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Abstract. Representing domain knowledge is crucial for any task. There has
been a wide range of techniques developed to represent this knowledge, from
older logic based approaches to the more recent deep learning based techniques
(i.e. embeddings). In this paper, we discuss some of these methods, focusing on
the representational expressiveness tradeoffs that are often made. In particular, we
focus on the the ability of various techniques to encode ‘partial knowledge’ - a
key component of successful knowledge systems. We introduce and describe the
concepts of ensembles of embeddings and aggregate embeddings and demonstrate
how they allow for partial knowledge.

Motivation

Knowledge about the domain is essential to performing any task. Representations of
this knowledge have ranged over a broad spectrum in terms of the features and trade-
offs. Recently, with the increased interest in deep neural networks, work has focussed
on developing knowledge representations based on the kind of structures used in such
networks. In this paper, we discuss some of the representational expressiveness trade-
offs that are made, often implicitly. In particular we focus on the loss of the ability to
encode partial knowledge and explore two different paths to regain this ability.

Logic Based Representations

Beginning with McCarthy’s Advice Taker [1], logic has been the formal foundation for
a wide range of knowledge representations. These have ranged across the spectrum of
formal models to the more experimental languages created as part of working systems.
The more formal work started with McCarthy and Hayes’s Situation Calculus [2], the
various flavors of non-monotonic logics [3], [4] and included proposed axiomatizations
such as those suggested in the ‘Naive physics manifesto’ [5] and Allen’s temporal rep-
resentation [6]. There were a number of less formal approaches, that also had their
roots in logic. Notable amongst these include Minsky’s frames [7], EMycin [8], KRL
[9] and others. The representation language used by Cyc, CycL [10] is a hybrid of these
approaches.

Most of these representation systems can be formalized as variants of first order
logic. Inference is done via some form of theorem proving. One of the main design is-
sues in these systems is the tradeoff between expressiveness and inferential complexity.

More recently, systems such as Google’s ‘Knowledge Graph’ have started finding
use, though their extremely limited expressiveness makes them much more like simple
databases than knowledge bases.



Though a survey of the wide range of KR systems that have been built is beyond the
scope of this paper, we note that there are some very basic abilities all of these systems
have. In particular,

– They are all relational, i.e., are built around the concept of entities that have rela-
tions between them

– They can be updated incrementally
– The language for representing ’ground facts’ is the same as the language for repre-

senting generalizations. There is no clear line demarcating the two.
– They can represent partial knowledge. It is this feature we focus on in this paper.

Feature Vectors

One of the shortcomings of the logic based representations was that they largely as-
sumed that everything the system knew was manually given to the system, i.e., learning
from ground data was not a central part of the design. The complexity of the repre-
sentational formalisms and wide range of possible functions or expressions have made
machine learning rather difficult in traditional knowledge representation systems.

The rise of machine learning as the primary mechanism for creating models of the
domain have lead to the use of much simpler representations. In particular, we notice,

– The language for representing ground facts is distinct from the language for rep-
resenting generalizations or models. The ground facts about the domain, i.e., the
training data, is usually represented as a set of feature vectors.

– The language for representing generalizations or models is also usually highly re-
stricted. Each family of models (e.g., linear regression, logistic regression, support
vector machines, has a function template with a number of parameters that the
learning algorithm computes. Recent work on neural networks attempts to capture
the generality of Turing machines with deep networks, but the structure of the func-
tion learnt by these systems is still uniform.

– The language for representing ground facts is propositional, i.e., doesn’t have the
concept of entities or relations. This constraint makes it very difficult to use these
systems for modeling situations that are relational. Many problems, especially those
that involve reasoning about people, places, events, etc. need the ability to represent
these entities and the relations between them.

– Most of these systems allow for partial knowledge in their representation of ground
facts. i.e., some of the features in the training data may be missing for some of the
instances of the training data.

