1/Vol-2060/rebpmd .pdf

CEUR-WS.or

Ina Schaefer, Loek Cleophas, Michael Felderer (Eds.): Workshops at Modellierung 2018,
Requirements Engineering und Business Process Management (REBPM) 235

(Semi-) Automatic Merging of Product Variant
Requirements Specification Documents

Martin Beckmann! Anna von Pestalozza?

Abstract: Due to the increasing complexity of systems, the difficulty to create high-quality require-
ments specification documents has increased as well. A possibility to deal with this challenge is
the reuse of requirements. An industry partner has multiple separate specification documents for its
different product variants. To make use of the existing information one of the documents is copied and
used as a basis for the new product variant. As a result of the reproduction of only a single specification
document, the exclusive content of other documents is not included. In this paper, we propose an
approach to automatically create a single specification document out of the documents of the product
variants, in order to exploit the full potential of the existing data. This is achieved by a comparison
of the document entries and a categorization based on the comparison. The resulting document
is supposed to be used as an overview over system features as well as the basis to automatically
extract content for new product variants. Also we define criteria to identify inconsistencies between
the documents. The approach is evaluated by merging two specification documents and manually
analyzing the result. Out of 2,552 regarded entries, there are 75 entries that were handled incorrectly.

Keywords: Specification Document Merge, Requirements Reuse, Textual Requirements Elicitation

1 Introduction

The reuse of requirements has been a research topic for quite some time [LMV97]. Although it
has been recognized repeatedly as an efficient method to improve the development of systems
and software [GB 15, EBB09], there are still many challenges in making existing requirements
reusable [Ch12]. To address these challenges a vast number of different approaches have
been proposed [LIB98], especially in relation to software product lines [Al10]. Nevertheless,
in industry this knowledge is still insufficiently implemented [Kal5]. As a consequence, the
most widespread techniques in industry are still based on copying (i.e. cloning) existing
data and manually modifying it [PFQ14, RCC13].

This non-systematic approach leads to multiple separate (but very similar) requirements
specification documents for each product variant [Kn02]. A major disadvantage becomes
apparent when a new product variant is developed: One has to choose between a number of
existing similar requirements specifications. As a result, available information contained in
other documents is not included. We aim to facilitate the specification process by proposing

! Technische Universitit Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, martin.beckmann @tu-berlin.de
2 Helmut-Schmidt-Universitit Hamburg, Holstenhofweg 85, 22043 Hamburg, anna.grvpestalozza@hsu-hh.de

https://creativecommons.org/licenses/by-nc/3.0/
anna.grvpestalozza@hsu-hh.de

236 Martin Beckmann, Anna von Pestalozza

an approach that supports the creation of a specification document containing all information
of other product variants. In the automotive industry a fictional car containing the features
of all product variants is denoted as a 150% car [Gr14]. Hence, the purpose of our approach
is to create a 150% requirements specifications document.

What the approach basically does, is to compare the entries of the requirements specification
documents. In case a unique entry is found it needs to be added to the 150% requirements
specification. If the entry already exists, it needs to be checked whether it has been modified.
Since the documents are primarily manually created, inconsistencies between the documents
may occur. We present several criteria to find possible inconsistencies. We use the approach
to merge two requirements specification documents of product variants of one system. The
merging process left 75 entries of 2,552 entries assigned incorrectly.

2 Background

In this section we present the kind of requirements specification documents our approach
uses. In order to ensure atomic requirements and to provide traceability, requirements
management tools often present requirements in the form of tables [FEOO]. A small excerpt
of a specification document is shown in Fig. 1a.

ID Text Level Type @
1000 [1. Section 1 |Heading

1236 | 1.1 Subsection 2 | Heading
1237 Descriptive Text 3 | Information @
1111 Requirement Text| 3 |Requirement
1112 Req Refinement | 4 |Requirement @ o
1113 Req Refinement | 4 | Requirement
Q) Qo
(a) Excerpt of a requirements document (b) Tree structure of the excerpt

Fig. 1: Example of a requirements specification and its corresponding tree structure

The document consists of multiple rows. Each row represents an entry in the document.
Each entry has a number of attributes (columns). In Fig. 1a the attributes ID, Text, Level
and Type are displayed. Besides these attributes the document may contain more attributes.
These are necessary for further development tasks. However, they are not necessary for the
approach and hence not displayed in the example.

