
Design and Implementation of a Document
Database Extension

Stefania Leone1, Ela Hunt2, Thomas B. Hodel2,
Michael Boehlen3, and Klaus R. Dittrich1

1 University of Zurich, Department of Informatics, Winterthurerstrasse 190,
8057 Zurich, Switzerland {leone,dittrich}@ifi.unizh.ch

2 Swiss Federal Institute of Technology (ETH Zurich), 8092 Zurich, Switzerland,
hunt@inf.ethz.ch, hodel@sipo.gess.ethz.ch

3 Free University of Bolzano-Bozen, Piazza Domenicani 3,
39100 Bolzano, Italy, boehlen@inf.unibz.it

Abstract. Integration of text and documents into database manage-
ment systems has been the subject of much research. However, most of
the approaches are limited to data retrieval. Collaborative text editing,
i.e. the ability for multiple users to work on a document instance simulta-
neously, is rarely supported. Also, documents mostly consist of plain text
only, and support very limited meta data storage or search. We address
the problem by proposing an extended definition of document data type
which comprises not only the text itself but also structural information
such as layout, template and semantics, as well as document creation
meta data. We implemented a new collaborative data type Document
which supports document manipulation via a text editing API and ex-
tended SQL syntax (TX SQL), as detailed in this work. We report also on
the search capabilities of our document management system and present
some of the future challenges for collaborative document management.

1 Introduction

Text documents are produced by the million in companies, government offices
and universities. Papers, reports and business documents contain a large part of
an organization’s knowledge. These documents are mostly stored in a hierarchical
folder structure on file servers, and are often difficult to find, even if a document
management system is used.

The need to store, retrieve and edit documents in an efficient manner is
obvious. However, in most companies and government offices documents can be
manipulated by only one user at a time. Tools for collaborative text editing
are rarely deployed in the business community. In addition, the mechanisms
for access control, security and consistency of documents provided by common
word-processing applications do not satisfactorily meet user demands.

On the other hand, structured data such as customer address or account
data in banks is most commonly stored in a database. The data can be accessed,
retrieved and manipulated through languages like SQL, and mechanisms for in-
tegrity, consistency, access control and security are provided by the DBMS by



default. Since document data is of particular importance, and given that with
relational DBMS and SQL as an abstract interface, the problem of storing, re-
trieving and manipulating structured data is optimally supported, it is obvious
that document data should be treated in a similar way. Their appropriate in-
tegration into the database would solve many management issues such as data
organization and querying, recovery, integrity and security enforcement, multi-
user operation, distribution management and uniform tool access.

Although there are many different approaches within this area of research,
the storage of weakly structured data (documents) within a database, and query
and manipulation operations on these data, are not satisfactorily supported. The
Lowell Database Research Self-Assessment [1] recommends an integration of text
into DBMS. The authors propose to store text within the database in such a
way that it can be accessed, queried and manipulated like a first-class data type
(e.g. an integer or a character string). We therefore strive for an operational
document database which enables the storage of, access to and manipulation
of documents in databases in an integrated manner. TX SQL, the TeXt SQL
extension presented in this paper, describes in detail a new transactional data
type whose instances can be manipulated simultaneously by many users. Our
data type Document extends SQL in order to support access, retrieval and
manipulation of data instances within a collaborative text editing and searching
environment.

Our contributions are as follows. We define the Document data type, and
propose a set of new SQL primitives which support document creation, update
and delete. We propose extensions to the select statement to support structure
and meta data retrieval. We provide details of our implementation which uses an
object-relational database system and demonstrate how the multidimensionality
of the new data types is supported in an existing prototype.

The paper is structured as follows. In Section 2 we describe the requirements,
related research and TeNDaX, the underlying concept and architecture of our
approach. In Section 3 we specify the collaborative data type Document and
the data type specific TX SQL statements, as well as the text search functions.
In Section 4 we discuss our work and compare it to previous approaches to text
management, and in Section 5 we conclude.

2 Preliminaries

We discuss the requirements for storing documents in the database, related re-
search and the TeNDaX approach for document handling.
Requirements
We define a document as a set of objects (characters, tables, images), structure
and meta data. Structure includes layout, subdivision into chapters, sections
and paragraphs, templates used, business process information, security details,
semantic annotations and comments, i.e. all information relating to a document
and required to display and interpret it. Additionally, the document holds meta



information about the document itself, such as the title, the author(s) and the
date of creation.

