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Abstract
This paper presents an agent-based hybrid symbolic/sub-
symbolic learning approach as a basic model for the human
ability of quickly recognizing and exploiting heuristic rules in
an initially unknown environment. Instead of mechanically
iterating a task until the optimal policy was found (as usu-
ally done by common Reinforcement Learning techniques),
the agent finds heuristics expressed by symbolic knowledge
bases which allow for an intelligent exploitation of knowl-
edge gained from few experiences. For this purpose, a mea-
sure is proposed which allows an agent to decide on its own at
which point during the learning process, its decisions should
rely on the recognized heuristics rather than on a learned
state-action pair representation. The approach will be eval-
uated both in the context of several grid world scenarios
and a game from the GVGAI framework. It will be shown
that our approach outperforms standard Q-Learning in the
selected scenarios and arguments will be provided that also
other agent-based machine learning techniques could profit
from the proposed approach.

1 Introduction
Common machine learning techniques used in the context
of learning agents (e. g., Reinforcement Learning based ap-
proaches like Q-Learning (Watkins 1989), (Sutton and Barto
1998)) are usually based on a trial-and-error principle: In
unknown environments, agents based on such approaches
start with purely random actions and successively improve
their behavior as the learning process progresses. Having
no a priori knowledge about the environment, such agents
have to explore large amounts of the state-action space,
even if the underlying structure of the environment follows
simple rules.

Humans, in contrast, are known for successfully applying
rough heuristics learned from very few examples. This, of
course, can lead to wrong decisions (see, e. g., (Dörner 1992)
for several examples), however, in the common cases many
problems can be quickly solved by applying such heuris-
tics derived from few examples. One reason for that is, that
many problem domains (e. g., games) are geared towards
the commonsense human way of thinking, and these kinds
of problems can therefore be quickly solved by exploiting
such heuristics.

In this paper, we propose a hybrid symbolic/sub-symbolic
agent model which is able to autonomously find and exploit

useful heuristics in a previously unknown environment. Dur-
ing a Reinforcement Learning process, the agent creates a
symbolic knowledge base from learned experiences which
comprises rule-based knowledge on multiple levels of ab-
straction as a model for heuristics. We do not incorporate
any a priori knowledge (as done e. g. in (Shapiro, Langley,
and Shachter 2001)—although this would be possible in our
model), instead the heuristics are inferred by the agent itself
during the learning process. Furthermore, the agent is able
to decide itself at which point during the learning process
the decisions should be relied on the found heuristics rather
than on the weighted state-action pairs of the Reinforcement
Learning process. More concretely, the following contribu-
tions are made:

• A hybrid symbolic/sub-symbolic agent model which
incorporates both symbolic rule-based knowledge and
weighted state-action pair representations learned by a
sub-symbolic learning approach.

• An approach for estimating the subjective structural com-
plexity of a previously unknown environment from an
agent perspective during a learning process (based on a
“commonsense” measure for strategic depth (Apeldoorn
and Volz 2017)).

Compared to our previous works on knowledge base ex-
traction presented in (Apeldoorn and Kern-Isberner 2016)
and (Apeldoorn and Kern-Isberner 2017), the novelty of
this paper lies in the incorporation of our extraction ap-
proach into a learning agent model which is able to de-
cide on its own when to exploit the extracted knowledge
as a heuristic in an unknown environment. This is realized
by incorporating the strategic depth measure introduced in
(Apeldoorn and Volz 2017) as a decision criterion.

As a side-product, the resulting agent model is still able
to explain the learned knowledge and the made decisions
to some extent at any point during the learning process, as
described in (Apeldoorn and Kern-Isberner 2017).

In Section 2 related similar approaches will be discussed.
A brief introduction to the fundamental preliminary works
will be given in Section 3. The agent model will be intro-
duced in Section 4. In Section 5 the model will be eval-
uated in the context of several simple grid world scenar-
ios and later in different levels of a game from the Gen-
eral Video Game Playing Artificial Intelligence (GVGAI)



framework, which is usually used for the GVGAI compe-
tition where agents have to compete in playing previously
unknown video games (Perez-Liebana et al. 2016).