The ID makes each entry of the document unambiguously identifiable. This is needed to
enable further capabilities of requirements management tools such as traceability [So12, p.
113]. In this work we consider the /D as a unique string, which is manually assigned to
each entry. Most requirements management tools automatically assign IDs to objects. The

(Semi-) Automatic Merging of Product Variant Requirements Specification Documents
237

manually assigned IDs stay the same in case a document is copied. As a result, it can be
used to find out whether an entry already exists in another specification document. The text
attribute contains the actual requirement text. The Level is necessary to create a document
structure. On the first Level in Fig. 1a is a section. This section may consist of multiple
subsections which are placed one level below the according section. A section or subsection
can contain further entries which are also placed one level below. This may also be used to
refine a single requirement as it is shown with the entry with the ID 1111 which is detailed
by the refinements with the IDs 1112 and 1113. The resulting structure corresponds to an
ordered labeled tree [TC12]. The corresponding tree to the document in Fig. 1a is shown
in Fig. 1b. The Type attribute describes what kind of entry it is. In the excerpt the entries
denoting a section and subsection are of the type heading. The entries 1111, 1112 and 1113
are of the type requirement. The entry with ID 1237 shows that specification documents not
only contain the actual requirements but also information parts [Th11] which also have to
be considered. Therefore, we use the term entry instead of requirement.

3 Related Work

Since the structure of a requirements specification document can be considered as a model,
the merging of documents is closely related to the merging of models [Br06]. Because of
the underlying model of requirements management tools, it is possible to make additional
assumptions. These assumptions concern properties of the tree-like structure as it has been
shown in section 2. This structure also distinguishes the situation from merge algorithms
that work on unstructured (e.g., line-based) inputs such as source code [ALL12].

The merging of different development artifacts has been recognized as a necessity and hence
received a lot of attention by the computer science research community [Me02]. In that
sense merging is often perceived as an activity in the context of version control. As a result,
it is assumed that there are two versions which originate from one common source. There is
published work on this kind of merging for structured requirements specifications [We91].
In contrast to the mentioned work, our situation differs in the sense that we do not have
an originating document. The approach uses documents as an input which might have
been changed simultaneously and no common source can be identified. To the best of our
knowledge, we are not aware of a work that addresses this specific situation.

4 Automatic Requirements Specification Document Merging

Before merging multiple requirements specification documents into a single document, it is
necessary to assure the compatibility of the attributes of each document. This compatibility
applies to a number of aspects as attributes may have different data types (e.g., integers,
strings, enumerations). First of all, it is necessary to ensure that the merged document
contains the attributes of all documents which are included. Attributes which are unique

238 Martin Beckmann, Anna von Pestalozza

in a document can be added. This step is not necessary, if the requirements management
tool supports entries within a document with differing attributes (e.g., ProR, DOORS Next
Generation). Besides the unique attributes, there may also exist inconsistent attributes. We
consider attributes to be inconsistent, if they have the same name but are not equal. This
concerns deviating data types as well as different characteristics in case they have the same
data type. The latter includes different limits (integers), length boundaries (strings) and
values (enumerations). Some of the cases can be handled automatically (e.g., adjusting limits
of integer attributes). Other cases (e.g., deviating attribute data types) cannot be handled
automatically without loss of information or the risk of introducing new inconsistencies.

4.1 Merging of Requirements Specification Documents

The actual merging of the requirements specification documents starts by choosing one
document. The chosen document is copied. The copied document is the designated 150%
requirements specification (henceforth denoted as RSi59q,). The current document whose
content is added to the RS;50q is denoted as RS,44. The entries of RS;s0q, are compared
with the entries of the remaining documents based on the ID attribute. This comparison
yields two possible outcomes: The considered entry already exists in the document or it
cannot be found. In the former case, it is necessary to find out whether the entry is different
from the existing entry. If it cannot be found, it needs to be added. The comparison is
implemented as pairwise comparison. Since the requirements specifications we consider
typically consist of a few thousands entries, the pairwise comparison is not a limiting factor.

