The Irresistible SRZQ

Tan Horrocks, Oliver Kutz, and Ulrike Sattler

School of Computer Science, The University of Manchester,
Kilburn Building, Oxford Road, Manchester, M13 9PL, UK,
{Horrocks, Kutz, Sattler}@cs.man.ac.uk

Abstract. Motivated primarily by medical terminology applications,
the prominent DL SHZ Q has already been extended to a DL with com-
plex role inclusion axioms of the form RoS C R or S o R T R, called
RZIQ, and the SHZQ tableau algorithm has been extended to handle
such inclusions.

This paper further extends RZQ and its tableau algorithm with im-
portant expressive means that are frequently requested in ontology ap-
plications, namely with reflexive, symmetric, transitive, and irreflexive
roles, disjoint roles, and the construct IR.Self, allowing, for instance, the
definition of concepts such as a “narcist”. Furthermore, we extend the al-
gorithm to cover Abox reasoning extended with negated role assertions.
The resulting logic is called SRZ Q.

1 Introduction

We describe an extension, called SRZQ, of the description logic (DL) SHIN
(10) underlying OWL lite and OWL DL (7). We believe that SRZQ enjoys
some useful properties. Firstly, SRZQ extends SHZN with numerous expres-
sive means which have been asked for by users, and which, we believe, will make
modeling using DLs easier and more intuitive. While the language of SRZQ is
designed to be slightly redundant in the sense that some of the new expressive
means can be simulated by others, the complete absence of those expressive
means has proven quite harmful since developers of ontologies use work-arounds
to compensate for this. As a consequence, ontologies become cluttered, com-
plicated, and difficult to understand. In the worst case, the work-around only
partially captures the intended semantics, thus leading to unintended or missing
consequences, thereby destroying one of the main features of a logic-based for-
malism, namely its well-defined semantics and reasoning services. A well-known
example are qualified number restrictions. Their absence in OWL lite and OWL
DL has caused problems in the past (12), and has led to the development and use
of questionable surrogates. Hence, SRZQ provides qualified number restrictions.
Other, novel expressive means of SRZQ concern mostly roles and include:

— disjoint roles. E.g., the roles sister and mother could be declared as being
disjoint. Most DLs can be said to be “lopsided” since they allow to express
disjointness on concepts but not on roles, despite the fact that role disjoint-
ness is quite natural and can generate new subsumptions or inconsistencies
in the presence of role hierarchies and number restrictions.

— reflexive and irreflexive roles. F.g., the role knows could be declared as being
reflexive, and the role sibling could be declared as being irreflexive. In the
presence of the new concept IR.Self described below, reflexive and irreflexive
roles also become definable by Thox assertions.

— negated role assertions. Most Abox formalisms only allow for positive role
assertions (with few exceptions (1; 5)), whereas SRZQ also allows for state-
ments such as (John,Mary) : —=likes. In the presence of complex role inclu-
sions, negated role assertions can be quite useful and, like disjoint roles, they
overcome a certain “lopsidedness” of DLs.

— Since SRZQ extends SHZQ, we can also express that a role is transitive or
symmetric, and can use role inclusion axioms R C S.

— Since SRTZQ extends RZQ (8), we can use complex role inclusion axioms
of the form RoS T R and S o R C R. For example, w.r.t. the axiom
owns ohasPart C owns, and the fact that each car contains an engine Car C
JhasPart.Engine, an owner of a car is also an owner of an engine, i.e., the
following subsumption is implied: Jowns.Car C Jowns.Engine.

— Finally, SRZ Q allows for concepts of the form JR.Self which can be used to
express “local reflexivity” of a role R, e.g., to define the concept “narcist”
using Jlikes.Self.

Besides a Thox and an Abox, SRZQ provides a so-called Rbox to gather all
statements concerning roles.

