESTful API to integrate,
enrich, and manage data, computing, and collaboration functions provided by
e-Infrastructure resources.

The front-end uses the back-end RESTful API to provide
data, computing, and collaboration management functions to
users. The Ul is made responsive to the screen dimension
through the Twitter Bootstrap' front-end framework. The front-
end has been implemented based on the Google AngularJS?
web application framework to deliver a single-page RIA. The
front-end controllers are implemented using the CoffeeScript?
programming language that enhances JavaScript’s readability
and conciseness. All these frameworks and high-level program-
ming languages improved the development and test cycles and
therefore enhanced front-end stability.

The back-end provides a secure RESTful API to integrate, en-
rich, and manage data, computation and collaboration functions
provided by the e-Infrastructure resources. It is implemented
based on the Play web application framework* and coded
in the Scala’ functional and object-oriented programming
language. The SG information is stored in MongoDB®, a
document-oriented database that offers the required flexibility
and scalability. The information about Datum and Processing
objects, including their metadata and annotating Tags, is
indexed and searched upon using Apache Lucene’ search
engine. The back-end also includes a Data Source Manager
(DSM) that provides an abstraction layer over management

Thttp://getbootstrap.com/
Zhttps://www.angularjs.org/
3http://coffeescript.org/
“https://www.playframework.com/
Shttp://www.scala-lang.org/
Shttps://www.mongodb.com/
7https://lucene.apache.org/

of data and metadata that is stored on various data sources
such as iRODSS, XNAT?, and WebDAV!?. The DSM utilizes
the API of the e-Infrastructure data sources to provide the
functionality to import data and metadata into the SG. Similarly,
it provides export and replication functions to those data
sources. Another important component of the back-end is the
Processing Manager (PM) [16], which provides a RESTful
API and an abstraction layer over the computation management
functions on computing platforms. The PM potentially handles
simple jobs and workflows depending on the underlying
middleware or service used through its plug-ins. Currently,
the PM uses Distributed Infrastructure with Remote Agent
Control (DIRAC [17]) Interware to interface with various
computing platforms such as Grid, Cloud, and Cluster. DIARC
utilizes the API of the e-Infrastructure computing platforms
to run, manage, and monitor computations on them. The PM
also stages input and output data and application to/from the
computing platforms using a simple data plug-in. Compared
to the version described in [16], the PM included in Rosemary
has been reimplemented in Scala based on the Akka toolkit'!
and RabbitMQ'? message broker to enhance its scalability and
transparency for troubleshooting.

The development of Rosemary is streamlined by the ecosys-
tem of tools including SBT'?, Gulp'#, and Bower'> to manage
library dependencies and automate system builds. The Play
framework in particular makes it easy to hot redeploy the SG
and test its functionality during development. Deployment is
streamlined by encapsulating various parts of the system, i.e.,
MongoDB, Processing Manager, Back-end and Front-end, in
separate Docker'® containers and configuring those containers
using Ansible!” configuration management platform.

VI. CURRENT IMPLEMENTATION OF GATEWAYS

The common functions provided by Rosemary SG platform
include:

« Create and manage workspaces in which users collaborate
in data analysis tasks. Workspaces bring a collection of
data, recipes (applications), processings, communication
threads, notifications, users, and community resources and
their credentials together.

« Authenticate to various external data and computing re-
sources using the available community or user credentials.

« Import data and metadata from external data sources into a
workspace so that it can be managed or processed through
the SG.

« Configure available applications and submit and manage
data processings to computing platforms. Necessary steps

8https://irods.org/

“http://www.xnat.org/
10https://en.wikipedia.org/wiki/WebDAV
http://akka.io/
2https://www.rabbitmq.com/
Bhttp://www.scala-sbt.org/
“http://gulpjs.com/

Bhttp://bower.io/
16http://www.docker.com/
https://www.ansible.com/

http://getbootstrap.com/
https://www.angularjs.org/
http://coffeescript.org/
https://www.playframework.com/
http://www.scala-lang.org/
https://www.mongodb.com/
https://lucene.apache.org/
https://irods.org/
http://www.xnat.org/
https://en.wikipedia.org/wiki/WebDAV
http://akka.io/
https://www.rabbitmq.com/
http://www.scala-sbt.org/
http://gulpjs.com/
http://bower.io/
http://www.docker.com/
https://www.ansible.com/

8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

for data processing, such as application and data staging
and cleanup, are performed automatically by the SG.