2 Related Work
Several attempts have been made so far to closer relate sym-
bolic knowledge representation and sub-symbolic machine
learning approaches in the context of agents. The basic ideas
can be roughly assigned to one of the following groups (rep-
resentatives for every group will be discussed subsequently):

1. Extraction techniques to gain different knowledge rep-
resentations (e. g., propositional rules) learned from data
through machine learning techniques

2. Methods to integrate a priori knowledge into machine
learning approaches to support the learning process (e. g.,
by shaping the search space with a priori knowledge and
later refining this knowledge with learning techniques)

3. Cognitive architectures that combine 1. and 2.

Representatives of the first group are, e. g., (Sun 2002),
where extraction techniques have been proposed to gain sim-
ple rules or plans from reinforcement learning. In (Junges
and Klügl 2013), decision trees are created from learned
weighted state-action representations with the primary goal
of supporting agent developers in the implementation of ad-
equate agent behavior. These works focus on the extraction
of knowledge in different forms. In contrast, in this paper,
we propose to (re)incorporate the extracted knowledge back
into the learning process as a model for finding and exploit-
ing rough heuristics in a previously unknown environment.

As representatives for the second group, e. g., (Singh et
al. 2011) and (Shapiro, Langley, and Shachter 2001) can
be considered: In these approaches, machine learning tech-
niques are combined with mechanisms to incorporate a pri-
ori knowledge to accelerate the learning process or to later
refine and adapt the a priori knowledge to a dynamically
changing environment (in (Singh et al. 2011) this is realized
in the context of a BDI agent model where initial beliefs
which can be refined during a learning process). In contrast,
our approach works (nearly) without any a priori knowledge
about the environment.

The third group is represented, e. g., by models such as
CLARION (Sun, Peterson, and Merrill 1999), a cognitive
architecture which incorporates both sub-symbolic learning
and symbolic knowledge during learning and decision mak-
ing. In this model, a sub-symbolic representation is com-
bined with a rule network on top, and both the sub-symbolic
and the rule level are used in the agent’s decision making
process. In our approach, however, we assume a reasonable
point during a learning process, where a transition from a
sub-symbolic (implicit) knowledge to a symbolic (explicit)
knowledge representation should take place with the pri-
mary objective to quickly find useful heuristics in a previ-
ously unknown environment. Another representative related
to the third group, the SPHINX approach, is described in
(Leopold, Kern-Isberner, and Peters 2008), where reinforce-
ment learning is combined with ranking functions and belief
revision to support the learning process. It was shown on

a object recognition task that the considered learning agent
can benefit from the combined approach (with and without
involving additional background knowledge). However, in
contrast to our approach, it was not investigated, in which
phase during the learning process the agent should rely its
behavior more on the explicit, symbolic part of the knowl-
edge (i. e., the ranking function) rather than on the implicit
representation of the weights learned through the reinforce-
ment learning part. Furthermore, the symbolic part is not pri-
marily dedicated to represent a model for heuristics.

3 Preliminaries
This section introduces the two preliminary works needed
for our approach: First, the concept of exception-tolerant
Hierarchical Knowledge Bases (HKBs) (Apeldoorn and
Kern-Isberner 2016, 2017) will be briefly introduced and
how they can be retrieved (Sections 3.1 and 3.2).1 HKBs
will be used later as a model for heuristics. After that, a
“commonsense” strategy measure (recently introduced in
(Apeldoorn and Volz 2017)), is described which will be used
later in our agent model to let an agent subjectively estimate
whether or not heuristics should be exploited (Section 3.3).

3.1 Definition of HKBs
To introduce HKBs and how they can be learned, we closely
follow (Apeldoorn and Kern-Isberner 2016, 2017). There,
an extraction approach is proposed which is able to extract
an HKB from a weighted state-action pair representations
learned by a common reinforcement learning approach like
Q-Learning (Watkins 1989).2

This section only provides the main definitions needed
to understand the basic idea of HKBs. For more details on
HKBs, the reader should refer to the original literature.