Secondly, SRZQ is designed to be of similar practicability as SHZQ. The
tableau algorithm for SHZQ and the one for SRZQ presented here are very
similar. Even though the additional expressive means of SRZQ require certain
adjustments to the SHZ Q algorithm, these adjustments do not add new sources
of non-determinism, and, subject to empirical verification, are believed to be
“harmless” in the sense of not significantly degrading typical performance as
compared with the SHZQ algorithm. More precisely, we employ the same tech-
nique using finite automata as in (8) to handle role inclusions R o S C R and
S o R C R. This involves a pre-processing step which takes an Rbox and builds,
for each role R, a finite automaton that accepts exactly those words Rj ... R,
such that, in each model of the Rbox, (z,y) € (R; ... R,)* implies (z,y) € RT.
These automata are then used in the tableau expansion rules to check, for a
node z with VR.C € L(z) and an Ry ... R,-neighbour y of , whether to add C
to L(y). Even though the pre-processing step might appear a little cumbersome,
the usage of the automata in the algorithm makes it quite elegant and compact.

The current paper describes work in progress towards a description logic
that overcomes certain shortcomings in expressiveness of other DLs. We have
used SHIN, SHZQ, and RIQ as a starting point, extended them with some
“useful-yet-harmless” expressive means, and also extended the tableau algorithm
accordingly. We wish to discuss this extension in case we have overlooked other
“useful-yet-harmless” expressive means, and we plan to further extend SRZQ:
currently, various new operators are restricted to simple roles, and we have yet
to establish which of these restrictions are necessary in order to preserve decid-

ability! or practicability. Moreover, we plan to extend SRZQ towards SHOIZQ
(9), i.e., to also include nominals.
For a full specification of the tableau algorithm and proofs, see (6).

2 The Logic SRZQ

In this section, we introduce the DL SRZQ. This includes the definition of
syntax, semantics, and inference problems.

2.1 Roles, Role Hierarchies, and Role Assertions

Definition 1 (Interpretations). Let C be a set of concept names, R a set
of role names, and I = {a,b,c...} a set of individual names. The set of
roles is RU{R~ | R € R}, where a role R~ is called the inverse role of R.

As usual, an interpretation T = (AT,-) consists of a set AT, called the
domain of T, and a valuation -~ which associates, with each role name R, a
binary relation RT C AT x AT, with each concept name C a subset CT C AT and,
with each individual name a an element a* € AL. Inverse roles are interpreted
as usual, i.e., for each role R € R, we have

(R7)? ={{y.2) | (x,y) € R"}.

Note that, unlike in the case of SHZQ, we did not introduce transitive role
names. This is so since, as will become apparent below, role box assertions can
be used to force roles to be transitive.

To avoid considering roles such as R~ ~, we define a function Inv on roles
such that Inv(R) = R~ if R € R is a role name, and Inv(R) =S € Rif R=5".

Since we will often work with a string of roles, it is convenient to extend
both -Z and Inv(-) to such strings: if w = Ry ... R, for R; roles, then we set
w? = R¥o...0RL and Inv(w) = Inv(R,,) ... Inv(R;), where o denotes composition
of binary relations.

A role box R consists of two components. The first component is a role hier-
archy Ry, which consists of (generalised) role inclusion axioms, i.e., statements
of the form R C S, RS C S, and SR C 5. The second component is a set
R, of role assertions stating, for instance, that a role R must be interpreted as
a transitive, reflexive, irreflexive, symmetric, or transitive relation, or that two
(possibly inverse) roles R and S are to be interpreted as disjoint binary relations.

We start with the definition of a role hierarchy, whose definition involves

a strict partial order < on roles, i.e., an irreflexive and transitive relation on
RU{R™ | ReR}.

Definition 2 ((Regular) Role Inclusion Axioms).

Let < be a strict partial order on roles. A role inclusion axiom (RIA for
short) is an expression of the form w C R, where w is a finite string of roles,
and R is a role name. A role hierarchy Ry, then, is a finite set of RIAs.

1 See (10) for such a case.

An interpretation T satisfies a role inclusion axiom Sy ...S, C R, if
STo... 087 c RT,

where o stands for the composition of binary relations. An interpretation is a
model of a role hierarchy Ry, if it satisfies all RIAs in Ry, written T |= Ry,.
A RIA w C R is <-regular if

— R is a role name,

— w = RR,

—w=R",

—w=251...5, and S; < R, foralll <i<n,
—w=RS1...5, and S; < R, for all1 <i<mn, or
—w=251...S,R and S; < R, for all 1 <1i<n.

Finally, a role hierarchy Ry is said to be regular if there exists a strict partial
order < on roles such that each RIA in Ry, is <-regular.