« Search and filter data and processings based on metadata
and annotated tags such as category or user-defined tags.

o Communicate with other users with reference to data and
processings.

« Receive notifications of system events and user actions.

« Investigate provenance information to establish trust and
troubleshoot problems.

« Export data and metadata to an external data source, for
example for data preservation or archival.

So far, three community-specific SG prototypes have been
implemented based on the Rosemary platform:

o The Neuroscience gateway provides complex and multi-
site neuroscience data management, computing manage-
ment on Grid computing resources, and collaboration
management among scientists. See example of Ul on
Figure 4.

o The In Vitro Fertilization (IVF) gateway provides complex
multi-site IVF data sharing management, specifically
to follow a workflow that involves authorization from
multiple centers for each requested dataset.

e« The Genomics gateway provides wet-lab and dry-lab
sequencing data management with detailed provenance
tracking, as well as collaboration management among
scientists.

VII. RELATED WORK

A detailed analysis of science gateway software frameworks
has been presented in our recent work [9]. From an analysis
of literature published after 2011, 11 frameworks have been
selected for analysis: Apache Airavata [18], Catania SG
framework [19], Distributed Application Runtime Environment
(DARE) [20], Globus [Online] [21], HUBzero + Pegasus [22],
ICAT Job Portal [23], InSilicoLab [24], iPlant [25], NEWT
Platform [26], SINAPAD SG [13], and WS-PGRADE/gUSE [8].
Note that this is a subset of the large number of existing
tools and systems that potentially could be used in software
ecosystem of a SG. From that analysis, we concluded that
most of these frameworks do not include software for all the
proposed functional groups, such as we attempted to provide
with the development of the new Rosemary SG platform. See
more details in [9].

Here we build upon this previous work to compare Rosemary
to existing systems. Only the information available in the
scientific publications was considered, therefore some degree
of inaccuracy is possible in the summary presented below.

Delivery functions for humans and programs are imple-
mented in Rosemary as the responsive front-end and the
RESTful API provided by the back-end. These are also found
in all of the frameworks, with the exception of Apache Airavata
and NEWT, which do not implement user interfaces.

Coordination functions are also present in all of the
frameworks, with the exception of ICAT and NEWT. Some
frameworks integrate advanced workflow management systems

such as Pegasus [27] and WS-PGRADE/gUSE [8], while
others are based on pilot job abstractions (e.g., DARE and
inSilicoLab). In Rosemary coordination functions are realized
through the Processing Manager, which includes data and
DIRAC plug-ins for data staging, program instantiation, pilot
job abstractions, and simple workflows.

Security functions are implemented by all of the frameworks
at various levels of sophistication. For example, the Catania SG
and iPlant use Shibboleth'® for single sign-on, whereas DARE
uses standard security mechanisms from SAGA'. In Rosemary
security is still primitive at the moment, being implemented
through internal credential management components and token-
based authentication.

Monitoring functions are also present in all of the frameworks
to some extent. The Catania Portal and NEWT platform,
for example, provide system, resource and job monitoring
and accounting functions. Rosemary implements monitoring
functions not only for computation, but also for data transfers
and collaboration, which are all delivered to the users through
a notification system.

Provenance functions are present in only a few frameworks.
The best example is Pegasus, which keeps track of executed
software, data locations and execution parameters. In Rosemary
special attention has been given to provenance functions. PM in
particular captures and stores the provenance information about
data processing in the PROV standard*’. Additional information
about the sources of data and their replicas is captured in the
Rosemary Data Model.

Functions for Data and Computing management are found
in all the studied frameworks, with the exception of Globus
Online (no computation) and DARE (no data). Typically
the frameworks exploit existing middleware and standardized
abstractions, such as SAGA (e.g., Catania SG, DARE) and
BES (e.g., WS-PGRADE/gUSE) for data and computing
management. In Rosemary, the Processing Manager and the
Data Source Manager play an important role as abstraction
layer to the resources, where plug-ins can be developed to
interface with nearly any required resource. It however does
not adopt any standard.

Finally, Community management functions are present in
most frameworks, normally in simple form such as group
and role management. We believe that this is the aspect that
most differentiates Rosemary from other frameworks, since
it has integrated the community management functions with
the data and processing management functions at its core,
which is demonstrated by features such as workspaces and
communication threads.