Basics of the Agent Model We consider an agent which is
learning a policy by acting autonomously in a previously un-
known environment. The agent is equipped with n sensors
through which it can perceive its current state in the envi-
ronment. The agent is able to perform actions from a prede-
fined action space and can furthermore perceive, whether or
not the performed actions were good, in form of (numeric)
rewards. The perceived rewards are then used to learn a
weighted state-action pair representation where the weights
determine which action has to be performed, given a per-
ceived state (usually the one with the highest weight).

More formally, in such a representation, a state s is an el-
ement of a multi-dimensional state space S = S1 × ...× Sn
where n is the number of the agent’s sensors (through which
the agent is able to perceive its state in the environment)

1Note that in (Apeldoorn and Kern-Isberner 2016, 2017),
exception-tolerant Hierarchical Knowledge Bases were originally
called Hierarchical Knowledge Bases—but to avoid confusion with
the Hierarchical Knowledge Bases by Borgida et al. (Borgida and
Etherington 1989) and in order to further outline the primary pur-
pose of our approach, we call them exception-tolerant here.

2Note that the used learning approach is not of importance as
long as it results in a weighted state-action pair representation,
where the weights determine which action has to be chosen given
a perceived state (usually the one with the highest weight).



and every Si is a set of possible sensor values of the cor-
responding sensor. Furthermore, the agent selects actions
from a predefined action set A and the learned weights are
stored in a multi-dimensional matrix Q̂ = (qs1,...,sn,a) with
si ∈ Si and a ∈ A. The weights can be learned by differ-
ent machine learning approaches, provided that the learn-
ing approach converges such that given a state, the high-
est weight determines the best action to be selected (i. e.,
amax
s1,...,sn = arg max

a′∈A
qs1,...,sn,a′ ).

Exception-Tolerant Hierarchical Knowledge Bases
An HKB consists of rules which are organized on differ-
ent levels of abstraction. In contrast to Exception Lists
(Michael 2011), an HKB can handle multiple rules per
level and the rules also comprise weights. To be able to
define these rules, two different kinds of states and two
different kinds of rules will be distinguished (Apeldoorn
and Kern-Isberner 2017):

Definition 1 (Complete States/Partial States) A com-
plete state is a conjunction s := s1 ∧ ... ∧ sn of all val-
ues si currently perceived by an agent’s sensors, where n
is the number of sensors (and every perceived sensor value
si ∈ Si of the corresponding sensor value set Si is assumed
to be a fact in the agent’s current state). A partial state is a
conjunction s :=

∧
s′∈S s

′ of a subset S ⊂ {s1, ..., sn} of
the sensor values of a complete state.

Definition 2 (Complete Rules/Generalized Rules) Com-
plete rules and generalized rules are of the form pρ ⇒
aρ [wρ], where pρ is either a complete state (in case of an
complete rule) or a partial state (in case of a generalized
rule), the conclusion aρ ∈ A is an action of an agent’s ac-
tion space A and wρ ∈ [0, 1] is the rule’s weight.

Thus, complete rules map complete states to actions and
generalized rules map partial states to actions. An HKB can
now be defined as follows:

Definition 3 (Exception-Tolerant Hierarchical Knowl-
edge Base) An exception-tolerant Hierarchical Knowl-
edge Base (HKB) is an ordered set KB := {R1, ..., Rn+1}
of n + 1 rule sets, where n is the number of sensors (i. e.,
the number of state space dimensions). Every set Ri<n+1

contains generalized rules and the set Rn+1 contains com-
plete rules, such that every premise pρ =

∧
s∈Sρ s of a rule

ρ ∈ Ri is of length |Sρ| = i− 1.

According to Definition 3, the set R1 contains the most
general rules (with empty premises) and the set Rn+1 con-
tains the most specific (i. e., complete) rules.

For the relations of rules, the term of needed exception
will be used, according to the following definition (cf. (Apel-
doorn and Kern-Isberner 2017)):

Definition 4 (Needed Exception) A rule ρ ∈ Rj>1 is an
exception to a rule τ ∈ Rj−1 with premise pτ =

∧
s∈Sτ s,

action aτ as conclusion and weight wτ , if Sτ ⊂ Sρ and
aρ 6= aτ . The exception is needed, if there exists no other
rule υ ∈ Rj−1 with premise pυ =

∧
s∈Sυ s and action aυ as

conclusion where Sυ ⊂ Sρ, aυ = aρ and wυ > wτ .