Unique Entries. If an entry is found in RS444 that does not exist in RS}50q,, it needs to
be added to RS;50q. Since the meaning and understandability of a requirement is highly
related to its context, it must be placed in an appropriate position in the document. We
suggest to insert new entries after their predecessors. The predecessor of an entry is the
entry on the same level before the entry itself. An advantage of this approach: if there are
multiple unique entries in a row, their order is maintained. This is the case, because the
predecessor of each entry is added to RS}50q, before and can hence be used for placement.

Fig. 2a and Fig. 2b each show an excerpt of a specification with unique entries. Adding
the additional entries of Fig. 2b to the excerpt in Fig. 2a results in the situation in Fig. 2c.
The entry with ID 7 was placed after the entry with ID 4 and entry 9 was placed behind its
predecessor entry 2. Entry 8§ remains behind its original predecessor entry 7. In case the
excerpt in Fig. 2b is designated as the RS|sqq, the resulting order differs. In terms of model
merging this means that the operation is not associative. We argue that this does not impact
the use of the RS|50q, as the affected entries are most likely independent of each other.

In case there is no predecessor (the first entry below a parent entry), it is not possible to use
a predecessor to place an entry. As the first entry often provides explanatory information,
we suggest to place it either again as the first entry below the common parent entry or as the
second entry. For the latter case it is assumed that RS;509, already contains an explanatory

(Semi-) Automatic Merging of Product Variant Requirements Specification Documents

239

ID Text Level ID Text Level ID Text Level
1 1. Section 1 1 1. Section 1 1 1. Section 1
2 Used Signals 2 2 Used Signals 2 2 Used Signals 2
3 Signal 1 3 B Signal 1 3 3 Signal 1 3
4 Signal 2 3 4 Signal 2 3 4 Signal 2 3
5 Req 1.1 2 7 Signal 3 3 7 Signal 3 3
6 Req 1.2 2 8 Signal 4 3 8 Signal 4 3
9 Req 1.3 2 9 Req 1.3 2
5 Req 1.1 2
6 Req 1.2 2
(a) Excerpt of a document (b) Excerpt of a document (c) Possible result

Fig. 2: Merging of unique elements into a common document

entry as the first entry. In any case, necessary adjustments of the order require less effort
and provide less potential of error than inserting entries manually. The reason for this is
that the copying of all (potentially hundreds) attributes of an entry is more error-prone than
moving an entry.

Categorization of Existing Entries. Aside from unique entries, one has to consider entries
that exist in multiple documents. As requirements specifications evolve, their entries are
subject to changes. As a consequence, it is necessary to include entries that may already
exist but have changed over time. We need to distinguish three different categories:

e Duplicates. Entries that are identical.
e Variants. The entries differ, but still describe the same issue.

e Unrelated entries. Entries that have no relation to one another.

We separate the entries into the different categories by using a string comparison. The
problem of using string comparison on natural language text is that it will definitely result
in wrong categorizations, due to the ambiguity of natural language [BKKO03]. For instance,
the correction of spelling mistakes or adjustments of parameters are minor string changes.
Nevertheless they may significantly change a requirement. Hence, the changed entries
should definitely be included in the RSs50q. Extensive string changes on the other hand may
not change the actual content at all.

There is a plethora of work about identifying requirement duplicates by the means of natural
language processing (i.a., [FCC13, Da01]). In contrast to the aforementioned work our
situation differs, since the entries with the same ID are originally copies of another and thus
should be very similar. Because of the high similarity the choice of the similarity measure
does not heavily impact the result. Hence, we decided to use the edit distance algorithm
Jaccard as it provided good results in aforementioned works and is easy to implement. To

240 Martin Beckmann, Anna von Pestalozza

separate the three categories we need two textual thresholds. The value 8p is supposed to
separate the duplicates and variants. The value 6y is supposed to separate the variants and
the entries that are unrelated. The resulting conditions are shown in equation 1.

