
Transmitting Video Images in XML Web Service

Francisco Prieto, Antonio J. Sierra, María Carrión García

Departamento de Ingeniería de Sistemas y Automática
Área de Ingeniería Telemática
Escuela Superior de Ingenieros

Avenida de los Descubrimientos, s/n
41092 Sevilla, España

Abstract. Transmitting video images across Internet implicates, a quality of
image, by one side and, small time to refresh the reception without increase the
bandwidth by the other side. We can manipulate encoding images to adequate
to the specific request/response format for XML Web Services over HTTP. We
consider transmission sequences images consecutively for display at screen
one-by-one. The size of binary data transmitted across the network must be
controlled. Measures are shown for a client/server model to evaluate the per-
formance of three different encoding for an XML Web Service over HTTP.

1 Introduction

Last years a great evolution in the world of the telecommunications has been take
place, mainly in the field of the personal communications. Mobile phones, laptops or
PDAs have stopped being objects of luxury to take part in our daily life. Particularly
in case of the mobile phones turns out to be a clear example of this evolution: connec-
tion to Internet, downloading of images, sounds or videogames are essential charac-
teristics in any last generation device.

With the arrival of the third generation, videoconference through the mobile tele-
phone has become a reality. Therefore it turns out interesting to study the different
formats from existing image and video, as well as how to transmit them by the net-
work in a fast and efficient way. There are several ways to send video images using
web services. We are going to describe two of them. In the first case, the server sends
a set of images, one for each request from the client. By this way the client seems to
display a video, as it is showing the images consecutively. In the second case, the
server sends a video signal. It can be done by sending a small file with the desired
video, or by a real time protocol using streaming technology. The following image
shows a series of possible configurations for capturing video images to transmit them
by the network.

This article is organized as follows: First we present the most used images codifi-
cation formats. Next we describe some video codification format. Finally we present
the scenario where we realize tests for three codifications types, with the purpose of
verifying which of them turns out to be more efficient for the transmission of images
through the network.

Figure 1. Client-server model for transmitting and receiving video signals

2 Transmission of a sequence of images

In this section we will see the different formats of image codification that can be used
by the client and the server, evaluating the most indicated to make the transmission.

2.1 BMP format

An image in BMP format (Bitmap) is essentially a bit map, where the colour of each
pixel in the image is defined one by one. Each pixel comes represented by 3 bytes,
where each one of them indicates the proportion of colour in format RGB. This is the
less used format for the interchange of images, since it has not got any type of com-
pression. Therefore, it generates files with great size in comparison with the other
formats.

2.2 GIF format

There are two variants, GIF87 and GIF89a. The second variant allows generates ani-
mated images, transparent backgrounds and interlaced format. GIF format allows
transmit images efficiently through data networks. This type of files uses a kind of
compression based on the algorithm LZW, which optimises the image storage without
producing losses or distortion. Due to the characteristics of the algorithm, this com-
pression works in an optimal way with images that have great areas and homogenous
colours. It is less efficient in images with a great number of colours and different
textures. In addition, the maximum number of colours an image GIF admits is 256.

Figure 2: Comparison of images for a GIF compression. The picture on the left is better.

2.3 JPEG format

Unlike GIF images, JPEG admits a colour depth of 24 bits, having therefore a very
superior palette. This is an ideal characteristic for storing photography, where a good
quality is needed. In order to obtain the compression, it is used a mathematical tech-
nique called transformation of the discrete cosine. The compression of the image can
be chosen, although simultaneously we will be determining the quality of image,
because the process introduces loss of information.

Figure 3: Quality loss in a compressed JPG image

2.4 PNG format

PNG format appears is a non-proprietary alternative to the GIF format, which is pat-
ented, like JPEG. In order to obtain compression it makes use of the LZ77 algorithm,
also used in the creation of ZIP files. It is a lossless compression and it admits a col-
our palette up to 24 bits. In addition it supports up to 256 levels of transparency. On
the other hand, the complete functionality of PNG format is not supported by all
software.

