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Abstract: Avoiding collisions with obstacles and inter-
cepting objects based on the visual perception is a vital
survival ability of any animal. In this work, we propose
an extension of the biologically based collision avoidance
approach to the detection of intercepting objects using the
Lobula Giant Movement Detector (LGMD) connected di-
rectly to the locomotion control unit based on the Cen-
tral Pattern Generator (CPG) of a hexapod walking robot.
The proposed extension uses Recurrent Neural Network
(RNN) to map the output of the LGMD on the input of the
CPG to enhance collision avoiding behavior of the robot
in cluttered environments. The presented results of the ex-
perimental verification of the proposed system with a real
mobile hexapod crawling robot support the feasibility of
the presented approach in collision avoidance scenarios.

1 Introduction

Avoiding collisions with obstacles and intercepting objects
is a vital survival ability for any animal. For a mobile robot
moving from one place to another, the contact with a fixed
or moving object may have fatal consequences. Therefore,
it is desirable to study the problem of collision avoidance
and derive new and computationally efficient ways to trig-
ger collision avoiding behavior.

In this work, we concern a problem of biologically
inspired motion control and collision avoidance with a
legged walking robot equipped with a forward looking
camera only. We propose to utilize a Central Pattern Gen-
erator (CPG) approach [1] for robot locomotion control
and the vision-based collision avoidance approach using
the Lobula Giant Movement Detector (LGMD) [2] which
are both combined in the proposed controller based on Re-
current Neural Network (RNN).

The proposed solution builds on our previous results
published in [3] in which only a simple mapping function
is utilized for transforming the output of the LGMD neu-
ral network directly to the locomotion control parameters
of the CPG controller [1]. Such a solution works well in
laboratory conditions, but, unfortunately, it is error-prone
in the cluttered environment. It is mainly because of the
way how the LGMD neural network processes the visual
data and due to a simple mapping function. The LGMD re-
acts on the lateral movement of vertical edges in the image
regardless their depth in the scene. In a cluttered environ-
ment, this results that the output is heavily influenced by
a lot of stimuli from the distinctive edges in a far distance
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Figure 1: Overview of the proposed control system struc-
ture. Different colors discriminate the individual func-
tional parts of the architecture.

from the robot. Moreover the mapping function translates
the output of the LGMD directly to the locomotion con-
trol parameters. Hence, the reaction of the robot is based
solely on the current observation of the environment which
results in situations when the robot hits an obstacle from
the side that has successfully avoided earlier but it is al-
ready out of the field of view. Therefore, we propose to
enhance the collision avoiding behavior of the robot by in-
corporating a memory mechanism by means of the RNN.

The overall structure of the proposed system is depicted
in Fig. 1. Regarding to the previous approaches, here, we
would like to emphasize a practical verification of the pro-
posed method on a real walking robot as the specific nature
of the legged locomotion makes the problem more difficult
in comparison to the wheeled [4, 5] or flying [6] robots.
The main difference originates in abrupt motions of the
camera induced by the locomotion of the robot which neg-
atively influences the output of the collision avoiding vi-
sual pathway.

The reminder of the paper is organized as follows.
The most related approaches on the neural-based colli-
sion avoidance using vision are summarized in Section 2.
Section 3 describes the individual building blocks of the
proposed control architecture. Evaluation results and their
discussion are detailed in Section 4. Concluding remarks
and suggestions for future work are dedicated to Sec-
tion 5.

2 Related Work

The problem of collision avoidance has been studied ever
since the mobile robots appeared. Hence, there is a lot of
different approaches using different sensors and different
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processing techniques. In this work, we are focused on
vision-based neural obstacle avoidance methods and the
most related approaches are described in the rest of this
section.

Direct mapping of the visual perception on the robot
control command using a feed-forward neural network has
been already utilized in several methods. The problem of
road following using neural networks, which dates back to
90s, can be considered as a special case of the collision
avoidance problem [7]. However, such approaches cannot
be considered as biologically-based because of artificial
nature of the examined roads.