The inability of feature vectors to represent entities and relations between them has lead
to work in embeddings, which try to represent entities and relations in a language that is
more friendly to learning systems. However, as we note below, these embedding based
representations leave out an important feature of classical logic based representations
— a feature we argue is very important.

We first review embedding based representations, show how they are incapable of
capturing partial information



Embeddings

Recent work on distributed representations [[11], [12], [13], [14], [15]] has explored
the use of embeddings as a representation tool. These approaches typically ’learn an
embedding’, which maps terms and statements in a knowledge base (such as Freebase
[16]) to points in an N-dimensional vector space. Vectors between points can then be
interpreted as relations between the terms. A very attractive property of these distributed
representations is the fact that they are learnt from a set of examples.

Weston, Bordes, et. al. [13] proposed a simple model (TransE) wherein each entity
is mapped to a point in the N-dimensional space and each relation is mapped to a vector.
So, given the triple r(a, b), we have the algebraic constraint −→a −

−→
b = −→r + ε, where

ε is an error term. Given a set of ground facts, TransE picks coordinates for each entity
and vectors for each relation so as to minimize the cumulative error. This simple formu-
lation has some problems (e.g., it cannot represent many to many relations), which has
been fixed by subsequent work ([17]). However, the core representational deficiency of
TransE has been retained by these subsequent systems.

The goal of systems such as TransE is to learn an embedding that can predict new
ground facts from old ones. They do this by dimensionality reduction, i.e., by using a
low number of dimensions into which the the ground facts are embedded. Each triple is
mapped into an algebraic constraint of the form −→a −

−→
b = −→r + ε and an optimization

algorithm is used determine the vectors for the objects and relations such that the er-
ror is minimized. If the number of dimensions is sufficiently large, the εs are all zero
and no generalizations are made. As the number of dimensions is reduced, the objects
and relation vectors get values that minimize the s, in effect learning generalizations.
Some of the generalizations learnt may be wrong, which contribute to the non-zero εs.
As the number of dimensions is reduced further, the number of wrong generalizations
increases. This is often referred to as ‘KB completion’.

We believe that the value of such embeddings goes beyond learning simple gener-
alizations. These embeddings are a representation of the domain and should be usable
by an agent to encode its knowledge of the domain. Further, any learning task that takes
descriptions of situations that are best represented using a graph now has a uniform
representation in terms of this embedding. When it is used for this purpose, it is very
important that the embedding accurately capture what is in the training data (i.e., the
input graph). In such a case, we are willing to forgo learning in order to minimize the
overall error and can pick the smallest number of dimensions that accomplishes this. In
the rest of this paper, we will focus on this case.

Ignorance or Partial Knowledge

In a logic based system that is capable of representing some proposition P (relational
or propositional), it is trivial for the system to not know whether P is true or not. I.e.,
its knowledge about the world is partial with respect to P .

However, when a set of triples is converted to an embedding, this ability is lost.
Consider a KB with the entities Joe, Bob, Alice, John, Mary. It has a single rela-
tion friend. The KB specifies that Joe and Bob are friends and that Alice and John
are friends and that Mary and John are not friends. It does not say anything about



whether Mary and Alice are friends or not friends. This KB can be said to have par-
tial knowledge about the relation betweenMary andAlice. When this KB is converted
into an embedding, to represent the agent’s knowledge about the domain, it is important
that this aspect of the KB be preserved.

Unfortunately, in an embedding, Mary and Jane are assigned particular coordi-
nates. Either

−−−−→
Mary−

−−−→
Jane is equal to

−−−−−→
friend or it is not. If it is, then, according to

the embedding, they are friends and if it is not, then, according to the embedding, they
are not friends. The embedding is a complete world, i.e., every proposition is either true
or false. There is no way of encoding ’unknown’ in an embedding.

If the task is knowledge base completion, especially of an almost complete knowl-
edge base, then it may be argued that this deficiency is excusable. However, if the KB
is very incomplete (as most real world KBs are) and if such as KB is being used as
input training data, or as the basis for an agents engagement with the world, this forced
completion could be problematic.

