EUMSSI: Multilayered analysis of multimedia content
using UIMA, MongoDB and Solr

Jens Grivolla and Maite Melero and Toni Badia !

Abstract. We present a scalable platform that allows for distributed
processing of large quantities of multimedia content. The EUMSSI
platform provides support for both synchronous and asynchronous
analysis processes and thus allows for on-demand services as well
as long running batch processes. Analysis services for speech, video
and text are integrated in the platform, as well as transversal services
that combine and enrich the existing outputs from various modal-
ities. It builds on established open source projects such as UIMA,
MongoDB and Solr and the project outcomes are published under
permissive open source licenses.

1 Introduction

For reasoning with and about the multimedia data, the EUMSSI plat-
form needs to recognize entities, such as actors, places, topics, dates
and genres. A core idea is that metadata resulting from analyzing
one media helps reinforce the aggregation of information from other
media. For example, an important issue in speech recognition is the
transcription of previously unknown (out-of-vocabulary) words. This
is particularly important when dealing with current news content,
where person and organization names, and other named entities that
may not appear in older training corpora, are among the most critical
parts of the transcription. Existing text, tags and other metadata, as
well as information automatically extracted from these sources, are
used to improve and adapt the language models. Further, OCR on
video data, speech analysis and speaker recognition mutually rein-
force one another.

The combined and integrated results of the audio, video and text
analysis significantly enhance the existing metadata, which can be
used for search, visualization and exploration. In addition, the ex-
tracted entities and other annotations are exploited for identifying
specific video fragments in which a particular person speaks, a new
topic begins, or an entity is mentioned. Figure[T]illustrates some of
the different layers of analysis that may exist for a video content item.

The EUMSSI system currently includes a wide variety of analy-
sis components (many of which leverage and improve upon existing
open source systems), such as automatic speech transcription (ASR),
person identification (combining voice and face recognition, OCR
on subtitles for naming, and Named Entity Recognition and Link-
ing), and many natural language processing approaches, applied to
speech transcripts as well as original written content or social me-
dia, e.g. NER (Stanford NLP), Entity Linking (DBpedia Spotlight),
keyphrase extraction (KEA), quote extraction, topic segmentation,
sentiment analysis, etc.

1 Universitat Pompeu Fabra, Spain, email: <firstname>.<lastname>@upf.edu

VideoMiningAnalysis

00010010100100101010101110011000110

————= Sequence Analysis

r

—————— Cross-Modak-Entity Analysis
(Persons, Places, Categories, Events)

C ht (Whop that seq ?)

Analysis Output ———— Topic Detection

Speaker (Person)

Speech to Text Anal,

———— Perceptual Hashing for Duplicates Analysis

Figure 1. Video Mining Analysis

2 Architecture overview

The EUMSSI platform has been developed using UIMA, MongoDB,
Solr and other Open Source technologies to manage complex work-
flows involving online (on-demand) and offline (batch) processing,
with mutual dependencies between the different modalities. The
three main challenges of the core platform are:

e Enabling the integration and combination of different annotation
layers using UIMA and its CAS format

e Managing the processing workflow using MongoDB and UIMA

e Providing efficient and scalable access to the analyzed content for
applications and demonstrators using Solr

The EUMSSI architecture was designed with a few core principles
and requirements in mind:

e Simplicity: The platform should not be overly complex, in order to
make it maintainable as well as to rapidly have a working system
that all involved parties can build on

o Robustness: Failures, even hardware failures, should not have dis-
astrous consequences

e Portability: It should be possible to easily migrate the platform to
a different system

e Flexibility: It must be possible to quickly extend the platform, in
particular by adding new analysis processes or content sources

e Scalability: The platform must be able to support large-scale con-
tent processing, as well as efficiently provide results to end users

As a result, the EUMSSI platform relies on open source technolo-
gies with a proven track record of reliability and scalability as its
foundation.