VIII. DISCUSSION

Rosemary is a SG framework that needs to be customized for
a particular user community by programming and possibly by
adding new functions to it. Therefore it requires understanding
different parts of the system, as well as being able to

18http://shibboleth.net/
http://saga-project.org
2Ohttps://www.w3.org/TR/prov-overview/

http://shibboleth.net/
http://saga-project.org
https://www.w3.org/TR/prov-overview/

8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

Search

& Processing Group

& Communication

Results

CENTRAL_E04008_123456

o Import Rosemary | Data / Filter demo1 EI -} Activity Feed
sl Librar ™ .
y Notifications
m Project Filter Basket
= send a message n
Rosemary ' Data /' Processing Group / tracula_run1
= Experiment - ™ Selactal Clear basket Silvia Olabarriaga was added by
Shayan Shahand 10 the workspace
- Tog boskt | 3 5ond i
» Processing Group |
= send a message in
M {\Fiasource Current itert Please check this data! to Silvia e mm
urrent filter tags: [ELLI-
Apply filter Clear

a

Experiment/ID: CENTRAL_E04008 - Experiment/UID: 1.2.826.0.1.3680043.2.1125.1.310556366556 12430033074091040514162 -

Experiment/acquisition_site: GDCM Hospital - 2006-01-01 +

CENTRAL_E04008_123456_DICOM

Experiment/acquisition_site: GDCM Hospital - 2006-01-01 +

1.

Experiment/ID: CENTRAL_E04008 - Experiment/UID: 1.2.826.0.1.3880043 2.1125.1.31055636655612439933074091049514162 -
N Ao

O =

£ Import complete
2 Scans, 2 Resources, 2 Subjects,
one Project, 2 Replicas and 2

Expefiments have been imported
Inputs

Impart complete
One Subject, one Project and one
Experiment have been imported

Processings
tracula_run1 : COBRA_CALO3_AMC :

eXNAT_E00442_301_DICOM & eXNAT_EQ0442_201_DICOM |
tared: 2 monie a0 [I ey |

CENTRAL_E04009_123456

Experiment/acquisition_site: GDCM Hospital = 15 - 2006-01-01 +

Experiment/ID: CENTRAL_E04009 - Experiment/UID: 1.2.826.0.1.3680043.2.1125.1.31055836655812439933074091 040514162 -

< Show Data

tracula_runt : COBRA_CAL11_AMC :
eXNAT_EQ0441_301_DICOM & eXNAT_EQ0441_201_DICOM

Dane.2 o a0

£ Show Sub-items

< Show Data

(a)

(b)

Figure 4. Screenshot of the Neuroscience gateway prototype. (a) Shows a desktop GUI that contains notifications (right), filters for data types (left), working
area (center) with search interface and basket with selected items. (b) shows a mobile GUI with a processing group information (top) and its corresponding

processings (bottom).

program in Scala or Java. Our experience with the three
SG implementations based on Rosemary showed that the
generic data model and platform implementation, the high-
level programming languages, and the employed software
development ecosystem facilitate adding or customizing func-
tions quickly. The Neuroscience gateway was the initial use-
case by which Rosemary platform was implemented. Based
on that, the IVF gateway was implemented in one month
by a programmer that was not familiar with the platform.
Finally, the Genomics gateway was implemented in one month
by two programmers that were familiar with the platform.
However, with this approach it is also necessary to re-factor
the generic parts of new functions and make them available
for existing and future gateway instances. To streamline such
a code re-factoring process it seems necessary to implement
more SGs and reevaluate and re-organize the code based on
that experience.

The three SG prototypes have attracted significant attention
so far, mainly because of their flexibility, lightness, and being
able to customize them quickly for various disciplines. In
addition, based on the initial feedback, its responsive UlI,
richness of metadata management, and search functionality
are the most attractive Rosemary features. Although the initial
feedback and enthusiasm from users are promising, usage by
a larger group is required to understand shortcomings of the
system and further improve it.

IX. CONCLUSION

Rosemary is a SG framework that integrates data, computing,
and collaboration management functions. It provides a generic

and metadata-rich data model and a software framework that
can be customized by programming for rapid implementa-
tion of new SGs that fulfill user requirements and provide
rich user experience. It also utilizes high-level programming
languages, modern software framework and libraries, and a
software ecosystem that supports continuous testing and rapid
deployment, all of which streamline software development,
deployment, and operation. Rosemary framework will be
published as an open source project to increase its uptake and
invite other developers to improve it by their contributions.