Regularity prevents a role hierarchy from containing cyclic dependencies. For
instance, the role hierarchy

{RSCS, RTCR, UTLCT, USLCU}

is not regular because it would require < to satisfy S < U < T < R < .S, which
would imply S < S, thus contradicting irreflexivity. Such cyclic dependencies
are known to lead to undecidability (8).

From the definition of the semantics of inverse roles, it follows immediately

that
z

(z,y) € w? iff (y,z) € Inv(w)T.
Hence, each model satisfying w C S also satisfies Inv(w) C Inv(S) (and vice
versa), and thus the restriction to those RIAs with role names on their right
hand side does not have any effect on expressivity.

Given a role hierarchy Rj, we define the relation E to be the transitive-
reflexive closure of C over {R C S,Inv(R) C Inv(S) | RC S € Rp,}. A role R
is called a sub-role (resp. super-role) of a role S if RES (resp. S ER). Two
roles R and S are equivalent (R=S5) if RES and S ER.

Note that, due to the fourth restriction in the definition of <-regularity, we
also restrict E to be acyclic, and thus regular role hierarchies never contain two
equivalent roles.?

Next, let us turn to the second component of Rboxes, the role assertions. For
an interpretation Z, we define Diag? to be the set {(z,z) | = € AT} and set
RT |:= {{z,x) | 3y € AT.(z,y) € RT}.

2 This is not a serious restriction for, if R contains E cycles, we can simply choose
one role R from each cycle and replace all other roles in this cycle with R in the
input Rbox, Thox and Abox (see below).

Definition 3 (Role Assertions). For roles R and S, we call the assertions
Ref(R), Irr(R), Sym(R), Tra(R), and Dis(R,S), role assertions, where, for
each interpretation T and all z, y, z € AT, we have:

T ESym(R) if (x,y) € RT implies (y,x) € RY;

I ETra(R) if (z,y) € R and (y,z) € RT imply (x,z) € RY;

T =Ref(R) if R |CR%;

IZEIr(R) if RTN Diagt =0,

7 = Dis(R,S) if RTn ST =4.

Adding symmetric and transitive role assertions is a trivial move since both
of these expressive means can be replaced by complex role inclusion axioms as
follows: for the role assertion Sym(R) we can add to the Rbox, equivalently, the
role inclusion axiom R~ C R, and, for the role assertion Tra(R), we can add
to the Rbox, equivalently, RR = R. The proof of this should be obvious. Thus,
as far as expressivity is concerned, we can assume for convenience that no role
assertions of the form Tra(R) or Sym(R) appear in R,, but that transitive and
symmetric roles will be handled by the RIAs alone.

The situation is different, however, for the other Rbox assertions. Neither
reflexivity nor irreflexivity nor disjointness of roles can be enforced by role inclu-
sion axioms. However, as we shall see later, reflexivity and irreflexivity of roles
are closely related to the new concept 3R.Self.

In SHZ Q, the application of qualified number restrictions has to be restricted
to certain roles, called simple roles, to preserve decidability (10). In the context of
SRIQ, the definition of simple role has to be slightly modified, and simple roles
figure not only in qualified number restrictions, but in several other constructs as
well. Intuitively, non-simple roles are those that are implied by the composition
of roles.

Given a role hierarchy R, and a set of role assertions R, (without transitivity
or symmetry assertions), the set of roles that are simple in R = Ry, UR, is
inductively defined as follows:

— a role name is simple if it does not occur on the right hand side of a RIA in
R/u

— an inverse role R~ is simple if R is, and

— if R occurs on the right hand side of a RIA in Ry, then R is simple if, for
each w C R € Ry, w = S for a simple role S.

A set of role assertions R, is called simple if all roles R, S appearing in role
assertions of the form Ref(R), Irr(R), or Dis(R, S) are simple in R. If R is clear
from the context, we often use “simple” instead of “simple in R”.

Definition 4 (Role Box). A SRZQ-role box (Rbox for short) is a set R =
Ry UR,, where Ry, is a reqular role hierarchy and R, is a finite, simple set of
role assertions.

An interpretation satisfies a role box R (written T = R) if T = Ry, and
T = ¢ for all role assertions ¢ € R,. Such an interpretation is called a model of
R.