The EUMSSI platform functions as a set of loosely coupled com-
ponents that only interact through a common data back-end (Mon-
goDB) that ensures that the system state is persisted and can be ro-
bustly recovered after failures of individual components or even the
whole platform (including hardware failures).

All components run independently and can be seen as basically
“stateless” in that they maintain only the information necessary for
immediate execution. As such it is possible to restart individual com-
ponents without affecting the overall system, making it relatively
easy to ensure the overall reliability of the platform.

All new content coming into the system is first normalized to a
common metadata schema (based on schema.org) and stored in a
MongoDB database to make it available for further processing. Anal-
ysis results, as well as the original metadata, are stored in UIMA’s
CAS forrnaﬂ to allow integration of different aligned layers of anal-
ysis as well as in a simplified format that is then indexed with Solr.
The applications use the Solr indexes for efficient and scalable ac-
cess to the analyzed content, as well as statistical metrics over the
whole document collection or specific subsets that can be used for
exploration and visualization.

Data Sources

Prepracess

1’ 7777777777777777777777777777777777 ;
T 1

jexlract metadata / > (create) 1

content initial CAS

Processing

add to / update
processing queues

1. get faw content /
‘ previous CAS

. process

audio 2
3. upddte CAS
i

analysis

video
analysis

text
analysis

Figure 2. Architecture design

The process flow, pictured in Figure 2] can be summarized as fol-
lows:

1. new data arrives (or gets imported)
2. preprocessing stage
(a) make content available through unique internal identifier
(b) create initial CAS with aligned metadata / text content
and content URI
(c) mark initial processing queue states
3. processing / content analysis
(a) distributed analysis systems query queue when they have
processing capacity
(b) retrieve CAS with existing data (or get relevant metadata
from wrapper API)
(c) retrieve raw content based on content URI
(d) process
(e) update CAS (possibly through wrapper API)
(f) create simplified output for indexing
(g) update queues
i. mark item as processed by the given queue
ii. mark availability of data to be used by other analysis
processes
4. updating the Solr indexes whenever updated information is
available for a content items

2

Unstructured Information Architecture:

http://uima.apache.org/

Management

Note that this architecture design mainly depicts the data analysis
part of the EUMSSI system. The applications for end users are built
upon the Solr indexes that are automatically synchronized with the
analysis results.

Crawlers, preprocessors and API layer are maintained as part
of the core EUMSSI platform. The MongoDB database is installed
separately and managed from within the platform components (with
little or no specific configuration and setup), and the same goes for
some external dependencies such as having a Tomcat server on which
to run the API layer.

Analysis components for video and audio are fully external and
independent and communicate with the platform through the API
layer. Text analysis and cross-modality components are implemented
as UIMA components and run as pipelines integrated into the plat-
form using custom input (CollectionReader) and output (CASCon-
sumer) modules that read an existing CAS representation of the doc-
ument from the MongoDB back-end, and write back a modified CAS
with added annotations (and possibly layers/views) as well as ex-
tracted or "flattened" metadata that can be used by other components
(e.g. a list of all detected entities in the document).

Crawlers make external data sources available to the platform.
Some crawler components are run only once to import existing
datasets, whereas others feed continuously into the platform. Pre-
processing takes original metadata from the different sources and
transforms it into a unified representation with a common metadata
vocabulary.

The EUMSSI API abstracts away from the underlying storage
(MongoDB and CAS data representation) to facilitate access for ex-
ternal components such as video and audio processing. It acts as a
light-weight layer that translates between the internal data structure
and REST-like operations tailored to the needs of the components.

Indexing takes care of making the metadata (from the original
source as well as automatically extracted) available to demonstrators
and applications by mirroring the data on a Solr server that is acces-
sible to those applications. It is performed using mongo—connectoﬂ
leveraging built-in replication features of MongoDB for low-latency
real time indexing of new (even partial) content, as well as content
updates.

Components that are part of the core platform can be found on
GitHub and are organized into directories corresponding to the type
of component. More detailed information about those components
may be found in their respective README.md files.