In [2], the Lobula Giant Movement Detector (LGMD)
neural network has been introduced in robotics to imitate
the way how insects avoid collisions with an intercept-
ing object [8]. The approach has been widely adopted
for its simplicity and relatively good performance with
wheeled [2, 4, 5] and flying [6] robots. However, these
approaches experimentally verify the collision avoidance
with a real robot either in a closed arena where it is neces-
sary to avoid collisions with walls or in a scenario where
a static robot is supposed to detect an intercepting object.
Moreover, the walls of the arena or the obstacles were ho-
mogeneously distributed or coated with a high contrast ar-
tificial pattern which significantly improves the behavior
of the LGMD. In our approach, we focus on the deploy-
ment of the LGMD in heavily cluttered unstructured envi-
ronment, and thus evaluate the approach in more realistic
scenarios.

An experimental study on the prediction of evasive
steering maneuvers in urban traffic scenarios has been re-
cently published in [9]. In this approach, the performance
of the LGMD is improved by introducing so-called “dan-
ger zones” which are the image areas that will most likely
indicate the incoming threat.

Another approach presented in [10] compares the per-
formance of the LGMD and Directional Selective Neurons
(DSN) in the ability to avoid collisions. Both of them are
to be found in the visual pathways of insects. The reported
results show that the LGMD can be trained using evolu-
tionary techniques to outperform the DSN in the collision
recognition ability.

Regarding our target scenario, the most relevant ap-
proach to the proposed solution has been presented in [11].
The authors use a biologically-inspired collision avoid-
ance approach based on the extraction of nearness infor-
mation from the image depth estimation to detect obstacles
and avoid collisions. The whole system allows a simulated
hexapod robot to navigate cluttered environment while ac-
tively avoiding obstacles. However, the approach uses a
direct feed-forward approach for the motion control and it
has not been deployed in a real-world scenario.

The herein proposed control mechanism utilizes a Re-
current Neural Network (RNN) that has been already uti-
lized in collision avoiding scenarios using odor sensors on
whiskers [12] or a set of infrared rangefinders [13]. A
vision-based collision avoidance for an UAV based on the

RNN has been recently presented in [14] which trains the
UAV to avoid collisions during autonomous indoor flight.
This work served as the inspiration for our neural-based
autonomous agent.

3 Proposed Solution

Three basic functional parts can be identified within the
proposed collision avoiding system. They are depicted in
three different colors in Fig. 1. The first part is the lo-
comotion control unit based on the chaotic oscillator [15]
depicted in an orange color whose purpose is to control the
walking pattern and to solve the kinematics. It allows to
change the type of the motion gait based on the pre-set pa-
rameter p and steer the robot motion according to the input
signal turn defining the turning radius. The second part is
the visual pathway depicted in a green color which utilizes
the LGMD neural network for avoiding approaching ob-
jects and triggering escape behavior. The main idea of the
proposed approach is to use the LGMD outputs for setting
the hexapod control parameters, in particular, the turning
radius turn of the robot. In this work, we are proposing
to use the RNN-based approach for the translation of the
LGMD output to the turn parameter which is dedicated to
the last part depicted in a yellow color. Each part is dis-
cussed in more detail in the following sections.

3.1 CPG-Based Locomotion Control

The locomotion control is based on our previous work pre-
sented in [1]. It utilizes only one chaotic CPG [15] con-
sisting of two interconnected neurons with a control input
computed solely based on the input period p. The CPG
stabilizes a periodic orbit of p from the chaotic oscilla-
tion, so the output is a discrete periodic signal. The period
p ∈ {4,6,8,12} directly determines the resulting walking
pattern (motion gait): tripod, ripple, tetrapod, and wave,
respectively [16].

Afterwards, the output of the chaotic oscillator is shaped
and post-processed in order to obtain a signal usable for a
trajectory generator and to determine the phase of individ-
ual legs, i.e., whether the leg is swinging or supporting the
body. Afterwards, the output of the chaotic oscillator is
thresholded and a triangle wave alternating between −1
and 1 is produced, where the upslope (swing phase) is a
constant and the downslope (support phase) depends on
the period p. Based on the leg coordination rules [17], in-
dividual delays are applied to the triangular wave per each
leg to produce the rhythmic pattern for each leg.