2.2 Concepts and Inference Problems for SRZQ
We are now ready to define the syntax and semantics of SRZQ-concepts.

Definition 5 (SRZQ Concepts, Tboxes, and Aboxes). The set of SRZQ-
concepts is the smallest set such that

— every concept name and T, L are concepts, and,

— if C, D are concepts, R is a role (possibly inverse), S is a simple role (possibly
inverse), and n is a non-negative integer, then C M D, C' U D, -C, VR.C,
JR.C, 35.Self, (=nS.C), and (<nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form
C C D for two SRIQ-concepts C and D. A Tbox T is a finite set of GCIs.

An individual assertion is of one of the following forms: a:C, (a,b): R,
(a,b) : =S, or a #£ b, for a,b € 1 (the set of individual names), a (possibly
inverse) role R, a (possibly inverse) simple role S, and a SRIQ-concept C. A
SRIQ-Abox A is a finite set of individual assertions.

Note that number restrictions (>nS.C) and (<nS.C), the concept 35.Self,
and negated role assertions (a,b) : =5, are all restricted to simple roles. In the
case of number restrictions we mentioned the reason for this restriction already:
without it, already the satisfiability problem of SHZ Q-concepts is undecidable
(10), even for a logic without inverse roles and with only unqualifying number
restrictions (these are number restrictions of the form (>nR.T) and (<nR.T)).
For SRZQ and the remaining restrictions to simple roles in concept expressions
as well as role assertions, it is part of future work to determine which of these
restrictions to simple roles are necessary in order to preserve decidability or
practicability. For example, it should be possible to also allow non-simple roles
in negated role assertions (a,b): =R without losing decidability.

Note also that, in the definition of SRZQ-Aboxes, we do not assume the
unique name assumption (UNA) (which is commonly assumed in DLs (4)).
Rather, by allowing inequalities between individuals in the Abox to be explic-
itly stated, we increase flexibility while, obviously, the UNA can be regained by
explicitly stating a # b for every pair a,b € I of individuals. Moreover, notice
that, in contrast to standard Aboxes, SRZQ-Aboxes can also contain negated
role assertions of the form (a,b):—R.

Definition 6 (Semantics and Inference Problems).

Given an interpretation T = (AZ,-1), concepts C, D, roles R, S, and non-
negative integers n, the extension of complex concepts is defined inductively
by the following equations, where §M denotes the cardinality of a set M :

T = AL, 17 =40, (=C)t = AT\ CT (top, bottom, negation)

(cnD)f=c*TnD?, (CuD)t =C*uD? (conjunction, disjunction)

(AR.C)t ={z | 3y.{x,y) € RT and y € C*} (exists restriction)
(3R.Self)r ={x | (z,z) € RT} (3R.Self-concepts)

(>nR.0)T ={z | H{y.(x,y) € RT and y € CT} > n} (atleast restriction)

)
)
(VR.C)E ={z | Vy.(z,y) € RT implies y € CT} (value restriction)
)
(<nR.CYT ={x | #t{y.(z,y) € RT and y € CT} < n} (atmost restriction)

An interpretation T is a model of a Tbox T (written T =T) iff CT C DT
for each GCIC C D in T.

A concept C is called satisfiable iff there is an interpretation T with CT # ().
A concept D subsumes a concept C (written C T D) iff CT C DT holds for
each interpretation. Two concepts are equivalent (written C = D) if they are
mutually subsuming. The above inference problems can be defined w.r.t. a general
role box R and/or a Thox T in the usual way, i.e., by replacing interpretation
with model of R and/or T.

For an interpretation I, an element x € AT is called an instance of a
concept C iff x € C7.

An interpretation T satisfies (is a model of) an Abox A (I = A) if for all
individual assertions ¢ € A we have T |= ¢, where

IkEa:C if ot € CT; ITkEa#bd if af # b

Tk (a,b):Rif (a®,b?) € RE; T k= (a,b): =R if {(aT,b?) ¢ RT.

An Abox A is consistent with respect to an Rbox R and a Tbox T if there
is a model T for R and T such that T = A.

For DLs that are closed under negation, subsumption and (un)satisfiability
of concepts can be mutually reduced: C' C D iff C' =D is unsatisfiable, and C
is unsatisfiable iff C' C L. Furthermore, a concept C' is satisfiable iff the Abox
{a:C%} is consistent.