2.1 Design decisions and related content analysis
platforms

Apart from integrating a wide variety of analysis components work-
ing on text, audio, video, social media, etc., at different levels of se-
mantic abstraction, a key aspect of EUMSSI is the integration and
combination of those different information layers. This is the main
motivation for using UIMA as the main underlying framework, as de-
scribed in section 3] This also has the advantage of providing a plat-
form for building processing pipelines that has low overhead when
running on a single machine (all information is passed in-memory),
while still enabling distributed and scaled-out processing when nec-
essary.

On the other hand, it quickly became apparent that not all kinds
of analysis are a good fit for such a workflow, leading to the hybrid
approach described in section[d] Having the workflow control in the

3 https://github.com/mongodb-labs/mongo-connector

same database as the data itself eliminates some of the potential fail-
ures of more complex queue management systems by ensuring con-
sistency between the stored data and its analysis status. It also means
that efforts in guaranteeing availability and performance can focus
on optimizing and allocating resources for the MongoDB database
(for which best practices are well established).

While there are commercial content management systems on the
market, some of which allow for the integration of some automatic
content analysis, none of them have the flexibility of the EUMSSI
platform, and in particular none are aimed at facilitating cross-
modality integration.

Some recent research projects approach similar goals. MultiSen-
smﬂ combines analysis services through distributed RESTful ser-
vices based on NIF as an interchange format, incurring higher com-
munication overheads in exchange for greater independence of ser-
vices (compared to the UIMA-based parts of EUMSSI). LinkedTVE]
has a similar approach to EUMSSI (also using MongoDB and Solr),
integrating the outputs of different analysis processes in a com-
mon MPEG-7 representation in the consolidation step, however (it
appears) with far less mutual integration of outputs from differ-
ent modalities. MediaMixexﬂ focuses on indexing Media Fragment{]
with metadata to improve retrieval in media production, and BRID-
GETE] provides means to link (bridge) from broadcast content to re-
lated items, partly based on automatic video analysis.

3 Aligned data representation

Much of the reasoning and cross-modal integration depends on an
aligned view of the different annotation layers, e.g., in order to con-
nect person names detected from OCR with corresponding speakers
from the speaker recognition component, or faces detected by the
face recognition.

The Apache UIMAE] CAS (common analysis structure) represen-
tation is a good fit for the needs of the EUMSSI project as it has a
number of interesting characteristics:

e Annotations are stored “stand-off”, meaning that the original con-
tent is not modified in any way by adding annotations. Rather, the
annotations are entirely separate and reference the original content
by offsets

e Annotations can be defined freely by defining a “type system” that
specifies the types of annotations (such as Person, Keyword, Face,
etc.) and the corresponding attributes (e.g. dbpediaUrl, canonical-
Representation, ...)

e Source content can be included in the CAS (particularly for text
content) or referenced as external content via URIs (e.g. for mul-
timedia content)

e While each CAS represents one “document” or “content item”,
it can have several Views that represent different aspects of that
item, e.g. the video layer, audio layer, metadata layer, transcribed
text layer, etc., with separate source content (SofA or “subject of
annotation”) and separate sets of annotations

e CASes can be passed efficiently in-memory between UIMA anal-
ysis engines

4 http://multisensorproject.eu/

5 http://linkedtv.eu

6 http://mediamixer.eu

7 https://www.w3.0rg/2008/WebVideo/Fragments/
8 http://ict-bridget.eu

9 http://uima.apache.org/

o CASes can be serialized in a standardised OASIS forma{f_U] for
storage and interchange

Annotations based directly on multimedia content (video and au-
dio) naturally refer to that content via timestamps, whereas text anal-
ysis modules normally work with character offsets relative to the text
content. It is therefore fundamental that any textual views created
from multimedia content (e.g. via ASR or OCR) refer back to the
timestamps in the original content. This is done by creating annota-
tions, e.g. tokens or segments, that include the original timestamps
as attributes in addition to the character offsets.

