
Automatic Code Generation for Non-Functional

Aspects in the CORBA�LC Component Model?

Diego Sevilla1, José M. García1, Antonio Gómez2

1 Department of Computer Engineering
2 Department of Information and Communications Engineering

University of Murcia, Spain
{dsevilla, jmgarcia}@ditec.um.es, skarmeta@dif.um.es

Abstract. Component Technology allows a better modularity and reusabil-
ity of applications. Components are even better suited for the devel-
opment of distributed applications, as those applications can be parti-
tioned in terms of components installed and running (deployed) in the
di�erent hosts participating in the system. Components, apart from im-
plementing their own functionality, have other requirements in term of
non-functional aspects such as CPU power utilization, load balancing,
fault-tolerance, etc. The code for ensuring these aspects can be auto-
matically generated based on the requirements stated by components
and applications, thus leveraging the component implementer of having
to deal with these non-functional aspects. In this paper we present (1) ar-
chitecture of the automatic code generator, and (2) the characteristics of
the generated code for dealing with the aforementioned non-functional
aspects in the context of CORBA�LC.CORBA�LC is a lightweight dis-
tributed re�ective component model based on CORBA that imposes a
peer network model in which the whole network acts as a repository for
managing and assigning the whole set of resources: components, CPU
cycles, memory, etc.

1 Introduction

Component-based development[1], resembling integrated circuits (IC) connec-
tions, promises developing application connecting independently-developed self-
describing binary components. These components can be developed, built and
shipped independently by third parties, and allow application builders to connect
and use them.

As applications become bigger, they must be modularly designed. Components
come to mitigate this need, as they impose the development of modules that are
interconnected to build the complete application. Components, being binary,
independent and self-described, allow:

? Work under Grant TIC2003-08154-C06-03.

II

� Modular application development, which leads to maximum code reuse, as
components are not tied to the application they are integrated in.

� Soft application evolution and incremental enhancement, as enhanced ver-
sions of existing components can substitute previous versions seamlessly,
provided that the new components o�er the required functionality. New com-
ponents can also add new functionality to be used by new components, thus
allowing applications to evolve easily.

When component technology is applied in a distributed environment, program-
mers can develop components that interact transparently with other components
residing in remote machines. However this makes applications and components
management harder.

CORBA Lightweight Components (CORBA�LC)[2], is a distributed component
model based on CORBA[3]. While traditional component models force program-
mers to decide the hosts in which their components are going to be run (deploy-
ment) using a �static� description of the application (assembly), CORBA�LC per-
forms the deployment and component dependency management automatically.
Thus, it o�ers the traditional component models advantages (modular applica-
tions development connecting binary interchangeable units) allowing automatic
placement of components in network nodes, intelligent component migration and
load balancing, leading to maximum network resource utilization. CORBA�LC
introduces a more peer network-centered model in which all node resources, com-
puting power and components can be used at run-time to automatically satisfy
applications dependencies.

The paper is organized as follows: Section 2 o�ers an overview of CORBA�LC.
Section 3 outlines the design of the CORBA�LC Code Generator. Section 4 shows
how automatic code can be generated to seamlessly and transparently o�er fault-
tolerance to component implementations. Finally, Section 5 o�ers related work in
the �elds of component models and aspects, and Section 6 presents conclusions,
status and future work.

2 The CORBA�LC Component Model

CORBA Lightweight Components (CORBA�LC) [2] is a lightweight component
model based on CORBA, sharing many features with the CORBA Component
Model (CCM)[4]. The following are the main conceptual blocks of CORBA�LC:

� Components. Components are the most important abstraction in CORBA�LC.
They are both a binary package that can be installed and managed by the
system and a component type, which de�nes the characteristics of component
instances (interfaces o�ered and needed, events, etc.) These are connection
points with other components, called ports.

III

� Containers and Component Framework. Component instances are run
within a run-time environment called container. Containers become the
instances view of the world. Instances ask the container for the required
services and it in turn informs the instance of its environment (its context).