Figure 4: Transparency effect in a PNG image

2.5 Evaluation of the image formats

Once we have analysed four of the most used formats for images, we evaluate them
according to its quality-size relation. In order to transmit images with great quality
and reduced data size, the most recommended format is JPEG. Between GIF and
PNG formats we will show preference for the second, since it does not cause loss of
information, admits a greater colour palette and has a better compression. Finally, we
must indicate that format BMP is not recommendable for the transmission of images
through Internet, since the size of the files is excessively great.

3 Transmission of a video sequence

There are two methods for the distribution of contents with audio and video on the
Web. The first method uses a standard Web server to transmit data to a video re-
ceiver. The second one uses a streaming server.

3.1 Video transmission through a standard web server

This option requires that the video have a finite length. Once we have the codified
file, we store it in the web server. In this way, a user who makes a request to the
server will obtain the file. The protocol used in web servers is HTTP, which operates
over TCP. This one assures the trustworthy transference of data, since it requests
broadcasting of lost packets. On the other hand, it cannot assure that all packets will
arrive at the client to be visualized on time. Because of that it is possible to experi-
ence some delay or losses of sequence.

3.2 Video transmission using a streaming server

This option allows the video transmission in real time using Internet. This technique
is used to lighten the downloading and execution of audio and video in the Web,
since it allows listening and visualizing the files while they are downloading. The
signal is reproduced on the flight: the client makes the request and the server begins
to send the file. The client receives the data and constructs a buffer where the infor-
mation can be saved. Once the buffer has been filled with a small part of the data, the
client simultaneously reproduces the video and continues with the downloading. If
there is one moment where the speed reduces, the information stored in the buffer
will be used. By this way, the video sequence will be played continuously.

Figure 5: The principle of streaming

3.3 Formats for video codification

A video signal is a reproduction in sequential form of a set of images which, if they
are visualized with a certain speed and continuity, gives the sensation of continuous
movement. Many video formats are related to image formats. In a video signal there

are two types of redundancy. By one side there is a redundancy within the image,
which is the typical one in a graphical file. This one can be reduced using compres-
sion techniques. On the other hand there is a redundancy between images, since the
differences between two consecutive images are very small. We will be able to in-
crease to the compression of the video storing only the differences between these
images. Here are some of the most used formats for video codification: RGB, which
is equivalent to BMP format in image. The data is captured with a 100% of quality
and without compression. M-JPEG uses JPEG compression in each image, reducing
therefore the redundancy of each image but without eliminating the one that exists
between images. H263 uses more advanced codification techniques, being based on
predictions of movement to reduce the redundancy between images. Finally there is
MPEG, which uses an algorithm that not only compares an image with the previous
ones but also with the later ones, increasing the compression.

3.4 Video transmission oriented to web services

The format of video codification is not the only important thing for transmitting in-
formation through the network. A robust data codification is also necessary to turn
the bits of the video file in characters supported by the transfer data protocols. When
we work with web services based on XML, the data needs to be processed correctly
between equipment in different platforms. The best data codification with these char-
acteristics is Base64, also used in MIME format for transmitting binary data over
HTTP. Next we show the Base64 codification process. The binary data is grouped
each 6 bits. If it were left some incomplete block it fills up with zeros. Next, each
block is replaced for a character according to the relation established by the specifica-
tions. The map of characters used is formed by a set of 64 ASCII characters. At the
end of the sequence a '=' character is added for each pair of zeros that we needed for
filling.

Figure 6: Fundament of Base64 codification.

4 Test scenario

We want to verify the effectiveness of the Base64 codification for video transmission.
To do this, we will use a XML web server that sends an image in PNG format by
each request that the client makes. We have used Apache Tomcat as web server, and
the module Axis so that it has support for the SOAP protocol. This protocol, designed
specifically for services Web, is based on XML. The client is a mobile device that we
will simulate with the J2ME Wireless Toolkit program. Client and server establish a
communication with SOAP protocol following the JSR-172 specification.

4.1 Tests

We realize tests for the following three codifications: Base64, commented previously;
Base16, which consists of making groups of four bits and replacing them by ASCII
characters. Finally we have used a codification based on an array of integers: each
byte is codified like an integer, so a complete file can be stored in an array of inte-
gers.