100% > 8p > By > 0% (1)

If the similarity of two entries is above 6p the entry is identified as a duplicate. If the
similarity is below 8y the entry is considered unrelated. If the similarity is below 6p and
above 0, it is considered a variant. It may be possible to assign the thresholds p and
0y the same value, since we use a second criteria for the distinction of entries. As stated
before, the position of an entry in the document structure plays an important role for its
understandability. In consequence, we assume that the similarity of the position of an entry
relates to its meaning and hence indicates whether two entries with the same ID are still
related. The position of an entry is the path consisting of the parent nodes from the entry
itself to the section it belongs to. For instance, for the entry /713 in Fig. 1b the position is
defined by the path 77113, 1111, 1236, 1000. The positional similarity is determined using
these paths as input. As a similarity measure the Jaccard algorithm is applied again. In
addition to the textual thresholds, we use the positional thresholds np and ny. The aim of
the positional similarity is to refine the results of the textual comparison. The corresponding
relation of the positional thresholds for the categorization is shown in equation 2.

100% > np > ny > 0% (2)

As with the textual similarity the thresholds 7p and iy, can be the same. For the categorization
to be unambiguous either the thresholds for textual or the positional similarity must be set
distinctively. The actual values for the thresholds are determined in the evaluation. How
an entry is further processed depends on its category. Duplicates are discarded. Entries
considered unrelated need to be examined manually. Those entries deemed as variants need
to be placed accordingly — same as the entries that are added. We suggest to append those
entries one level below the original entry and mark them as related but differing.

4.2 Inconsistencies

As the specification documents are mainly created and maintained in a manual manner, it
may happen that existing IDs do no longer belong to entries they belonged to before the
cloning of a document. In that case the approach may not find new entries or place them
wrongly. To mitigate this issue we define a number of criteria which indicate that an entry
may not have the correct ID. For the sake of brevity we restrict our presentation of the
categories to an explanation and examples. Inconsistent /Ds might affect the addition of
entries as well as the categorization of entries. Every entry that matches our criteria of an
inconsistency is not included in the document and must be treated manually.

(Semi-) Automatic Merging of Product Variant Requirements Specification Documents
241

Unique Entries. For the unique entries, it is not possible to deduce problems by comparison,
since there are no entries to compare them to. Instead we use the position of the entries.

ID Text Level ID Text Level
1 1. Functions 1 10 3. Contact Person 1

2 1.1. Function x 2 2 3.1. Function x 2

3 Req 1 3 11 Person A 3
4 Refinement 1.1 4 12 Person B 3

7 Refinement 1.2 4

8 Reqg 2 3

9 Refinement 2.1 4

(a) Excerpt of a document (b) Excerpt of another document

Fig. 3: Entry with ID 2 in different positions of the specification documents

An example of a problematic situation is displayed in Fig. 3. Both documents contain
an entry with the ID 2 and the same text. In Fig. 3a the function is supposed to contain
requirements of the function. In Fig. 3b it is supposed to contain the responsible persons
of the function. Assuming the entries below the functions are unique, the addition of the
entries to the other document would result in a wrong placement (e.g., requirements should
not be placed among contact persons). As the sections on the first level of the document
represent a very basic outline of the document, we concluded that an entry must stay within
the same section as before. Hence, we classify every entry which is supposed to be placed
below or after an entry in a different section to belong to the category Inconsistency 1.

As a consequence, further unique entries may lack a reference for their own placement. For
instance, Refinement 1.1 in Fig. 3a would be placed below its original parent entry. Since
Req I was not included, it cannot be placed accordingly. We define these entries to be in the
category Inconsistency II.

Existing Entries. In case the ID of an entry is found in another document, it is possible
to use the found entry for comparison. If the textual similarity is below the threshold 6y,
we consider the entries to be unrelated to one another. The rationale is that a major textual
change may indicate a change in regard to content as well. As a consequence, with the value
x for the result of the textual comparison, Inconsistency III is defined as follows:

Inconsistency III(x) := 6y > x 3)

Analogous for the value y representing the result of the positional comparison Inconsistency
IV is defined as follows:

Inconsistency IV(y) := 5y > y 4)

242 Martin Beckmann, Anna von Pestalozza

Both categories can also be combined, if both values fall below the respective thresholds.
Similar to the category Inconsistency I, it may also be reasonable to assume that two entries
with same /D in different sections are not related to one another. Hence, every entry which
fulfills the conditions for Inconsistency III and Inconsistency IV or is in a different section
as his comparison entry, belongs to its own category Inconsistency III & IV. Following
the notion of Inconsistency II we define Inconsistency V. This is the category containing
the entries that would be placed using entries which fall into the inconsistency categories of
the existing entries.