It is straightforward to extend these reductions to Rboxes and Tboxes. In
contrast, the reduction of inference problems w.r.t. a Thox to pure concept
inference problems (possibly w.r.t. a role hierarchy), deserves special care: in
(2; 11; 3), the internalisation of GClIs is introduced, a technique that realises
exactly this reduction. For SRZQ, this technique can be modified accordingly.

Now, note also that, instead of having a role assertion Ref(R) € R,, we
can add, equivalently, the GCI 3R.T T 3JR.Self to 7, which can in turn be
internalised. Likewise, instead of asserting Irr(R), we can, equivalently, add the
GCI T C —-3R.Self. Thus, we arrive at the following theorem:

Theorem 1. 1. Satisfiability and subsumption of SRZQ-concepts w.r.t. Thozes
and Rbozes are polynomially reducible to (un)satisfiability of SRZ Q-concepts
w.r.t. Rbozes.

2. Consistency of SRTQ-Aboxes w.r.t. Thoxes and Rbozes is polynomially re-
ducible to consistency of SRZQ-Aboxes w.r.t. Rboxes.

3. W.lo.g., we can assume that Rboxes do not contain role assertions of the
form Irr(R), Ref(R), Tra(R), or Sym(R).

With Theorem 1, all standard inference problems for SRZQ-concepts and
Aboxes can be reduced to the problem of determining the consistency of a
SRIQ-Abox w.r.t. to an Rbox, where we can assume w.l.o.g. that all role as-
sertions in the Rbox are of the form Dis(R, S)—we call such an Rbox reduced.

3 SRIQ is Decidable

As we have just seen, we can restrict our attention to the consistency of Aboxes
w.r.t. reduced Rboxes only. We have extended the tableau algorithm for RZQ
to SRZQ, and will spend the remainder of this paper on its description.

In a first step, the tableau algorithm takes a reduced Rbox R and an Abox
A and builds, for each possibly inverse role R occurring in R or A, a non-
deterministic finite automaton Bg. Intuitively, such an automaton is used to
memorise the path between an object x that has to satisfy a concept of the form
VR.C and other objects, and then to determine which of these objects must sat-
isfy C. The following proposition states that Br indeed captures all implications
between (paths of) roles and R that are consequences of the role hierarchy Ry,
where L(Bg) denotes the language (a set of strings of roles) accepted by Bg.

Proposition 1. 7 is a model of Ry, if and only if, for each (possibly inverse)
role R occurring in Ry, each word w € L(Bg), and each {(z,y) € w?, we have
(z,y) € R".

Since Aboxes usually involve several individuals with arbitrary role relation-
ships between them, the completion algorithm presented works on forests rather
than on trees. A forest is a collection of trees whose root nodes correspond to
the individuals appearing in the input Abox and which form an arbitrarily con-
nected graph according to the role assertions stated in the Abox. Similar as for
RZQ, we define a set fclos(A, R) of “relevant sub-concepts” of those concepts
occurring in A; see (6) for details.

Definition 7. A completion forest F for a SRZQ-Abox A and an Rbox R is
a collection of trees whose distinguished root nodes can be connected arbitrarily.
Moreover, each node x is labelled with a set L(xz) C fclos(A,R) and each edge
(x,y) from a node x to its successor y is labelled with a non-empty set L({x,y))
of (possibly inverse and possibly negated) roles occurring in A and R. Finally,
completion forests come with an explicit inequality relation # on nodes which
is implicitly assumed to be symmetric.

Let x and y be nodes in F and R a role. If R' R and R’ € L({z,y)), then
y is called an R-successor of x.

If y is an R-successor of x or x is an Inv(R)-successor of y, then y is called
an R-neighbour of x. Moreover, a node x is a neighbour of y, if it is an
R-neighbour for some role R. Successors, predecessors, ancestors, and de-
scendants are defined as usual.

For a role S, a concept C, and a node x in F, we define S¥ (z,C) by

S¥(x,C) :=={y | y is an S-neighbour of = and C € L(y)}.

A node is blocked iff it is either directly or indirectly blocked. A node x is
directly blocked iff none of its ancestors are blocked, and it has ancestors x’,
y and y' such that

1. none of ', y and y' is a root node,

2. x 15 a successor of ¥’ and y s a successor of y' and
3. L(z) = L(y) and L(z') = L(y') and
4. L@ 2)) = LWy, m)-

In this case, we say that y blocks x.