The result of the post-processing module is fed into
a trajectory generator, which determines the position of
foot-tips according to the input signal along with the pa-
rameter turn, which is given by the RNN-based controller.
The turn parameter is equal to the distance (in millime-
ters) from the robot center to the turning center on a line
perpendicular to the heading of the robot connecting the
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Figure 2: Trajectory generation - the turning point denoted
as the small red disk is given by turn parameter. α is com-
puted as the maximum angle given the turning radius and
the maximum step size ymax.

default positions of the middle legs. Based on the turn
parameter and the triangular wave, the trajectory genera-
tor uniquely determines the foot-tip positions of each leg
on the constructed arcs which are limited by the angle α .
The value of α is computed from the distance of the fur-
thest leg from the pivotal point established by turn and the
maximum step size ymax. The idea of the trajectory gen-
erator is visualized in Fig. 2. The output of the trajectory
generator is transformed into the joint space using the in-
verse kinematics module and then performed by the robot
actuators. Notice, the speed of the robot forward motion is
determined by the period p, while the robot angular veloc-
ity is controlled by the turn parameter, which is adjusted
by the RNN-based controller from the LGMD output.

3.2 LGMD Neural Network

The LGMD [2] is a neural network found in the visual
pathways of insects, such as locusts [8], which responds
selectively to objects approaching the animal on a collision
course. It is composed of four groups of cells: Photore-
ceptive, Excitatory, Inhibitory, and Summation arranged
in three layers; and two individual cells: Feed-forward in-
hibitory and Lobula Giant Movement Detector. The struc-
ture of the network is visualized in Fig. 3.

The Photoreceptive layer processes the sensory input
from the camera. Its output is the difference between two
successive grayscale camera frames and it is computed as

Pf (x,y) = L f (x,y)−L f−1(x,y), (1)

where L f is the current frame, L f−1 is the previous frame
and (x,y) are the pixel coordinates. In principle, the Pho-
toreceptive layer implements a contrast enhancement and
forms the input to the following two groups of neurons –
the Inhibition layer and Excitatory layer.

The response of the Inhibition layer is computed as

I f (x,y) =
n

∑
i=−n

n

∑
j=−n

Pf−1(x+ i,y+ j)wI(i, j), (2)

(i 6= j, if i = 0),
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Figure 3: LGMD neural network model

where wI are the inhibition weights set as

wI =
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. (3)

The Inhibition layer is essentially smoothing the Photore-
ceptive layer output values and filtering those caused by
noise or camera imperfections. The inhibition weights
wI are selected experimentally with respect to the LGMD
description in [2] which uses 3×3 matrix of inhibition
weights, but on an image with a much lower resolution.

The Excitatory layer is used to time delay the output of
Photoreceptive layer and it is calculated as

E =
∣∣Pf (x,y)

∣∣ . (4)

The response of the Summation layer is computed as

S f (x,y) = E(x,y)−
∣∣I f (x,y)

∣∣WI , (5)

where WI = 0.4 is the global inhibition weight. Let S′f be
a matrix for which each value exceeding the threshold Tr
is passed and any lower value is set to 0

S′f (x,y) =

{
S f (x,y) if S f (x,y)≥ Tr

0 otherwise
. (6)

Then, an excitation of the LGMD cell is computed as

U f =
k

∑
x=1

l

∑
y=1

∣∣S′f (x,y)
∣∣ (7)

and finally, the LGMD cell output is

u f = (1+ e−U f n−1
cell )−1, (8)

where ncell is the total number of cells (the number of pix-
els). Note, the output of u f is in the interval u f ∈ [0.5,1].

Typically, the LGMD neural network contains Feed-
forward cell which is not utilized in the proposed scheme
based on the results of the experimental evaluation. The
purpose of the Feed-forward cell is to suppress the out-
put of the LGMD cell in a case of fast camera movements.
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Figure 4: LSTM recurrent neural network model

However, due to the specific nature of the legged loco-
motion, this feature is undesirable as it makes the LGMD
network less sensitive.