As suggested in [1], text should be integrated into the database as a first-
class data type. To achieve this, SQL needs to be extended in order to provide
operations for accessing, querying and manipulating this new data type (select,
insert, update and delete). Compared to ordinary data types, a document is far
more complex. A character string, for instance, simply consists of a sequence of
characters of fixed or variable length, containing information about a text frag-
ment. Thus, the string contains information which has one dimension, a word
which has a certain meaning in the appropriate context. A document, however,
consists of content, structure and meta data, and is therefore a multidimensional
object. Implementing document as a data type is not only a question of storing
the content within the database; it is also necessary to consider the document
use, including the storage and querying of its structure and meta data. An SQL
extension has to incorporate data type specific operations such as editing and
deleting parts of documents (e.g. characters, words, sentences) and applying
structure (e.g. layout, semantics) to the document. All operations on documents
carried out regularly by word processing users should also be supported. In addi-
tion, it is desirable that all these operations are carried out within a collaborative
environment which is supported by database transactions. Furthermore, search
operations should be supported on whole documents, on document parts, on
structure and on meta data.

To summarize, the Document data type should have the following proper-
ties.

- It should be stored entirely and comprehensively within the database. This
includes content, structure and meta data.

- It should be accessed and manipulated by the use of SQL statements.
- It should be accessed and manipulated simultaneously by more than one

user, i.e. the new data type should be collaborative, with full transactional
support.

Previous work
Text storage and retrieval in databases has been the subject of much research,
and various commercial database products supporting text storage and retrieval
are available on the market. SQL:1999 [15] introduced object-oriented capabili-
ties. It defined new data types which enable the storage of large objects, such as
documents and images (BLOBs and CLOBs). Additionally, it introduced user-
defined data types that behave in a similar way to objects in an object oriented
paradigm. SQL/MM [19] introduced several new data types, including Full-Text.
Full-Text comes with a number of methods that enable full text indexing as well
as methods that define the searches. SQL/XML [14] introduces an XML data type.

DB2, Oracle and SQL Server 2005 implement XML data types and provide
XML access by both XQuery and SQL/XML [22] [24] [18]. XML is either stored
natively, in BLOBs, or shredded to relational tables. DB2 Text Extender [12] and
Oracle Text [23] are database extensions for text. DB2 Text Extender enables
search and linguistic operations. Columns of different data types can be defined



as TEXT columns. Different index types (linguistic, precise and ngram) can be
created. Textual data is either stored in a TEXT enabled column or outside
the database. Text is not by itself a data type and standard SQL functions
cannot be applied to TEXT enabled columns. Transact-SQL (or T-SQL) [13] is
an extension of SQL that offers many additional features such as the TEXT and
NTEXT data types for storing documents and data type specific statements.
The statements enable text editing functionality within a document, but text
editing is reduced to content. T-SQL offers functionality for inserting into and
removing characters from the TEXT or NTEXT.

SuperSQL [26] supports publishing and presenting the same text data stored
in a database in different ways, depending on the query. The target media can
be specified within the query. Consequently, the document structure is not per-
sistently stored in the database but is dynamically created when executing the
query. The TRDBMS project [3] handles the storage of structured text such
as SGML in a database. An extension to SQL including two new data types
(TEXT and GRAMMAR) is introduced, as well as specific operators for these
data types. Those are stored as columns of relational tables. The new operations
mainly provide access and search functionality on the document data. The pre-
sented extension is reduced to the storage of structured text data. Navarro and
Baeza-Yates [20, 21] present ProximalNodes, a model that combines searching
on structure and content of documents in a query language. Structure is repre-
sented in a hierarchical way as known from markup languages. Text search is
enriched by conditions relating to document structure. Structure and text are
kept entirely separate. The language only supports search functionality, and data
manipulation operations are not provided.