4.3 Limitations of the Approach

Due to their many advantages graphical models are nowadays used more and more to
specify systems [STP12]. Nevertheless, the examination of graphical representations of
information was out of scope of our approach. Still the presented approach may for instance
be combined with recent research on finding duplicates in UML images [He16]. In addition,
although natural language is perceived inferior to more formal graphical notations, there
are still a number of reasons why text is needed [BVR17]. Also, the combined use of
textual descriptions and graphical representations is considered beneficial to increase
understanding [BJMOS8]. Therefore, we think the proposed approach is a meaningful
contribution to improve current as well future specification processes.

5 Evaluation

To evaluate the quality of the resulting document and to get an idea of how to choose the
thresholds, we conducted a case study. We designed our case study along the recommenda-
tions of Runeson and Host [RH09]. Our research objective is:

Research Objective: We want to determine suitable thresholds and want to assess the
quality of the resulting requirements specification document.

Research Object: To evaluate our approach an industry partner provided us with two
specification documents of one system. One document consists of 1,711 entries and the
other document consists of 2,552 entries. The former document was created after the latter.

Research Execution: In order to rate the quality of the merged document, we first need to
know what thresholds might be suitable. To get a first impression we decided that duplicates
must be exactly the same (p = np = 1) and that unrelated entries are totally different
(6y = nv = 0). This way, we can assume all entries found as duplicates are definitely
duplicates and all entries found as different are in fact unrelated. We use this first result
to set the thresholds. The requirements specification with 2,552 entries is added to the
requirements specification with 1,711 entries. The rationale is that we expect the smaller
document to be in a better condition due to the fact that it was created later.

(Semi-) Automatic Merging of Product Variant Requirements Specification Documents
243

5.1 Results and Discussion

The first results are shown in Table 1. Considering the sum of all the categories, one can
see that all of the 2,552 entries were categorized. Most notably, there is no element in the
category Inconsistency IV. This is due to the fact that a positional similarity of 0% also
means that the sections of entries differ. As a consequence these entries were categorized in
Inconsistency III & IV instead of Inconsistency IV.

Tab. 1: First results Tab. 2: Final result

Category Amount Category (Existing entries) ~Amount
Unique Element 1,178 Duplicate 712
Duplicate 392 Variant 335
Variant 635 Inconsistency II1 45
Inconsistency 1 16 Inconsistency IV 10
Inconsistency II 190 Inconsistency III & IV 52
Inconsistency II1 45 ‘Wrong Inconsistency 7
Inconsistency IV 0 Inconsistency not detected 2
Inconsistency III & IV 82 Category (Unique entries) ~ Amount
Inconsistency V 14 Wrongly placed 14

Wrongly included 51

Wrong Inconsistency 1

We used these first results to perform a manual analysis. We wanted to know whether the
entries were categorized and placed correctly. The insights were used to set thresholds in a
way to minimize wrong categorizations. In addition, we took into account the opinions of
stakeholders. They mentioned: every entry that has changed needs to be included, since the
system contains safety related requirements which need to be checked manually anyway.
This reflects in the threshold for the textual similarity of duplicates being 100%. The
resulting thresholds are displayed in equation 5.

0p = 100%, Oy = 12%, np = 20%, ny = 20% 5)

The fact that the positional thresholds are the same contradicts our assumption that the
position can be used to separate the categories. Eventually, we merely used them to optimize
the result. Whether they are indeed useful, could be a topic for further case studies. Table 2
shows the results using the determined thresholds. Since the thresholds do not have an effect
on the added entries, these results have not changed and are not displayed.