As an example, we may have a CAS with an audio view which
contains the results of automatic speech recognition (ASR), provid-
ing the transcription as a series of tokens/words with a timestamp for
each word as an additional feature.

In this way it is possible to apply standard text analysis modules
(that rely on character offsets) on the textual representation, while
maintaining the possibility to later map the resulting annotations
back onto the temporal scale.

So called SofA-aware UIMA components are able to work on mul-
tiple views, whereas “normal” analysis engines only see one specific
view that is presented to them. This means that e.g. standard text
analysis engines don’t need to be aware that they are being applied to
an ASR view or an OCR view; they just see a regular text document.
SofA-aware components, however, can explicitly work on annota-
tions from different views and can therefore be used to integrate and
combine the information coming from different sources or layers,
and create new, integrated views with the output from that integra-
tion and reasoning process.

4 Synchronous and asynchronous workflow
management

In EUMSSI we decided to use a dual approach to workflow man-
agement, allowing for synchronous (and even on-demand) analysis
pipelines as well as the execution of large batch jobs which need to
be run asynchronously, possibly scheduled according to the availabil-
ity of computational resources.

We opted for UIMA as the basis for synchronous workflows, as
well as the data representation used for integrating different analy-
sis layers. On the other hand, a web-based API allows other analy-
sis processes, such as audio and video analysis, to retrieve content
and upload results independently, giving them complete freedom to
schedule their work according to their specific needs.

4.1 Analysis pipelines using UIMA

UIMA provides a platform for the execution of analysis components
(Analysis Engines or AEs), as well as for managing the flow between
those components. CPE or uimaFITE] [2] can be used to design and
execute pipelines made up of a sequence of AEs (and potentially
some more complex flows), and UIMA—A@ (Asynchronous Scale-
out) permits the distribution of the process among various machines
or even a cluster (with the help of UIMA DUC.

Within the EUMSSI project we have developed and integrated
a number of UIMA analysis components, mostly dealing with text
analysis and semantic enrichment. Whenever possible, components

10 http://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
1 https://uima.apache.org/uimafit.html

12 http://uima.apache.org/doc-uimaas-what.html

13 http://uima.apache.org/doc-uimaducc-whatitam.html

from the UIMA-based DKPro project [1] were used, especially for
the core analysis components (tokenization, part-of-speech, parsing,
etc.). In addition to a large number of ready-to-use components,
DKPro Core provides a unified type system to ensure interoperabil-
ity between components from different sources. Other components
developed or integrated in EUMSSI were made compatible with this
type system.

4.2 Managing content analysis with MongoDB

There are some components of the EUMSSI platform, however, that
do not integrate easily in this fashion. This is the case of computa-
tionally expensive processes that are optimized for batch execution.
A UIMA AE needs to expose a process() method that operates on a
single CAS (= document), and is therefore not compatible with batch
processing. This is particularly true for processes that need to be run
on a cluster, with significant startup overhead, such as many video
and audio analysis tasks.

It is therefore necessary to have an alternative flow mechanism for
offline or batch processes, which needs to integrate with the process-
ing performed within the UIMA environment.

The main architectural and integration issues revolve around the
data flow, rather than the computation. In fact, the computationally
complex and expensive aspects are specific to the individual analysis
components, and should not have an important impact on the design
of the overall platform.

As such, the design of the flow management is presented in terms
of transformations between data states, rather than from the proce-
dural point of view. The resulting system should only rely on the ro-
bustness of those data states to ensure the reliability and robustness of
the overall system, protecting against potential problems from server
failures or other causes. At any point, the system should be able to
resume its function purely from the state of the persisted data.

To ensure reliability and performance of the data persistence, we
use the well-established and widely used database system MongoDB,
which provides great flexibility as well as proven scalability and ro-
bustness.

Figure 3] shows the general flow of the EUMSSI system, focusing
on the data states needed for the system to function.