TeNDaX
Neither the presented research approaches nor the SQL built-in data types for
large object storage have been designed with full document manipulation func-
tionality in mind. Our vision is to provide a transactional system for document
management. This will combine full database support for all the features cur-
rently encountered in text-processing and document management applications.
With this requirement in mind, we proceed to describe the existing TeNDaX sys-
tem prototype, to which this paper adds several new dimensions. TeNDaX is a
TeXt Native Database eXtension which enables the storage of text in databases
so that text editing is ultimately represented as an interactive transaction. By
text editing we understand the following: writing and deleting characters, copy-
ing and pasting, defining layout and structure, inserting comments, setting access
rights, defining business processes, inserting tables, pictures and links, i.e. all the
actions regularly carried out by word processing users. By interactive transac-
tions we mean that editing text invokes one or more database transactions so
that everything which is typed appears within the editor as soon as these objects
are stored persistently. Instead of creating files and storing them in a file system,
the content, structure and all of the meta data belonging to the documents is
stored in the database which enables very fast interactive transactions for all
editing tasks. A DBMS does not usually offer very fast interactive access.



The concept and first performance measurement of the implemented pro-
totype are described in [9]. In [8] the concurrency control approach of such a
collaborative database-based text editing system is presented. The concept and
implementation of collaborative layouting, i.e. the support for different users
layouting a document simultaneously is described in detail in [7]. [10] introduces
the TeNDaX workflow component which supports ad-hoc creation of workflows
within a document assigning (parallel and serial) tasks to different users. [17]
describes the real-time propagation of updates within a system where multiple
clients are working on the same document.

In [11] the TeNDaX Meta Data System is presented. As all data is stored in
the database, various types of information are associated with each character or
document part and can later be used for the retrieval of documents. Meta data
collected at character level includes the author, timestamps, copy-paste refer-
ences and user-defined properties. At a higher level of abstraction (called zone,
see Section 3.2) we store information about structure, template, layout, business
process (workflow), security, comments, semantics and versions. At document
level we record the creator, roles, date and time, document names, structure,
comments, security, size, authors, readers, associations within static folders and
user-defined properties. This meta data is of crucial importance for document
retrieval functions presented in Section 3.3.

This paper extends TeNDaX with new functionality. We present three new
aspects which support richer document manipulation. The first one is the design
and implementation of the Document data type, and of new types of struc-
tural information which can be superimposed onto a text document. The second
is extended SQL functionality which supports document creation and update,
and third are text specific query functions, implemented as extended select
statements.

3 Collaborative Data Type DOCUMENT

This section presents our contribution. We first specify the text editing API, see
Section 3.1. We then define newly added interfaces which support the multidi-
mensionality of the Document data type, see Section 3.2. In Section 3.3 we
define our search functions, in Section 3.4 we focus on implementation details
and system architecture, and in Section 3.5 we detail the SQL extensions imple-
mented in TeNDaX. In Section 3.6 we present some associated data types and
processing functions.

3.1 Text editing API

The Document data type corresponds to the specification presented in Section
2 and consists of content, structure and meta data. The implementation uses the
data model shown in Figure 1. The API is defined using Java-like signatures and
data types such as String, int, char and the array symbol [] representing
an array of objects of a particular type. Three main types are used to represent



Fig. 1. A simplified view of the relationships between the character object CChar, the
document CFile, the directory CFileNode, the zone CZone and the border enclosing a
part of a document, VirtualBorder

the data.
CChar (CChar before, CChar after, char symbol) is a single character. It
refers to its predecessor before and to its follower after.
CFile (CChar startChar, CChar endChar) is a document. It holds a refer-
ence to the first document character startChar and to the last endChar.
CFileNode (CFile leaf, CFileNode parent) is a document folder. It is a tree
with a possibly empty leaf of type CFile and a parent folder.
Document creation correspond to the creation of a new instance of CFile. Text
editing uses a number of methods defined on the class CChar. Following opera-
tions are supported.
void insertAfter (String text) is an atomic operation. A string is inserted,
to follow the current character.
void deleteChars(CChar [] forDeletion) is an atomic operation which re-
moves the characters in an atomic manner. This is a soft delete, and involves
marking characters as deleted. As shown in [9], these operations are supported by
transactions which guarantee database consistency in a multi-user collaborative
editing environment.