� Packaging model. The packaging allows to build self-contained binary
units which can be installed and used independently. Components are pack-
aged in �.ZIP� �les containing the component itself and its description as
IDL and XML �les.

� Deployment and network model. The deployment model describes the
rules a set of components must follow to be installed and run in a set of
network-interconnected machines in order to cooperate to perform a task.
CORBA�LC deployment model is supported by a set of main concepts:

Fig. 1. Logical Node Structure.

• Nodes. The CORBA�LC network model can be seen as a set of nodes
(hosts) that collaborate in computations. Nodes maintain the logical net-
work connection, encapsulate physical host information and constitute
the external view of the internal properties of the host they are running
on. (Fig. 1). Nodes o�er information about memory and CPU load, as
well as the set of components installed.

• The Re�ection Architecture. Is composed of the meta-data given by
the di�erent node services:
∗ The Component Registry provides information about (a) running
components, (b) the set of component instances running in the node
and the properties of each, and (c) how those instances are connected
via ports (assemblies),

∗ the Resource Manager in the node collaborates with the Con-

tainer implementing initial placement of instances, migration/load
balancing at run-time.

• Network Model and The Distributed Registry. The CORBA�LC
deployment model is a network-centered model: The complete network
is considered as a repository for resolving component requirements.

IV

• Applications and Assembly. In CORBA�LC, applications are just
special components. They are special because (1) they encapsulate the
explicit rules to connect together certain components and their instances
(assembly), and (2) they are created by users with the help of visual
building tools. Thus, they can be considered as bootstrap components.

3 Dealing with Aspects: The CORBA�LC Code

Generator

Components are not only a way of structuring programs, but a framework in
which the programmer can concentrate in the functionality only, rather than
other aspects such as reliability, fault tolerance, distribution, persistence, etc.
For those aspects (called non-functional aspects), CORBA�LC as a component
technology allows the programmer to specify those non-functional aspects in a
declarative manner. Thus, the programmer has to write the functionality of the
component and describe the needs in term of those non-functional aspects.

The framework is in charge of ensuring those requirements are met. This means
generating the correct code for each component's requirements.

Fig. 2. Visiting path and Text Template construction.

V

3.1 Structure of the Code Generator

The CORBA�LC Code Generator uses the information of both (1) the standard
CORBA Interface Repository (IR), and (2) the Component's XML �le. While
the XML describes the component ports and non-functional requirements, the
IR describes all the IDL interfaces used in those ports. As output, the code
generator produces the needed implementation �les and boilerplate that can be
used by the programmer to write the functionality proper of the component.

Figure 2 shows a part of the composition hierarchy of the IR entities that take
part on the Code Generation. The dashed line shows the visiting order in which
those entities are visited. Each visitor acts on one of the entities, extracting
the needed information to generate the code. This information is used to build
Text Templates as shown in the lower part of the �gure. These templates act in
turn as part of upper level templates to �nally build the complete generated �le.
Using templates makes the code generator extremely �exible, meaning that the
generated code can be changed without even recompiling the code generator.

corbalc::AIR::AIRObject

corbalc::AIR::ComponentDef corbalc::AIR::FactoryDef corbalc::AIR::IfaceDef

corbalc::AIR::ProvidedIfaceDef corbalc::AIR::UsedIfaceDef

Fig. 3. Augmented IR hierarchy.

codegen::cppimpl::UsedIfacesVisitor

codegen::generic::UsedIfaceVisitor

codegen::generic::ComponentVisitor

codegen::generic::ContentVisitor

codegen::AbstractIRVisitor delegate_*content_delegate_*

codegen::util::Context

ctx_

codegen::util::VarMapStack

vm_

corbalc::AIR::ComponentDef

theComponent_

corbalc::AIR::FactoryDef

component_

corbalc::AIR::AIRObject

factory_

codegen::util::TextTemplate

tt_

Fig. 4. Visitor inheritance and structure.