244 Martin Beckmann, Anna von Pestalozza

In contrast to the first results more entries were classified as duplicates instead of variants,
since even minor changes in the position lead to the original categorization as variants.
In total, 8 entries were classified as inconsistent although they were not. For these entries
our assumption that the section must stay the same did not hold. Additionally, there are 2
entries which are inconsistent but could not be categorized as such using our thresholds. 51
entries were added although they already existed in RSjs0q,. For these entries the ID had
changed although the text stayed the same. Furthermore, 14 entries were placed in a wrong
position. This happened, since the capability of structuring the document was not always
used correctly. For instance, entries that should have been child entries were put wrongly on
the same level as their parent entry. Hence, wrong entries were used for the placement.

All in all 75 (wrong / not detected inconsistency, wrong placement, wrongly included) of
the 2,552 entries were treated in a wrong manner. Inconsistencies between the documents
and unforeseen situations are the main reasons for the deficiencies. As a result, the approach
should not be used on its own, but as a supportive means to improve the efficiency of the
requirements elicitation process.

5.2 Threats to Validity

The thresholds are based on a manual analysis of a requirements specification document
containing more than 2000 entries. This task was performed by one person and due to its
manual nature is error-prone. Since we used this analysis to set the thresholds in a way
to minimize wrong categorizations, the suggested thresholds can only be used as a first
idea. The thresholds need to be refined by repeating the evaluation with different and more
diverse data. Furthermore, because of the ambiguous nature of natural language, there will
be no gold-standard — even with more refined thresholds.

6 Conclusion and Outlook

In this paper we proposed an approach to automatically merge requirements specification
documents of multiple product variants into a single document. The purpose of the merged
document is to facilitate requirements reuse and hence reduce errors during requirements
elicitation. We explain what preconditions must be fulfilled to adopt the approach. The
approach itself compares the entries of documents and decides how to incorporate additional
information. To avoid deficiencies in the resulting document, we introduced a number of
inconsistencies. The evaluation shows that the approach is applicable to real requirements
specification documents. Out of 2,552 regarded entries 75 entries are treated incorrectly.

Since the parameters we determined are based on two documents of one system, they are
not applicable in general. Hence the evaluation needs to be repeated to gain more general
thresholds. Aside from the merge process itself, it showed that the manual assignment of the

(Semi-) Automatic Merging of Product Variant Requirements Specification Documents

245

identifiers is a major source for inconsistencies between the documents. The application of
an automatic approach to assign the identifiers may reduce inconsistencies and save effort
in the creation of the documents.

References

[A110]

[ALL12]

[BIMOS]

[BKKO3]

[Bro6]

[BVR17]

[Ch12]

[Da01]

[EBB09]

[FCC13]

[FE00]

[GB15]

Alves, Vander; Niu, Nan; Alves, Carina; Valenga, George: Requirements engineering
for software product lines: A systematic literature review. Information and Software
Technology, 52(8), 2010.

Apel, Sven; LeBenich, Olaf; Lengauer, Christian: Structured Merge with Auto-tuning:
Balancing Precision and Performance. In: 27th IEEE/ACM International Conference on
Automated Software Engineering. 2012.

Burton-Jones, Andrew; Meso, Peter N: The Effects of Decomposition Quality and Multiple
Forms of Information on Novices’ Understanding of a Domain from a Conceptual Model.
Journal of the Association for Information Systems, 9(12), 2008.

Berry, DM; Kamsties, E; Krieger, MM: From Contract Drafting to Software Specification:
Linguistic Sources of Ambiguity-A Handbook . U. Waterloo, 2003.

Brunet, Greg; Chechik, Marsha; Easterbrook, Steve; Nejati, Shiva; Niu, Nan; Sabetzadeh,
Mehrdad: A Manifesto for Model Merging. In: International Workshop on Global Integrated
Model Management. 2006.

Beckmann, Martin; Vogelsang, Andreas; Reuter, Christian: A Case Study on a Specifi-
cation Approach using Activity Diagrams in Requirements Documents. In: 25th I[EEE
International Requirements Engineering Conference. 2017.

Chernak, Yuri: Requirements Reuse: The State of the Practice. In: IEEE International
Conference on Technology and Engineering (SWSTE). 2012.

och Dag, J Natt; Regnell, Bjorn; Carlshamre, Pér; Andersson, Michael; Karlsson, Joachim:
Evaluating Automated Support for Requirements Similarity Analysis in Market-Driven
Development. In: 7th International Workshop on Requirements Engineering: Foundation
for Software Quality (REFSQ’01). 2001.