3.2 Learning an HKB
An HKB can be extracted from a weighted state-action
pair representation Q̂ (that is learned, e. g., through a Re-
inforcement Learning technique) using the following ap-
proach (Apeldoorn and Kern-Isberner 2016):3

The approach takes a weighted state-action pair repre-
sentation Q̂ as input and returns an HKB KBQ̂ which re-
flects the knowledge contained in Q̂ by performing the
following steps:

1. Initial creation of rule sets: In the first step, the multiple
abstraction levels R1, ..., Rn+1 of the knowledge base are
initially filled with rules. We only consider state-action
pairs here that contribute to the best policy found during
the learning process so far.4

2. Removal of worse rules: In all sets Rj , a rule ρ ∈ Rj
is removed, if there exists another rule σ ∈ Rj with the
same partial state as premise having a higher weight (i. e.,
in every set Rj only the best rules for a given partial state
are kept).

3. Removal of worse more specific rules: In all sets Rj>1, a
rule ρ ∈ Rj with premise pρ =

∧
s∈Sρ s, conclusion aρ

and weight wρ is removed, if there exists a more general
rule σ ∈ Rj′<j with premise pσ =

∧
s∈Sσ s where Sσ ⊂

Sρ = {s1, ..., sj−1} and weight wσ ≥ wρ.

4. Removal of too specific rules: In all sets Rj , a rule ρ ∈
Rj>1 with premise pρ =

∧
s∈Sρ and conclusion aρ is

removed, if there exists a more general rule σ ∈ Rj′<j
with the same action aσ = aρ as conclusion and with
premise pσ =

∧
s∈Sσ s where Sσ ⊂ Sρ = {s1, ..., sj−1}

and if ρ is not a needed exception to a rule τ ∈ Rj−1.

5. Optional filter step: Optionally, filters may be applied to
filter out further rules which are, e. g., helpful to explain
the knowledge contained in Q̂ through the optimal found
policy so far, but which are not needed for reasoning later.

After performing these steps on Q̂, the knowledge base
KBQ̂ comprises all sets Rj 6= ∅ with the extracted rules
representing the implicit knowledge contained in the learned
weights of Q̂ in a compact way.

Reasoning on HKBs A reasoning algorithm on HKBs
was proposed in (Apeldoorn and Kern-Isberner 2016):
Given perceived sensor values s1, ..., sn, this algorithm
searches an HKB upwards, starting from the bottom-most
level Rn+1, for the first rule whose premise is fulfilled. This
rule is then returned as concluding action (see (Apeldoorn

3Note that a faster version of the algorithm improving its first
step is proposed in (Apeldoorn and Kern-Isberner 2017) (cf. foot-
note 4).

4Furthermore, since the number of possible premises of the
rules can grow drastically with the size of the given problem in-
stance, an efficient algorithm has to be used here. An attempt
for efficiently preselecting the rules using adapted ideas from the
APRIORI algorithm (Agrawal et al. 1996) has been made in (Apel-
doorn and Kern-Isberner 2017) to increase the overall performance
of the extraction approach.



and Kern-Isberner 2016) for details). By this, the algorithm
selects the most specific rule that fits to the perceived sensor
values and falls back to the next more unspecific rule as a
heuristic, in case no more specific rule with a fitting premise
could be found.

Due to the possibility of falling back to more general rules
in case no matching rule could be found for the given sen-
sor values, the reasoning mechanism on an HKB allows for
drawing meaningful conclusions over states that have not
been seen before by an agent. The idea that a more gen-
eral rule serves as a rough heuristic for unknown states (for
which no better knowledge is available) will later contribute
to accelerate the learning process.

3.3 Strategic Depth
Based on an HKB, in (Apeldoorn and Volz 2017), a strat-
egy measure was introduced which seems to adequately re-
flect the commonsense strategic depth of games. The mea-
sure was evaluated in the context of a survey. This measure
will be used later in our agent model, to let the agent judge
subjectively when to apply heuristics. According to (Apel-
doorn and Volz 2017), the measure is defined as follows:

Definition 4 (Strategic Depth Measure ds) Let KB =
{R1, ..., Rn+1} be an HKB and S = {S1, ...,Sn} be the set
of all sensor value sets of an agent, then the strategic depth
is defined as a function

ds(KB,S) :=

n+1∑
i=1

(
n

i− 1

)
bi−1

|Ri|∑
S⊆S

|S|=i−1

∏
S∈S
|S|

, (1)

where n + 1 = |KB| = |S| + 1 is the number of levels in
KB, b is a weighting constant, and Ri ∈ KB is the i-th level
of KB.