In order to avoid synchronization issues, the state of the data pro-
cessing is stored together with the data within each content item,
and the list of pending tasks can be extracted at any point through
simple database queries. We therefore only depend on the Mon-
goDB database (which can be replicated across several machines or
even a large cluster for performance and reliability) to fully estab-
lish the processing state of all items. For example, the queues for
analysis processes can be constructed directly from the “process-
ing.queues.queue_name" field of an item by selecting (for a given
queue) all items that have not yet been processed by that queue and
that fulfill all prerequisites (dependencies).

The analysis results are stored in CAS format (optionally with
compression). In order to avoid potential conflicts or race conditions
between components (most analysis processes run independently of
one another), the different layers are stored in separate database fields
as independent CASes. Components that work across layers then
merge the separate CASes into a single one (as separate Views) in
order to combine the information. The “meta.extracted" section of a
document is used to store the simplified analysis results that are au-
tomatically synchronized with the Solr index, and can also be used
as inputs to other annotators (such as detected Named Entities as in-
put to speech recognition), to avoid the overhead of extracting that

process data

crawlers, feeds, ... \

/

Solr
indexes

Figure 3. data flow and transformations

content_id

source_meta:original

content_id

source_meta:original

source_meta:eumssi

cas:{xmi,binary}

content_id

source_meta:original

source_meta:eumssi

cas:{xmi,binary}

processing_state

information from the CAS on demand.

In its simplest form, the processes responsible for the data tran-
sitions are fully independent and poll the database periodically to
retrieve pending work. Those processes can then be implemented in
any language that can communicate comfortably with MongoDB.

4.3 Multimodal multilayer data integration and
enrichment

The integration of data from different analysis layers is usually done
by loading the CAS representations generated by different prior pro-
cesses and merging them as individual Views in a single CAS. Layers
that work on different representations, e.g. speaker recognition, au-
dio transcript and OCR, are aligned by using timestamps associated
with the segments or tokens. As a result, new integrated views can be
created, combining the different information layers. Metadata is also
enriched by adding information to existing annotations or creating
new ones, e.g. with information obtained from SPARQL DBpedia
lookups.

4.4 Indexing for scalable data-driven applications

The final applications do not use the information stored in MongoDB
directly, but rather access Solr indexes created from that information
to respond specifically to the types of queries needed by the appli-
cations. Those indexes are updated whenever new analysis results
are available for a given item, through the use of mongo-connector
which keeps the indexes always up-to-date with the content of the
“meta.source” and “meta.extracted” sections.

5 Standards and interoperability

EUMSSI uses established protocols and uses freely available and
widely used open source software as its underpinnings, in addition
to publishing in-project developments under permissive open source
licenses through popular platforms such as GitHub.

The API for external analysis components is REST-like and uses
JSON for communication, whereas the end applications access the

data through Solr’s REST-like API (which supports various result
formats). Metadata is represented using a vocabulary built upon
schema.org and the internal representations in UIMA use the DKPro
type system as a core. Entity linking is performed against the DBpe-
dia, thus yielding Linked Open Data URISs for entities and allowing
for the use of SPARQL and RDF to access additional information.

There is now a starting initiative to establish a “standard” type sys-
tem for UIMA, with initial conversations pointing towards building
upon the DKPro type system for this purpose. Various institutions
have expressed their interest in endorsing such a type system, lead-
ing to a major step forward in improving interoperability between
UIMA components from different sources.

6 Demonstrators and applications

Using the data stored in the system, and made available through Solr
indexes, as well as on-demand text analysis services, a variety of ap-
plications can be built that provide access to the content and informa-
tion. Two very different applications were built within the EUMSSI
project, serving as technology demonstrators as well as having real-
world use.