ACKNOWLEDGMENT

We thank Jorrit Posthuma, Allard van Altena, Mohammad
Mahdi Jaghoori, Juan Luis Font-Calvo, Sara Ramezani, Jalmar
Teeuw, and Matthan Caan for their various contributions to the
Rosemary platform. We are grateful to our collaborators at vari-
ous departments of the AMC (KEBB; Radiology; Immunology;
Medical Chemistry; ADICT) and the University of Amsterdam
(ICTS and FNWI), as well as and our former colleagues at the
AMC e-Science group for various contributions, inspiration
and support. We also thank the anonymous reviewers for
their feedback and suggestions. This work was carried out
on the Dutch national e-Infrastructure with the support of
SURF Cooperative. This publication was supported by the
Dutch national program COMMIT/ and the High Performance
Computing and Networking (HPCN) Fund of the University
of Amsterdam.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

8th International Workshop on Science Gateways (IWSG 2016), 8-10 June 2016

REFERENCES

A. Carusi and T. Reimer, “Virtual research environment collaborative
landscape study-A JISC funded project”, Joint Infrastructure Systems
Committee, Tech. Rep., 2010.

N. Wilkins-Diehr, “Special Issue: Science Gateways—Common Com-
munity Interfaces to Grid Resources”, Concurrency and Computation:
Practice and Experience, vol. 19, no. 6, pp. 743-749, 2007.
European Grid Infrastructure (EGI) Science Gateway Virtual Team,
Science Gateway Primer, https://documents.egi.eu/document/1463,
2012.

XSEDE Gateways Cookbook, Online: https://www.xsede.org/web/
gateways/gateways-cookbook.

M. W. A. Caan, S. Shahand, F. M. Vos, A. H. C. van Kampen, and
S. D. Olabarriaga, “Evolution of grid-based services for Diffusion
Tensor Image analysis”, Future Generation Computer Systems, vol. 28,
no. 8, pp. 1194 —1204, 2012.

T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, “Flexible and
Efficient Workflow Deployment of Data-Intensive Applications On
Grids With MOTEUR?”, International Journal of High Performance
Computing Applications, vol. 22, no. 3, pp. 347-360, Aug. 2008.

S. Shahand, M. Santcroos, A. Kampen, and S. Olabarriaga, “A Grid-
Enabled Gateway for Biomedical Data Analysis”, Journal of Grid
Computing, vol. 10, no. 4, pp. 725-742, 2012.

P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko, K.
Karoczkai, and 1. Marton, “WS-PGRADE/gUSE Generic DCI Gateway
Framework for a Large Variety of User Communities”, Journal of Grid
Computing, vol. 10, no. 4, pp. 601-630, 2012.

S. Shahand, A. Benabdelkader, M. M. Jaghoori, M. a. Mourabit, J.
Huguet, M. W. Caan, A. H. van Kampen, and S. D. Olabarriaga,
“A data-centric neuroscience gateway: design, implementation, and
experiences”, Concurrency and Computation: Practice and Experience,
vol. 27, no. 2, pp. 489-506, 2015.

M. M. Jaghoori, A. J. V. Altena, B. Bleijlevens, and S. D. Olabarriaga,
“A Grid-Enabled Virtual Screening Gateway”, in Science Gateways
(IWSG), 2014 6th International Workshop on, IEEE, Dublin, Ireland,
2014, pp. 24-29.

G. A. van Wingen, E. Geuze, M. W. A. Caan, T. Kozicz, S. D.
Olabarriaga, D. Denys, E. Vermetten, and G. Ferndndez, “Persistent
and reversible consequences of combat stress on the mesofrontal circuit
and cognition”, Proceedings of the National Academy of Sciences, vol.
109, no. 38, pp. 15508-15513, 2012.

S. Shahand, A. H. van Kampen, and S. D. Olabarriaga, “Science Gate-
way Canvas: A Business Reference Model for Science Gateways”, in
Proceedings of the 1st Workshop on The Science of Cyberinfrastructure:
Research, Experience, Applications and Models, ser. SCREAM ’15,
New York, NY, USA: ACM, 2015, pp. 45-52.

A. T. A. Gomes, B. F. Bastos, V. Medeiros, and V. M. Moreira,
“Experiences of the Brazilian national high-performance computing
network on the rapid prototyping of science gateways”, Concurrency
and Computation: Practice and Experience, vol. 27, no. 2, pp. 271-289,
2015.

D. D’Agostino, E. Danovaro, A. Clematis, L. Roverelli, G. Zereik,
A. Parodi, and A. Galizia, “Lessons learned implementing a science
gateway for hydro-meteorological research”, Concurrency and Compu-
tation: Practice and Experience, nfa—n/a, 2015.