For each one of these three codifications we made a series of tests. Each test con-
sists of sending several images with the same size. The goal is to verify the time be-
tween transitions. Ten different file sizes have been used: from 1kb to 10kb, with
increases of 1kb.

4.2 Obtained results

The obtained results show that the most effective codification is Base64, followed by
Base16. The array of integers codification has turned out to be absolutely little effi-
cient to transmit data using SOAP. The reason is the following: as we are sending an
array, SOAP uses labels for each one of the elements of the matrix. Therefore, for
each integer to send the beginning labels and the closing labels are also sent, which
diminishes the yield remarkably. The other two formats, however, only send a string
with the codified characters, because of that it is only needed an opening label and a
closing label. The following graphics show the yield reached with the three codifica-
tions. The first image shows a comparison between the Base64 and Base16 codifica-
tions. In the X-axis we represented the different sizes of image used, measured in
kilobytes, and in the Y-axis we showed the time that passes while we received an
image of a certain size and the following image with the same size. As we can ob-
serve, Base64 is always more efficient than Base16. For files with 10 kb, we verified
that the time between images with Base64 codification turns out to be half that the
time measured between images codified with Base16.

1 2
3 4 5 6

7 8 9
10

0

1

2

3

4

5

6

Ti me
be t we e n

i ma ge s (s)

I ma ge si z e (k b)

Base64

Base16

Figure 7: Comparison between Base64 and Base16 codifications

The following image shows a comparison between the three types of codification
that have been tested. The codification with array of integers turns out to be abso-
lutely little efficient, with a time between images thirty times greater than Base16 and
sixty times greater than Base64 for files with 10 kb.

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

160

180

200

Time between
images (s)

Image size (kb)

Base64

Base16

int []

Figure 8: Comparison between Base64, Base16 and array of integers codifications

5 Conclusions

In this paper we describe the most used image and video formats at the present time,
as well as some possible formats of codification to transmit binary data through the
network. If we want to implement streaming for the shipment and reception of video
images we need a data transfer protocol different than HTTP. The reason is that the
flow to send has an indefinite size, since the length will come marked by the time that
the user wishes to continue visualizing the images. There are protocols in real time
like RTP to do that. Unfortunately, no mobile client implements nowadays this kind

of protocols. The only possible solution will be then the transmission of sequences of
images, each one of them under the request-answer model. The ideal image format is
JPEG because of its quality-size relation, but we find that MIDP 2.0 specification
only supports PNG format. Finally, we would like to comment that the test showed
that the most adapted data codification for the binary data transmission over the net-
work turns out to be Base64, since it obtains a robust and portable codification in-
creasing only to a 33% the size of the original binary file.

References

1. CauldWell, P.: Servicios web XML. Madrid: Anaya Multimedia (2002)
2. Rao, K. Ramamohan, Hwang, J.J.: Techniques and standards for image, video, and audio

coding. Upper Saddle River (New Jersey): Prentice Hall (1996).
3. Seely, S., SOAP : Cross platform, Web service development, Using XML. Upper Saddle

River, NJ : Prentice Hall (2002).
4. Sierra, A. J., Prieto, F., A comparative study of delay for transmission images for a mobile

devices over HTTP. IADAT-micv2005 International Conference on Multimedia, Image
Processing and Computer Vision, Madrid, pp.68-72, 2005. (ISBN: 84-933971-5-6), 2005.

5. Schulzinne, H.: “RTP: A Transport Protocol for Real-Time Applications”,
http://www.ietf.org/rfc/rfc1889.txt.

6. Java Specification Requests (JSR) 135, Mobile Media API,
http://jcp.org/en/jsr/detail?id=135.

7. Fielding, R., et al., Hypertext Transfer Protocol -- HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt.

8. Java Specification Requests (JSR) 118, Mobile Information Device Profile 2.0,
http://jcp.org/en/jsr/detail?id=118.

9. Portable Network Graphics (PNG) Specification (Second Edition). Information technology –
Computer graphics and image processing – Portable Network Graphics (PNG): functional
specification. ISO/IEC 15948:2003 (E), http://www.w3.org/TR/PNG.

10. Java Specification Requests (JSR) 139, Connected, Limited Device Configuration,
http://jcp.org/en/jsr/detail?id=139.