The storytelling tool provides a web interface that allows a jour-
nalist to work on an article in a rich editor, when writing an news
article or preparing a report. The system then analyses the text the
journalist is writing in order to provide relevant background infor-
mation. In particular, the journalist can directly access the Wikipedia
pages of entities that appear in the text, or find related content in the
archives (including content from outside and social media sources).
A variety of graphical widgets then allow to explore the content col-
lection, finding relevant video snippets, quotes, or presenting relevant
entities and the relations between them.

The tool is built on web technologies (HTML, Javascript, ...) and
in particular AJAX—SOII{]E] which manages the communication with
the Solr backend that provides the data. Most of the functionality
in the widgets is based on using Solr queries (automatically gener-
ated or manually specified) to select a relevant set of items (articles,
videos, etc.) from the index.

The second-screen application, on the other hand, is aimed at
viewers of TV or streaming content, at home who would like to
easily access background information, or have their viewing aug-
mented with entertainment (or edutainment) activities such as auto-
matically generated quizzes relating to the currently viewed content.
The EUMSSI second screen application is implemented as a server-
side application that connects a ‘first screen’ client, which shows the
video in an HTMLS player, with one or more ‘second screen’ clients
(which may be on the same machine, or on a separate laptop, tablet
or smartphone). All possible information and questions that can be
shown to the user, are stored in JSON format in a WebVTT file (We-
bVTT is a W3C standard for displaying timed text, such as subtitles,
in connection with the HTML5 Videﬂ.

All second screen clients that are logged in using the same identi-
fier as the video show the same content at the same time. The video
client sends the relevant content to the server at the moment speci-
fied in the VTT file. The server-side agent forwards the content to the
second screen clients.

4https://github.com/evolvingweb/ajax—solr
5 https://w3c.github.io/webvtt/

7 Conclusions

In the EUMSSI project we have developed a platform capable of han-
dling large amounts of multimedia, with support for online and of-
fline processing as well as the alignment and combination of different
information layers. The system includes many interactions between
different modalities, such as doing text analysis on speech recogni-
tion output, or adding Named Entities from surrounding text to the
vocabulary known to the ASR system, among others.

The platform has proven capable of handling millions of content
items on modest hardware, and is designed to allow for easily adding
capacity through horizontal scaling.

The source code of the platform is publicly available at https:
//github.com/EUMSSI/I Additional documentation can be
found in the corresponding wiki at https://github.com/
EUMSSI/EUMSSI-platform/wikil

ACKNOWLEDGEMENTS

The work presented in this article is being carried out within the
FP7-ICT-2013-10 STREP project EUMSSI under grant agreement
n°® 611057, receiving funding from the European Union’s Seventh
Framework Programme managed by the REA-Research Executive
Agency http://ec.europa.eu/research/rea.

REFERENCES

[1] Richard Eckart de Castilho and Iryna Gurevych, ‘A broad-coverage
collection of portable nlp components for building shareable analysis
pipelines’, in Proceedings of the Workshop on Open Infrastructures and
Analysis Frameworks for HLT, pp. 1-11, Dublin, Ireland, (August 2014).
Association for Computational Linguistics and Dublin City University.

[2] Philip V. Ogren and Steven J. Bethard, ‘Building test suites for UIMA
components’, SETQA-NLP '09 Proceedings of the Workshop on Soft-
ware Engineering, Testing, and Quality Assurance for Natural Language
Processing, 1-4, (June 2009).

https://github.com/evolvingweb/ajax-solr
https://w3c.github.io/webvtt/
https://github.com/EUMSSI/
https://github.com/EUMSSI/
https://github.com/EUMSSI/EUMSSI-platform/wiki
https://github.com/EUMSSI/EUMSSI-platform/wiki

	Introduction
	Architecture overview
	Design decisions and related content analysis platforms

	Aligned data representation
	Synchronous and asynchronous workflow management
	Analysis pipelines using UIMA
	Managing content analysis with MongoDB
	Multimodal multilayer data integration and enrichment
	Indexing for scalable data-driven applications

	Standards and interoperability
	Demonstrators and applications
	Conclusions