In our setup, two LGMD neural networks are utilized in
parallel to distinguish the direction of the interception, and
thus be able to steer the robot in the opposite direction to
achieve the desired obstacle avoiding behavior. The input
image from a single camera is split into left and right parts
with the overlapping center part. Each of the LGMDs pro-
vide the output which we denote ule f t

f and uright
f for the left

and the right LGMD respectively.

3.3 RNN-Based Controller

In our previous work [3], we utilized a direct mapping
function between the LGMDs output tuple and the turn
parameter of the CPG. The particular mapping function
was designed as

Φ(e) =
{

100/2e for |e| ≥ 0.2
10000 · sgn(e) for |e|< 0.2 , (9)

where error e is calculated as the difference of the LGMD
outputs e = ule f t

f −uright
f .

However, the direct mapping function failed in the col-
lision avoidance in cluttered environment. Therefore, we
developed an RNN-based controller that takes the left and
right LGMD outputs on its input and provides an estimate
of the turn parameter on its output.

In the proposed controller, we utilized the Recurrent
Neural Network (RNN) based on the Long Short Term
Memory (LSTM) [18] with two inputs, one hidden layer,
and one output that estimate the error e which is then used
with the mapping function given by (9). The Backpropa-
gation Through Time (BPTT) [19] is utilized for the RNN
training, which unrolls the network over the time resulting
in a feed-forward neural network. As there are only two
real number inputs to the network, it is unnecessary to use
sliding window approaches to the learning as it is possible
to feed the data to the network in a full length. The struc-
ture of the LSTM neural network is visualized in Fig. 4.

The main idea is to connect the RNN directly to the out-
puts of the left and right LGMDs and let the neural net-
work estimate the parameter e which is then translated by
(9) to the turn parameter of the CPG-based locomotion
controller.

4 Experimental Evaluation

The experimental verification of the proposed neural-
based controller is focused on the ability of the hexapod
walking robot to avoid collisions with the obstacles on its
path. We are emphasizing the practical verification with a
real walking robot to thoroughly test the proposed solution
and provide insights on the achieved performance.

The experimental evaluation has been considered with
the hexapod walking robot visualized in Fig. 5a. The robot
has six legs attached to the trunk that hosts the sensors. In
particular, the Logitech C920 camera with the field of view
78◦ to provide the LGMD with the visual input has been
utilized. The image data fed into the LGMD neural net-
work has been subsampled to the resolution of 176×144
pixels and divided into two parts overlapping in 10% of
the image area.

(a) (b)

(c) (d) (e) (f) (g)

Figure 5: (a) The hexapod walking robot, (b) the labora-
tory test environment, and (c-g) typical images captured
by the robot

The robot has operated in an arena surrounded by ob-
stacles, which are formed by tables, chairs and boxes (see
Fig. 5b). The robot movement has been tracked by a vi-
sual localization system which tracks the AprilTag [20]
pattern attached to the robot, which allows to capture the
real trajectory the robot was traversing. Typical images
captured by the robot during traversing the arena are vi-
sualized in Fig. 5c-g. As the LGMD reacts strongly on
the lateral movement of vertical edges in the image, it is
much harder to avoid obstacles in the cluttered environ-
ment where the edges are distributed non-homogeneously
in contrast to experiments performed in [2, 4, 6].

4.1 RNN Training Process

The LSTM neural network [18] has been trained using the
BPTT technique [19]. The training process has been per-
formed as follows. First, 10 sample trajectories have been
collected by manually guiding the robot through the envi-
ronment while avoiding the obstacles. The outputs of both
the LGMDs have been recorded and the parameter turn
has been adjusted manually, from which the correspond-
ing error parameter e has been computed. The sampled
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trajectories contain altogether 22530 sample points. Next,
the neural network has been trained with these 10 trajecto-
ries in 1000 iterations.

The herein utilized RNN has 2 inputs, 16 hidden states,
and 1 output. The 16 hidden states have been selected as
a compromise between the complexity of the RNN and
the behavior observed during the experimental verifica-
tion. As one of the problems of the former solution is
the behavior of the robot when it successfully initiate the
obstacle avoidance but it then hits it from the side, we se-
lected 16 hidden states as the memory buffer to provide
sufficient capacity for the robot to traverse 0.4 m given its
dimensions, speed and camera frame rate.