A node y is indirectly blocked if one of its ancestors is blocked.

Given a non-empty SRTQ-Abox A and a reduced Rboxr R, the tableau algo-
rithm is initialised with the completion forest F 4 r defined as follows:

— for each individual a occurring in A, F 4 r contains a root node x,
if (a,b):Re€ A or (a,b):=R € A, then F 4o r contains an edge (xq,xp),
—ifaFbe A, then v, # xp is in Far,

— L(zq):={C|a:C € A}, and

L({xa,xp)) :={R | (a,b):R€ A} U{=R | (a,b): =R € A}.

A completion forest ¥ is said to contain a clash if there are nodes x and y
such that

1. L e L(x), or

2. for some concept name A, {A,—~A} C L(x), or

3. x is an S-neighbour of x and —35.Self € L(x), or

4. x and y are root nodes, y is an R-neighbour of x, and ~R € L({x,y)), or

5. there is some Dis(R, S) € R, and y is an R- and an S-neighbour of x, or

6. there is some concept (<nS.C) € L(x) and {yo,...,yn} C S¥(z,C) with
yi 7y for all 0 <i<j<n.

A completion forest that does not contain a clash is called clash-free. A com-
pletion forest is complete if none of the rules from Figure 1 can be applied to
it.

When started with a non-empty Aboxr A and a reduced Rbox R, the tab-
leau algorithm initialises F oz and repeatedly applies the expansion rules from
Figure 1 to it, stopping when a clash occurs, and applying the shrinking rules
eagerly, i.e., the <- and the <,-rule are applied with highest priority. The algo-
rithm answers “A is satisfiable w.r.t. R” iff the expansion rules can be applied
in such a way that they yield a complete and clash-free completion forest, and
“A is unsatisfiable w.r.t. R” otherwise.

Lemma 1. Let A be a SRTZQ-Abox where all concepts are in negation normal
form and R a reduced Rboz.

— The tableau algorithm terminates when started for A and R.
— The expansion rules can be applied to A and R such that they yield a complete
and clash-free completion forest iff there is a tableau for A w.r.t. R.

From Theorem 1 and Lemma 1, we thus have the following theorem:

Theorem 2. The tableau algorithm decides satisfiability and subsumption of
SRIQ-concepts with respect to Aboxes, Rboxes, and Thoxes.

10

M-rule: if C1 M C2 € L(z), x is not indirectly blocked, and {C1,C2} € L(z),
then L(z) — L(z) U{C1,C2}

L-rule: if C; U C2 € L(z), z is not indirectly blocked, and
{Cl, Cz} N L(CL‘) =0
then L(z) — L(z) U{E} for some E € {C1,C>}

F-rule: if 35.C € L(x), = is not blocked, and
z has no S-neighbour y with C' € L(y)
then create a new node y with

L({z,y)) == {S} and L(y) := {C}

Self-rule: if 35.Self € L(z), = is not blocked, and S ¢ L({z,x))
then add an edge (z,z) if it does not yet exist, and
set L({(z,z)) — L((z,z)) U{S}

Vi-rule: if VS.C € L(x), x is not indirectly blocked, and
VBs.C & L(x)
then L(z) — L(x) U{VBs.C}

Vo-rule: if VB(p).C € L(x), x is not indirectly blocked, p 5 q in B(p),
and there is an S-neighbour y of x with VB(q).C ¢ L(y),
then L(y) — L(y) U{VB(q).C}

Vz-rule: if VB.C' € L(x), = is not indirectly blocked, € € L(B), and C & L(z)
then L(z) — L(z) U{C}

choose-rule: if (<nS.C) € L(z), z is not indirectly blocked, and
there is an S-neighbour y of z with {C,-C}NL(y) =0
then L(y) — L(y) U{E} for some E € {C,~C}

>-rule: if (>nS.C) € L(x), = is not blocked, and
there are no y1,...,yn € S¥(z,C)
with y; #y; foreach 1 <i<j<n
then create n new successors yi,...,yn of x with L((z, y;)) = {S},
L(y;) ={C},and y; # y; for 1 <i<j<n.