As rules on a level Rj>1 can be considered exceptions
to the rules on level Rj−1, the intuition behind ds is that
it measures the weighted relative number of rules (hence,
exceptions) represented by an HKB.

In (Apeldoorn and Volz 2017), also a modified version of
the measure is proposed, where ds is additionally divided by
the sum of weights to normalize it to values of range [0, 1].
For our purpose, this version of the measure is extremely
useful, since it allows our agent model to estimate the strate-
gic depth of a previously unknown environment relatively
to the maximum strategic depth that can be expected, given
the sets of possible sensor values S1, ...,Sn. Thus, in the fol-
lowing, the normalized version of the measure (according to
(Apeldoorn and Volz 2017)) will be used:

Definition 5 (Normalized Strategic Depth d̄s) Let KB,
S, n, b and ds be as in Definition 5. Then the normalized
strategic depth is defined as a function

d̄s(KB,S) :=
ds(KB,S)∑n+1

i=1

(
n

i− 1

)
bi−1

. (2)

In the following, d̄s will be used in our agent model to al-
low the agent to estimate subjectively when it could be useful
to exploit heuristics during a learning process in an a priori
unknown environment: If d̄s falls below a certain threshold
th then this indicates that heuristics could possibly be ap-
plied successfully.

The intuition behind this is that the (normalized) strate-
gic depth based on an HKB which was extracted from
a weighted state-action pair representation learned by an
agent, will successively decrease as the agent’s learning pro-
cess progresses: Since the agent’s knowledge about the prob-
lem increases, the problem appears successively less com-
plex to the agent and the subjectively measures normalized
strategy depth converges to the de facto strategic depth of
the task to be learned (i. e., the strategic depth according to
the HKB of the optimal policy to solve the task). We will
demonstrate this in the following on several examples.

Examples for Subjective Normalized Strategic Depth
We consider four different grid worlds of different structural
complexities where an agent has to learn to navigate from a
starting point A to a target point B (see Figure 2). We use
standard Q-Learning (Watkins 1989) as a learning approach
with a learning rate of α = 0.1, a random action probabil-
ity of ε = 0.1 and a discount factor γ = 0.9. We run every
scenario for 250 runs and we measure the normalized strate-
gic depth subjectively perceived by the agent (averaged over
30 repetitions) in dependency of the number of runs already
performed. Two phenomena can be observed in Figure 2:

• The subjective strategic depth converges to the de facto
strategic depth of the respective scenario as the agent be-
havior converges to the optimal policy.

• The subjective strategic depth decreases in general as the
learning process progresses, since the agent’s knowledge
about the scenario increases, and therefore the scenarios
appears to be simpler to the agent. (In case of the fourth
scenario, after the first runs, the agent seems to underesti-
mate the depth of the scenario, since the scenario locally
has straight path structures that form together a more com-
plex path from a global point of view.)

4 Agent Model
This section introduces our model of a learning agent which
is able to determine and exploit heuristics based on HKBs
during a learning process in a previously unknown environ-
ment. In our agent model, a sub-symbolic learning approach
can be used to learn weighted state-action pairs (where the
maximum weight determines the preferred action, given a
state). Figure 1 illustrates the main ideas of our agent model
which mainly consists of two parts:

• an initialization part which is executed every time before
a new learning episode starts, and

• a common agent cycle which is executed every time step.

In the former, the agent decides, whether it relies its deci-
sions on the weighted state-action pairs (represented by the
Q̂ matrix) or on the heuristics (represented by the current
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Figure 1: Learning Agent Model with the Ability of Finding and Exploiting Heuristics

extracted HKB) in the upcoming learning episode. This de-
cision is made depending on the d̄s value calculated from
the current extracted HKB.