G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis,
R. T. Guy, S. H. D. Haddock, K. Huff, I. M. Mitchell, M. Plumbley,
B. Waugh, E. P. White, and P. Wilson, “Best Practices for Scientific
Computing”, In Press, Oct. 2012.

M. M. Jaghoori, S. Shahand, and S. D. Olabarriaga, “Processing
Manager for Science Gateways”, in Science Gateways (IWSG), 2015
7th International Workshop on, Jun. 2015, pp. 1-7.

V. M. Muiioz, A. C. Ramo, R. G. Diaz, and A. Tsaregorodtsev,
“Powering Distributed Applications with DIRAC Engine”, in The
International Symposium on Grids and Clouds (ISGC), vol. 2014,
2014.

M. Pierce, S. Marru, L. Gunathilake, T. Kanewala, R. Singh, S.
Wijeratne, C. Wimalasena, C. Herath, E. Chinthaka, C. Mattmann,
A. Slominski, and P. Tangchaisin, “Apache Airavata: Design and
Directions of a Science Gateway Framework”, in 6th International
Workshop on Science Gateways, ser. INSG 2014, Jun. 2014, pp. 48-54.
V. Ardizzone, R. Barbera, A. Calanducci, M. Fargetta, E. Ingra, 1.
Porro, G. La Rocca, S. Monforte, R. Ricceri, R. Rotondo, D. Scardaci,

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

and A. Schenone, “The DECIDE Science Gateway”, Journal of Grid
Computing, vol. 10, no. 4, pp. 689-707, 2012.

S. Maddineni, J. Kim, Y. El-Khamra, and S. Jha, “Distributed Applica-
tion Runtime Environment (DARE): A Standards-based Middleware
Framework for Science-Gateways”, Journal of Grid Computing, vol.
10, no. 4, pp. 647-664, 2012.

R. Ananthakrishnan, K. Chard, 1. Foster, and S. Tuecke, “Globus
platform-as-a-service for collaborative science applications”, Concur-
rency and Computation: Practice and Experience, vol. 27, no. 2,
pp- 290-305, 2015.

M. McLennan, S. Clark, E. Deelman, M. Rynge, K. Vahi, F. McKenna,
D. Kearney, and C. Song, “HUBzero and Pegasus: integrating scientific
workflows into science gateways”, Concurrency and Computation:
Practice and Experience, vol. 27, no. 2, pp. 328-343, 2015.

S. M. Fisher, K. Phipps, and D. J. Rolfe, “ICAT Job Portal: a generic
job submission system built on a scientific data catalog”, in Proceedings
of 5th International Workshop on Science Gateways for Life Sciences,
ser. IWSG 2013, 2013.

J. Kocot, T. Szepieniec, P. Wo’jcik, M. Trzeciak, M. Golik, T.
Grabarczyk, H. Siejkowski, and M. Sterzel, “A Framework for Domain-
Specific Science Gateways”, in EScience on Distributed Computing
Infrastructure. Achievements of PLGrid Plus Domain-Specific Services
and Tools: LNCS 8500. Switzerland: Springer, 2014, pp. 130-46.

A. Lenards, N. Merchant, and D. Stanzione, “Building an Environment
to Facilitate Discoveries for Plant Sciences”, in Proceedings of the
2011 ACM Workshop on Gateway Computing Environments, ser. GCE
11, New York, NY, USA: ACM, 2011, pp. 51-58.

S. Cholia and T. Sun, “The NEWT Platform: An Extensible Plugin
Framework for Creating ReSTful HPC APIs”, in Proceedings of the 9th
Gateway Computing Environments Workshop, ser. GCE ’ 14, Piscataway,
NIJ, USA: IEEE Press, 2014, pp. 17-20.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F da Silva, M. Livny, et al., “Pegasus,
a workflow management system for science automation”, Future
Generation Computer Systems, 2014.

https://documents.egi.eu/document/1463
https://www.xsede.org/web/gateways/gateways-cookbook
https://www.xsede.org/web/gateways/gateways-cookbook

	I Introduction
	II Motivation
	III Requirements and System Design
	III-A Three Pillars of Requirements and Functions
	III-B Software Design Considerations

	IV Basic Concepts: Data Model
	IV-A Data Management
	IV-B Computing Management
	IV-C Collaboration Management
	IV-D Integration of the Three Pillars

	V System Architecture and Implementation
	VI Current Implementation of Gateways
	VII Related work
	VIII Discussion
	IX Conclusion