The visiting path includes all the characteristics of the component. As the stan-
dard CORBA IR does not include description of the ports and factory of a
component, a set of augmented IR classes has been added to the framework.
These classes inherit from the abstract base corbalc::AIR::AIRObject, and
hold information about the di�erent ports and the factory of the component
(Figure 3).

In order to make the code generator as modular and reusable as possible, the
Code Generation Framework is divided into several hierarchical layers:

VI

� Abstract IR Visitor � As shown in Figure 4, this is the base for all the
visitor classes in the framework. Each visitor has a set of delegates and
content delegates (seen below), and is in charge of building a text template.
All visitors share a context, that includes a reference to the component
being generated.

� Generic IR Visitors � Generic visitors store the functionality to visit each
of the IR entities in an generic way.

� File-speci�c IR Visitors � Speci�c visitors inherit from the generic ones,
and implement the speci�c functionality needed for the concrete �le being
generated.

In parallel to this inheritance relationships among the di�erent visitors, they
can also be composed or connected. When a visitor is approached to generate
its template, the code inherited from the abstract visitor traverses also all the
delegate visitors attached to this visitor. This makes the design of the code
generator completely modular and �exible. Figure 5 shows the set of visitors that
participate in the generation of one of the output �les (the C++ implementation
�le for the component). Arrows from a visitor indicate a delegate. The complete
delegate structure forms a tree. Note that each interface (either used or provided
interface) has a delegate that visits all the operations, and this one in turn a
delegate that visits all the parameters of each operation.

Fig. 5. Delegation Structure.

VII

Fig. 6. Executor call sequence.

Test::TestIR::Demo2_impl

Test::TestIR::Demo_impl

c_

Test::TestIR_local::Demo_userimpl

executor_

Test::TestIR_local::Demo2_userimpl

executor_

Test::TestIR_local::Demo2

Test::TestIR::Demo2

Test::TestIR::Heredada3

Fig. 7. Executor
Structure for the
Test::TestIR::Demo2

provided port.

3.2 The Executor code

Ports are de�ned in terms of CORBA interfaces. In order for the framework to
control the �ow of calls between the user-programmed code of the component
and framework-generated code, the framework generates all the CORBA objects
and servants that realize the communication. Figure 7 shows the structure of an
interface (Test::TestIR::Demo2) that acts as a provided port for a component
(de�ned as the CORBA interface Test::TestIR::Demo).

The programmer code for component ports is called executor. In the �gure,
the executor corresponds with the class TestIR_local::Demo2_userimpl. The
framework implementation (TestIR::Demo2_impl) has a member called executor_
that holds a reference to that programmer class.

Figure 6 shows the �ow of a given method call. The ORB redirects the call
to the CORBA implementation object (generated by the code generator) that
does some pre-processing, then calls the actual method code (written by the
component programmer), and then does some post-processing (�point-cuts� in
Aspect-Oriented Programming (AOP)[5] terminology) and returns the call. This
�ow is very important, as it ensures all incoming and outgoing calls of this
component are controlled by the framework, allowing it to control the non-
functional aspects.

4 Assuring Fault Tolerance

While there are a lot of non-functional aspects to consider, this paper focuses
on an example of fault-tolerance. As all the incoming and outgoing calls into
component code are controlled by the framework, it can arrange several instances
of the used components to provide the needed fault tolerance for a component
that requested it. Suppose that the same component shown above that o�ered
the Demo2 interface as a port, uses the Demo4 interface as an used port from
another component. This is the code generated for the op41 operation:

VIII

::CORBA::Long

Test::TestIR_proxy::Demo4_impl::op41 (::CORBA::Long x)

throw(::CORBA::SystemException)

{

::CORBA::Long retval_;

retval_ = proxy_->op41(x);

return retval_;

}

The proxy object encompasses the pre- and post-processing needed to ensure
fault-tolerance. In particular, the proxy code:

1. Create n threads to perform n �op41� calls to n real components distributed
through the network.3

2. Each thread issues one call to its component. Some of the calls may fail or
take too long. This information can be used to ignore failing objects.