In the latter, the agent either chooses a random action (for
exploration purpose) or decides to choose its action accord-
ing to the Q̂ matrix or the extracted HKB, respectively, de-
pending on the decision made during the initialization. Note
that in Figure 1, components belonging to the sub-symbolic
learning approach are indicated by a gray coloring, whereas
those parts belonging to our heuristics extension are colored
white. The gray parts could be replaced by a different learn-
ing approach.

5 Evaluation
This Section first evaluates the approach in the four grid
world scenarios from Figure 2 in Section 3.3. Later, the ap-
proach will be evaluated additionally in a more realistic ex-
ample: a game from the GVGAI framework (Perez-Liebana
et al. 2016).

5.1 Evaluation in the Context of Grid World
Scenarios

We run the four grid world Scenarios from Figure 2 in Sec-
tion 3.3 for 50 runs each and measure the percentage of how
many times the optimal policy was found by the agent over
200 repetitions of the experiment. As learning approach we

use again Q-Learning with the same parameters used for
measuring the subjective strategic depth at the end of Sec-
tion 3.3. As threshold parameter to determine the exploita-
tion of found heuristics by means of the subjective strategic
depth d̄s, we choose a threshold of th = 0.2. According to
Figure 2, this means that—in average—the agent would try
to exploit the found heuristics after

• ≈ 25 runs in case of the first scenario,

• ≈ 75 runs in case of the second scenario and

• ≈ 100 runs in case of the third scenario.

For the second and the third scenario, this may sound con-
fusing since we perform a total number of 50 runs only.
However, the reader should be aware that Figure 2 shows
the average development of d̄s measure and thus there are
enough cases where the agent individually decides to exploit
a found heuristic that leads to an optimal policy.

As for the fourth scenario, the agent never considers to
exploit any heuristics, since the subjective strategic depth
does not decrease below th = 0.2. This can be interpreted in
a way that the scenario comprises too many exceptions, such
that an exploitation of heuristics does not make sense from
the agent’s point of view (this point of view is in fact what
the parameter th controls, depending on whether the desired
agent should be more “heuristics-affine” or more “conser-
vative”). Table 1 contains the comparison of our agent model
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Figure 2: Examples of Subjective Normalized Strategic
Depth for the Considered Grid Worlds Scenarios of Increas-
ing Structural Complexity with the Optimal Policies Indi-
cated by Arrows—Scenarios 1 (a) and 2 (b) are taken from
(Apeldoorn and Kern-Isberner 2016), Scenario 3 (c) is from
(Apeldoorn and Kern-Isberner 2017) and Scenario 4 (d)
from (Apeldoorn and Volz 2017).

(a)

(b)

(c)

(d)

With
Standard Heuristics Heuristics

Q-Learning (th = 0.2) Only
Scenario 1] 3.5% 66.5% 43.0%

Scenario 2] 4.5% 20.0% 10.0%

Scenario 3] 0.0% 10.5% 0.03%

Scenario 4] 0.0% 0.0% 0.0%

Table 1: Standard Q-Learning vs Heuristics Approach in the
Context of the Grid Worlds Scenarios—The table shows the
percentage of 100 repetitions in which the optimal policy
was found by the agent during the first 50 runs.

against a standard Q-Learning agent with the same parame-
ters for the learning part. In addition, for reasons of compari-
son, Table 1 also provides results of a heuristics-only version
of the agent model5, where the agent was enforced to rely its
decisions always on the extracted heuristics (i. e., in the ini-
tialization phase in Figure 1 the action selection mode is al-
ways set to HKB action selection and the weights contained
in the Q̂ matrix are never considered directly for action se-
lection in the agent cycle).

As can be seen in Table 1, standard Q-Learning rarely
manages to solve the grid worlds during the first 50 runs,
whereas our heuristics approach clearly outperforms these
results. As for the heuristics-only version, the results are
slightly worse: This seems to be the case, since the agent
starts too early to rely its decisions on the heuristics (which
are nearly random in the beginning of the learning process).
This may prevent the agent from further exploring the en-
vironment to an adequate extent and may result in local
optimal policies.