3.2 Zones

Our contribution is the addition of new functions involving layout, semantics
and other layers which can provide a richer document management environment.
Zones are a way of handling new types of functionality and are implemented as
additional object types managing pointers to the existing CChar objects. We
previously described the mechanisms supporting layout [7] and workflow [10]



integration within a document system. In this paper we focus on new zones:
Template, Security, Comment and Semantics. In summary, Layout zone
captured the page layout, including font size, type, colour and type face, and
the Workflow zone allowed for the invocation of workflows from within the
document. Our new zone types add new functionality to the system, as described
below.
Template zone corresponds to both XML Schema and style markup. XML
Schema is used to define document parts and a style sheet can then be super-
imposed to add formatting to the document. If both layout and template are
defined, layout will take precedence, as the zones it marks are normally smaller
than the zones defined by the template. The template is document specific, so
that users sharing a document will adhere to one document schema and style.
On the other hand, layout is applied at the user level, and each user can see text
displayed in a different format.
Security zone supports the database model of role-based access to documents
and their parts. It is possible to mark documents or their parts as read- or write-
protected, with regard to users and roles. This may be useful in the context of
financially sensitive data or where data protection needs to be enforced.
Comment zone is analogous to a comment which can be added to the document
or a part of the document, similarly to current facilities seen in word processing
tools.
Semantics zone can support ontological annotations of the document or doc-
ument parts. We see this as a mechanism for either user-centred or automated
text annotation with ontological terms. This zone can then support a variety
of search mechanisms, including visualisation of document semantics, document
clustering, or automated annotation with synonyms and ontological terms, to
enable document retrieval within an organisation.

Zones are created by users by highlighting a piece of text and adding the ap-
propriate zone type with other relevant data, as currently done in word process-
ing systems. To enable this, we first define a zone object CZone as an instance of
one of the six zone classes Workflow, Layout, Template, Security,
Comments, Semantics. Each of those classes refers to a
VirtualBorder(zoneStart CChar, zoneEnd CChar) class (see Figure 1) which
specifies the zone start and end and is annotated with relevant zone attributes.
This is accomplished via a Create Zone SQL statement shown in Section 3.4.
Each zone has one main access function String getType() returning the zone
type. Other available functions depend on the zone type. For instance, the tem-
plate zone can be created by invoking CreateZone on an empty document or
importing a DTD and either adding styles manually or importing a style sheet.
Alternatively, the user can select the entire document to create a template and
then add XML markup specifying the DTD and the styles. If a new zone of
the same type and referring to the same two character objects is added, we do
not remove the old zone specification but add a new one with a fresher times-
tamp. In that way we store document lineage in the database and can later
perform queries on document history. Zones are superimposed on the document



and we have implemented functions which support the analysis of the annota-
tions present in various zone types. The system can list all zones for a given
document or document part (see Section 3.5). The implementation of the zone
object is described in Section 3.4.

3.3 Searching and Ranking

We define and implement a number of methods supporting document search
functionality. The method
CFile[] getDocuments(String term, String[] searchConstraints,
String[] rankingOption)
returns an array of CFile instances (documents) containing the search term,
corresponding to the search constraint(s) and ordered by the ranking option.

The searching and ranking algorithms are implemented in the classes CIndex
and CTerm and make use of the TeNDaX meta data. Search is supported by an
index. For the index, inverted lists are used [2]. Since documents not only consist
of content but also of structure and meta data, we can benefit from the struc-
tural information and from the meta data stored in the database and extend the
index by adding this information in order to provide sophisticated searching and
ranking options. The two classes are defined as follows. The class
CTerm(int frequency, String term)
represents the vocabulary that is all the terms and their frequencies. Index en-
tries are represented by instances of the class
CIndex(CFile document, CChar termStartChar, CChar termEndChar,
CTerm term, CUser[] user, int copied, Boolean original,
CZone[] zones, Date lastChanged, int paragraphNumber,
int sentenceNumber, int wordNumber).
TermStartChar and termEndChar mark the start and the end character of
the term in the document. user is a list of users who contributed the term.
copied indicates how many times a term has been copied to other documents
and original marks a term if it was originally written in that document.
The zones array represents the zones that are superimposed on that term.
ParagraphNumber, sentenceNumber and wordNumber indicate the position of
the word within the document.