<-rule: if (<nS.C) € L(x), z is not indirectly blocked, and
#S¥(x,C) > n, there are y, z € ST (z, C) with
not y # z and y is not a root node nor an ancestor of z,
then 1. L(z) — L(z) UL(y) and
2. if z is an ancestor of z
then L((z,z)) — L((z,z)) Ulnv(L((z,y)))
else L((z,z)) — L((z,2)) UL({z,y)
3. Set u # z for all u with u # y.
4. remove y and the sub-tree below y from F'.

<-rule: if (<nS.C) € L(x), #SF (x,C) > n,
and there are two root nodes y,z € S¥(z,C) with not y # z,
then 1. L(z) — L(z) UL(y) and

2. For all edges (y,w):
i. if the edge (z,w) does not exist, create it with L ({(z,w)) := L({y,w));
ii. else L((z,w)) — L({z,w)) UL({y,w)).

3. For all edges (w,y):
i. if the edge (w, z) does not exist, create it with L ({w, 2)) := L({(w, y));
ii. else L((w,z)) — L({(w,z)) UL((w,y)).

4. Set u # z for all u with u # y.

5. Remove y and all incoming and outgoing edges from y from F.

Fig. 1. The Expansion Rules for the SRZQ Tableau Algorithm.

(1]

[10]

[11]

[12]

Bibliography

ARECES, C., BLACKBURN, P., HERNANDEZ, B., AND MARX, M. Handling Boolean
Aboxes. In Proc. of the 2003 Description Logic Workshop (DL 2003) (2003),
CEUR (http://ceur-ws.org/).

BAADER, F. Augmenting Concept Languages by Transitive Closure of Roles: An
Alternative to Terminological Cycles. In Proc. of the 12th Int. Joint Conf. on
Artificial Intelligence (IJCAI-91) (Sydney, 1991).

BAADER, F., BURCKERT, H.-J., NEBEL, B., NUTT, W., AND SMOLKA, G. On the
Expressivity of Feature Logics with Negation, Functional Uncertainty, and Sort
Equations. Journal of Logic, Language and Information 2 (1993), 1-18.
BAADER, F., CALVANESE, D., McGUINNESS, D., NARDI, D., AND PATEL-
SCHNEIDER, P. F., Eds. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

BAADER, F., Lutz, C., MIiLicic, M., SATTLER, U., AND WOLTER, F. Integrating
Description Logics and Action Formalisms: First Results. In Proc. of the 20th
National Conference on Artificial Intelligence (AAAI-05) (2005), A. Press, Ed.
Horrocks, 1., Kurz, O., AND SATTLER, U. The Irresistible SRZQ. Tech.
rep., University of Manchester, 2005. Available at http://www.cs.man.ac.uk/
~sattler/publications/sriq-tr.pdf.

HORROCKS, 1., PATEL-SCHNEIDER, P. F., AND VAN HARMELEN, F. From SHZQ
and RDF to OWL: The Making of a Web Ontology Language. J. of Web Semantics
1, 1 (2003), 7-26.

HORROCKS, I., AND SATTLER, U. Decidability of SHZQ with complex role inclu-
sion axioms. Artificial Intelligence 160 (2004), 79-104.

HorrOCKS, 1., AND SATTLER, U. A Tableaux Decision Procedure for SHOZ Q.
In Proc. of 19th International Joint Conference on Artificial Intelligence (IJCAI
2005) (2005), Morgan Kaufmann, Los Altos.

HORROCKS, 1., SATTLER, U., AND TOBIES, S. Practical Reasoning for Expressive
Description Logics. In Proc. of the 6th Int. Conf. on Logic for Programming
and Automated Reasoning (LPAR’99) (1999), H. Ganzinger, D. McAllester, and
A. Voronkov, Eds., vol. 1705 of Lecture Notes in Artificial Intelligence, Springer-
Verlag, pp. 161-180.

ScHILD, K. A Correspondence Theory for Terminological Logics: Preliminary
Report. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI-91)
(Sydney, 1991), pp. 466-471.

WOLSTENCROFT, K., BRASS, A., HORROCKS, 1., LORD, P., SATTLER, U., TURI,
D., AND STEVENS, R. A Little Semantic Web Goes a Long Way in Biology. In
Proc. of the 4th International Semantic Web Conference (2005), LNCS, SV. To
appear.