One could argue that standard Q-Learning is a rather old
approach and there are nowadays more elaborate learning
approaches available. However, if a better learning approach
will be chosen in our setup (better in the sense that it will
converge faster to the optimal policy), the extracted HKBs
and hence the measure d̄s will be more accurate as well and
therefore, better heuristics could be exploited earlier during
the learning process. This means that in our approach, both
the heuristics and the measure d̄s (to decide when to exploit
them) will improve with the quality of the learning approach
used for the agent.

5.2 Evaluation in the Context of a GVGAI Game
We evaluate the agent model now in a more realistic ex-
ample by consider the game Camel Race from the GVGAI
framework (Perez-Liebana et al. 2016). In this game, the
agent has to control a camel which must be moved to the
opposite site of the screen—faster than any other camel in
the game (additionally avoiding obstacles in the higher lev-
els). Figure 3 shows the first and the third level of the game
(with obstacles).6

5Thanks to an anonymous reviewer for proposing this idea.
6The game was slightly modified for our purpose by reducing

the number of camels, in order to reduce the dimensionality of the
state-action space without changing the basic game mechanics.



Figure 3: First Level (a) and Third Level (b) of the GVGAI Game Camel Race

With
Standard Heuristics Heuristics

Q-Learning (th = 0.2) Only
1st Level] 0.0% 63.3% 66.0%

3rd Level] 0.0% 53.3% 60.0%

Table 2: Standard Q-Learning vs Heuristics Approach in the
Context of the GVGAI Game Camel Race—The table shows
the percentage of 30 repetitions in which the agent won the
game in the first 100 runs.

The agent’s state space is described by the sensor value
sets SC1

x × SC2
x × SC2

y × SC3
x containing the coordinates

of the camels in the game (where C1, ..., C3 correspond to
the three camels, C2 is the camel in the middle controlled
by the agent and C1, C3 only move in x direction) and
A = {up,down, left, right,none} are the five actions that
can be performed by the agent. As reward, the agent per-
ceives the current distance to the fastest opponent camel in
x direction.

Even if the game is rather simple, it has an interesting as-
pect: Due to the dynamics of the environment caused by the
movement of the two opponent camels, our agent perceives
new and previously unseen states in nearly every game tick
of the early learning phase. Thus, the agent has to explore
large parts of the state-action space to improve its behavior,
although the game could be easily won by applying a rough
heuristic like always move right (> ⇒ right [1.0]) for the
first level. This renders the game an eligible test environment
for our agent model.

We perform 100 runs for each level and measure the per-
centage of wins by the agent over 30 repetitions. Again, stan-
dard Q-Learning with and without the heuristics approach,
as well as the heuristics-only approach are used, given
the same standard parameters as provided in Section 5.2.
Table 2 shows the results for the first and the third level of
the game: With standard Q-Learning, the agent is not able
to win the game within 100 runs, whereas using the heuris-
tics approach, the agent wins both levels in over 50% of the
cases. Surprisingly, the heuristics-only approach performs
even better here. This seems to be the case since—although
the game has some dynamics and can thus be considered
more complex than the grid world scenarios—the consid-
ered levels allow for rougher heuristics than the grid worlds:
In contrast to the grid worlds, the goal to be reached is not
located in a single corner, instead, the game can be won by
simply reaching the rightmost side of the screen (which can
already be achieved by a very rough heuristic).

6 Conclusion and Future Work
In this paper, we described a model of a learning agent which
is able to find and to exploit heuristics without a priori
knowledge in unknown environments. We showed on sev-
eral examples (four grid world scenarios and one game from
the GVGAI framework) that our approach drastically accel-
erates the learning process to find optimal policies.

However, the approach is not perfect yet and leaves
room for future work: (1) The runtime to extract an HKB
should be further improved (a faster algorithm has been
proposed in (Apeldoorn and Kern-Isberner 2017) already;
cf. footnote 4) and (2) a quality criterion could be incorpo-
rated into the measure that helps to decide whether heuris-
tics should be exploited, depending on previous experiences
with applying these heuristics. The latter could possibly be
useful to help preventing an agent from repeatedly trying out
bad heuristics.

Furthermore, it could be interesting to extend the model
with revision techniques for the found heuristics and to in-
corporate mechanisms to store and reuse heuristics.
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