3. When some or all responses are received, the proxy can implement several
approaches, such as voting, taking the �rst response or distributing the calls
to perform a basic load balancing as well.

Thus, automatic code generation through the CORBA�LC Code Generator jointly
with this interceptor (point-cut) mechanism save the programmer of the burden
of including these characteristics in its components, allowing him to concentrate
in the component functionality proper.

5 Related Work

To date, several component models have been developed. Although CORBA�LC
shares some features with them, it also has some key di�erences.

Java Beans[6], Microsoft's Component Object Model (COM)[7], .NET[8] o�er
similar component models, but lack in some cases that are either limited to the
local case or do not support heterogeneous environments of mixed operating
systems and programming languages as CORBA does.

In the server side, SUN's EJB[9] and the new Object Management Group's
CORBA Component Model (CCM)[10] o�er a server programming framework
in which server components can be installed, instantiated and run. Both are
fairly similar. In fact, CCM �basic� level makes both models totally compatible.
EJB is a Java-only system, while CCM continues the CORBA heterogeneous
philosophy. Both are designed to support enterprise applications, o�ering a con-
tainer architecture with support for transactions, persistence, security, etc. They

3 Note that the threads could have been created before, and that the set of n compo-
nents is selected automatically by the framework among all the nodes of the network.

IX

also o�er the notion of components as binary units which can be installed and
executed (following a �xed assembly) in Components Servers.

Although CORBA�LC shares many features with both models, it presents a
more dynamic model in which the deployment is not �xed and is performed at
run-time using the dynamic system data o�ered by the Re�ection Architecture.
Also, CORBA�LC is a lightweight model in which the main goal is the optimal
network resource utilization instead of being oriented to enterprise applications.

6 Conclusions, Status and Future Work

As we showed in this paper, component technology in general, and CORBA�LC
in particular, o�er a new and interesting way of approaching distributed appli-
cations. Services otherwise complicated can be o�ered by the framework just by
specifying them in the characteristics and needs of components and applications.

The paper also showed the �exible structure of the CORBA�LC Code Generator,
that allows changing the way the code is generated without recompiling, and that
is modular enough to add new capabilities by just adding and connecting new
specialized visitors. By now only C++ is supported, but by means of the �exible
design, other languages also supported by CORBA, such as Java, could be used.

Finally, we showed how convenient the Aspect-Oriented approach is to seamlessly
and transparently o�er services such as fault tolerance, replication and load
balancing to components.

References

1. C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM
Press, 1998.

2. D. Sevilla, J. M. García, and A. Gómez. CORBA Lightweight Components: A
Model for Distributed Component-Based Heterogeneous Computation. In EU-
ROPAR'2001, pages 845�854, Manchester, UK, August 2001. LNCS 2150.

3. M. Henning and S. Vinoski. Advanced CORBA Programming with C++. Addison-
Wesley Longman, 1999.

4. Object Management Group. CORBA: Common Object Request Broker Architec-
ture Speci�cation, revision 3.0.2, 2002. OMG Document formal/02-12-06.

5. F. Duclos, J. Estublier, and P. Morat. Describing and Using Non Functional
Aspects in Component Based Applications. In International Conference on Aspect-
Oriented Software Development, Enschede, The Netherlands, April 2002.

6. SUN Microsystems. Java Beans speci�cation, 1.0.1 edition, July 1997.
http://java.sun.com/beans.

7. Microsoft. Component Object Model (COM), 1995. http://www.microsoft.com/com.
8. Microsoft Corporation. Microsoft .NET. http://www.microsoft.com/net/.
9. SUN Microsystems. Enterprise Java Beans speci�cation, 1.1 edition, December

1999. http://java.sun.com/products/ejb/index.html.
10. Object Management Group. CORBA Component Model, 1999. OMG Document

ptc/99-10-04.