We now explore two alternatives for encoding partial knowledge in embeddings.

Encoding Partial Knowledge

Logic based formalisms distinguish between a knowledge base (a set of statements)
and what it might denote. The object of the denotation is some kind of structure (set of
entities and ntuples in the case of first order logic or truth assignments in the case of
propositional logic). The KB corresponds not to a single denotation, but set of possible
denotations. Something is true in the KB if it holds in every possible denotation and
false if it does not hold in any of the possible denotations. If it holds in some denotations
and does not hold in some, then it is neither true nor false in the KB.

Ensemble of Embeddings In other words, the key in logic based systems to partial
knowledge is the distinction between the KB and its denotation and the use of a set of
possible denotations of a KB.

Note that in logic based KR systems, these possible denotations (or possible worlds)
are almost always in the meta-theory of the system. They are rarely actually instantiated.
We could also imagine a KR system which does instantiate an ensemble (presumbaly
representative) of possible denotations and determine if a proposition is true, false or
unknown based on whether it holds in all, none of some of these models. We follow this
approach with embeddings to encode partial knowledge. Instead of a single embedding,
we can use an ensemble of embeddings to capture a KB. If we use a sufficient number
of dimensions, we should be able to create embeddings that have zero cumulative error.
Further, different initial conditions for the network will give us different embeddings.
These different embeddings correspond to the different possible denotations. A ensem-
ble of such embeddings can be used to capture partial knowledge, to the extent desired.

While this approach is technically correct in some sense, it also defeats the purpose.
The reason for creating the embeddings was in part to create an encoding that could be
used as input to a learning system. When we go from a single embedding to an ensemble
of embeddings, the learning algorithm gets substantially complicated.



One approach to solving this problem is to develop a more compact encoding for an
ensemble of embeddings. Remember that we don’t need to capture every single possible
embedding corresponding to the given KB. All we need is sample that is enough to
capture the essential aspects of the partiality of the KB.

Aggregate Models Consider the set of points across different models corresponding to
a particular term. Consider a cluster of these points (from an ensemble of embeddings)
which are sufficiently close to each other. This cluster or cloud of points (each of which
is in a different embeddingl), corresponds to an aggregate of possible interpretations
of the term. We can extend this approach for all the terms in the language. We pick
a subset of models where every term forms such a cluster. The set of clusters and the
vectors between them gives us the aggregate model. Note that in vectors corresponding
to relations will also allow amount of variation. If a model satisfies the KB, any linear
transform of the model will also satisfy the KB. In order to keep these transforms from
taking over, no two models that form an aggregate should be linear transforms of each
other.

In both aggregate models, each object corresponds to a cloud in the N-dimensional
space and the relation between objects is captured by their approximate relative posi-
tions. The size of the cloud corresponds to the vagueness/approximateness (i.e., range
of possible meanings) of the concept.

Partial knowledge is captured by the fact that while some of the points in the clouds
corresponding to a pair of terms may have coordinates that maps to a given relation,
other points in the clouds might not. In the earlier example, we now have a set of points
corresponding to Mary and Jane. Some of these are such that

−−−−→
Mary −

−−−→
Jane =

−−−−−→
friend, while others are such that

−−−−→
Mary −

−−−→
Jane 6=

−−−−−→
friend. Thus, these aggre-

gates can encode partial knowledge.

Conclusions

The ability to encode partial knowledge is a very important aspect of knowledge repre-
sentation systems. While recent advances to KR using embeddings offer many attrac-
tions, the current approaches are lacking in this important aspect. We argue that an agent
should be aware of what it doesn’t know and should use representations that are capa-
ble of capturing this. We described one possible approach to extending embeddings to
capture partial knowledge. While there is much work to be done before embeddings can
be used as practical knowledge representation systems, we believe that with additions
like the one described here, embeddings may turn out to be another useful addition to
the knowledge representation tool chest.
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