The sigmoid function has been used as the activation
function of the RNN

f (x) =
1

1+ e−x . (10)

As the LGMD outputs are in the range u f ∈ [0.5,1] and the
error function e ∈ [−0.5,0.5], the RNN has been trained
to estimate the value of e+ 0.5 which is feasible for the
sigmoid function with the range of f (x) ∈ [0,1].

4.2 Experimental Results

Altogether, 20 trials have been performed in the laboratory
arena to verify the ability of the robot to avoid collisions.
The robot has been directed to intercept different obstacles
and its behavior has been observed. The algorithm failed
only in 3 trials while the previous approach based on the
direct control proposed in [3] is unable to operate in such a
heavily cluttered environment at all. The first failed trial is
specific by a direct collision with a low-textured wooden
barrier (see Fig. 5d), hence the LGMDs failed to detect
an approaching object. The second and third failures fall
into the category of sideway interception when the robot
successfully starts to avoid the obstacle but the robot hits
it later from a side.

Fig. 6 shows three typical trajectories crawled by the
hexapod robot in the laboratory arena. The trajectory is
overlaid with the perpendicular arrows that characterize
the direction and magnitude of the error e that is used
for the robot steering which correspond to the direction in
which the neural-based controller is sensing an obstacle.
Besides, the corresponding plot of the LGMD outputs and
the comparison of the control output provided by the pro-
posed neural-based controller ernn and the direct control
method edirect is visualized in Fig. 7.

Further, we let the robot to continuously crawl the area
and avoid obstacles. The robot has crawled the distance of
approx. 140 m while colliding only 8 times.

4.3 Discussion

The presented results indicate that the proposed neural-
based locomotion controller with the collision avoidance
feedback provided by the LGMD neural network and

the RNN-based controller is feasible. Moreover, the uti-
lization of the RNN considerably improves the collision
avoiding behavior in comparison to the direct control
mechanism presented in [3]. The difference between the
control principles can be best observed in Fig. 7a. It can be
seen that the RNN filters oscillations in the error e which
would disable the robot from avoiding the collision in a
case of the direct control.

On the other hand, it is not particularly clear what is the
RNN-based controller reacting to, as the dependency of
the output on the distance to the closest obstacle has not
been confirmed. This can be observed in Fig. 6c and the
corresponding plot of the error function in Fig. 7c where
the controller starts to oscillate after successfully avoiding
the first obstacle. Other experimental trials have shown
that these oscillations do not affect the collision avoiding
behavior; however, it is unclear how and why they are pro-
duced by the neural controller.

The results indicate that the RNN calculates a weighted
average of the LGMD outputs over a short period. How-
ever, further analysis of the behavior of the controller is
necessary to reliably evaluate its properties.

Last but not least, the proposed controller performs only
a collision avoiding behavior and does not guide the robot
to any particular goal. Thus, we consider an extension of
the proposed method to incorporate a higher level goal fol-
lowing to the architecture of the neural-based controller as
a future work.

5 Conclusion

In this paper, we propose an extension of the biologically
based collision avoidance approach with a Recurrent Neu-
ral Network to enhance the collision avoiding behavior of
a hexapod walking robot. The proposed extension allows
the robot to operate in heavily cluttered environments. The
herein presented experimental results indicate feasibility
of the controller which failed to avoid collision in only 3
out of 20 performed trials. The experimental results raised
questions about the cause of the observed oscillations that
deserve future investigation. Besides, we aim to improve
the proposed biologically-based architecture to follow a
specific target location, and thus developed biologically
inspired autonomous navigation.

Acknowledgments – This work was supported by the
Czech Science Foundation (GAČR) under research project
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Enhancing Neural Based Obstacle Avoidance with CPG Controlled Hexapod Walking Robot 69



(a) (b) (c)
Figure 6: Collision avoiding trajectories for the experiments t1, t4, and t5
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