Eriksson, Magnus; Borstler, Jiirgen; Borg, Kjell: Managing requirements specifications for
product lines—An approach and industry case study. Systems and Software, 82(3), 2009.

Falessi, Davide; Cantone, Giovanni; Canfora, Gerardo: Empirical Principles and an
Industrial Case Study in Retrieving Equivalent Requirements via Natural Language
Processing Techniques. IEEE Transactions on Software Engineering, 39(1), 2013.

Finkelstein, Anthony; Emmerich, Wolfgang: The Future of Requirements Management
Tools. In: Information Systems in Public Administration and Law. Osterreichische
Computer Gesellschaft, 2000.

Goldin, Leah; Berry, Daniel M: Reuse of requirements reduced time to market at one
industrial shop: a case study. Requirements Engineering, 20(1), 2015.

246 Martin Beckmann, Anna von Pestalozza

[Gr14]

[Hel6]

[Kal5]

[Kn02]

[LIB9S]

[LMV97]

[Me02]

[PFQ14]

[RCC13]

[RHO09]

[Sol2]
[STP12]

[TC12]

[Thil]

[We9l]

Gronninger, Hans; Hartmann, Jochen; Krahn, Holger; Kriebel, Stefan; Rothhart, Lutz;
Rumpe, Bernhard: Modelling Automotive Function Nets with Views for Features, Variants,
and Modes. In: International Conference on Technology and Engineering (SWSTE). 2014.

Hebig, Regina; Quang, Truong Ho; Chaudron, Michel RV; Robles, Gregorio; Fernandez,
Miguel Angel: The Quest for Open Source Projects that use UML: Mining GitHub. In:
19th ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems. 2016.

Kassab, Mohamad: The Changing Landscape of Requirements Engineering Practices
over the Past Decade. In: 5th IEEE International Workshop on Empirical Requirements
Engineering. 2015.

von Knethen, Antje; Paech, Barbara; Kiedaisch, Friedemann; Houdek, Frank: Systematic
Requirements Recycling through Abstraction and Traceability. In: Joint International
Conference on Requirements Engineering. 2002.

Lam, Wing; Jones, Sara; Britton, Carol: Technology Transfer for Reuse A Management
Model and Process Improvement Framework. In: 3rd IEEE International Conference on
Requirements Engineering. 1998.

Lam, Wing; McDermid, John A; Vickers, AJ: Ten Steps Towards Systematic Requirements
Reuse. Requirements Engineering, 2(2), 1997.

Mens, Tom: A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering, 28(5), 2002.

Palomares, Cristina; Franch, Xavier; Quer, Carme: Requirements Reuse and Patterns: A
Survey. In: International Working Conference on Requirements Engineering: Foundation
for Software Quality. Springer, 2014.

Rubin, Julia; Czarnecki, Krzysztof; Chechik, Marsha: Managing Cloned Variants: A
Framework and Experience. In: Proceedings of the 17th International Software Product
Line Conference. ACM, 2013.

Runeson, Per; Host, Martin: Guidelines for conducting and reporting case study research
in software engineering. volume 14. Springer, 2009.

Sommerville, Ian: Software Engineering. Addison-Wesley, USA, 9th edition, 2012.

Sikora, Ernst; Tenbergen, Bastian; Pohl, Klaus: Industry needs and research directions in
requirements engineering for embedded systems. Requirements Engineering, 17(1), 2012.

Tekli, Joe; Chbeir, Richard: A novel XML document structure comparison framework
based-on sub-tree commonalities and label semantics. Web Semantics: Science, Services
and Agents on the World Wide Web, 11, 2012.

The Institute of Electrical and Electronics Engineers, Inc.: ISO 29148:2011, Systems and
Software Engineering — Life cycle processes —Requirements Engineering. 2011.

Westfechtel, Bernhard: Structure-Oriented Merging of Revisions of Software Documents.
In: International Workshop on Software Configuration Management. ACM, 1991.