Based on these classes we can offer several searching and ranking options. The
following search options are supported. Those correspond to the select statement
to be shown in Section 3.5.

- Exact and substring search, both based on content.
- Structure: supports the definition of a structural constraint for the search

term(s)
- Role: finds text written by a user associated with a role
- Original: finds text originally written in a document and not copied from

somewhere else
- Mixed: combines search options

The search result can be ranked according to one of the following options.



- Frequently read : Lists the documents on top which were most frequently
read.

- Newest: Lists the documents on top which were most recently edited.
- Most copied: Lists the documents according to the number of times the

term has been copied within a document and to other documents.
- In-text distance (distance): Lists the document on top in which the

search terms have a minimal distance within the document (Can only be
used for searches with two or more search terms.)

3.4 Implementation

Our system uses the object-relational system Caché. The choice of the exper-
imental platform was dictated by the extensibility features which Caché offers
and by the fact that it supports SQL, object-orientation and access to multidi-
mensional data storage.

The implementation reported in this paper uses both relational and object-
oriented concepts. The document is implemented as a list of double-linked objects
of type CChar. Character insertion is an insert into a standard double-linked list
of characters [25]. To support efficient updates, we extend CChar by adding an
attribute marking a character as active, if it is part of a document, or set this
field to false, if the character has been deleted.

In the object-relational implementation, CChar is a tuple of (ID, before,
after, char, active, zoneBorder) and an insert is equivalent to the addi-
tion of new tuples, one for each new character, and updates involving before
and after character IDs, to reflect the double-linked list semantics. The at-
tribute zoneBorder marks a character as start- and/or end border of one or
multiple zones. CZone is a tuple of (ID, startBorder, endBorder, zoneType,
zoneAttribute).
startBorder and endBorder point to zoneBorder of the start and end char-
acters and reflect the VirtualBorder concept discussed in Section 3.2. zoneType
is one of the zone types (discussed in Section 3.2) and zoneAttribute holds
the corresponding attribute(s). Zone creation is the addition of a new CZone
tuple, and an update of the zoneBorder attribute. If the character is already a
zoneBorder, the attribute does not get changed.

The system architecture is shown in Figure 2. While users carry out text
editing, editor applications perform data manipulation operations by calling an
appropriate extended SQL statement, e.g. insert characters. The statement
is mapped to the corresponding Caché ObjectScript procedure, e.g. insertAfter
and the insertion is performed as a transaction.

3.5 Extended SQL Statements

Document management functionality was implemented via extended SQL state-
ments corresponding to methods invoked on CChar, CZone, CFile and CFileNode
objects. Document creation and deletion can be done via the statements
CREATE DOCUMENT ‘Progress Report’ and DELETE ‘Progress Report’.



Fig. 2. System Architecture

Correspondingly, we support insert and delete SQL statements at character
and zone level. The user interacts graphically with text and files, and selects
objects that class methods are applied to. The graphical user interface de-
livers the current cursor position. This allows us to refer to the cursor posi-
tion or current/previous character. As user actions are passed to the database,
meta data will also be generated and stored persistently. The user interface has
to pass the object and method call to the SQL engine which carries out the
appropriate operation. For example, the Insert operation is defined as void
insertAfter(String text). This is implemented as a transaction which per-
forms the insert and adds appropriate meta data. A simplified extended SQL
statement to support this operation would be:

INSERT CHARACTERS INTO <document> VALUES <String>

AFTER CHAR = <PreviousChar>;

We currently generate and display such statements but they are not executed
directly. Instead we mimic their execution within a transaction, see Figure 2. We
deliver feedback to the database manager on the execution of statements using
this syntax, for instance as:

INSERT CHARACTERS INTO adbis06call VALUES (‘Call for papers’)

AFTER CHAR = <currentCursorPos>;

We proceed in a similar fashion with Zone Creation. The user selects an area
between selectionStart and selectionEnd as highlighted by the user and adds zone
characteristics by interacting with the editor interface. Our proposed extended
SQL statement is

CREATE ZONE INTO <document>

ZONETYPE = {TEMPLATE|LAYOUT|WORKFLOW|SECURITY|COMMENTS|SEMANTICS}

ZONEDATATYPE = {<style>|<layout_information>|<workflow_information>|



<security_information>|<comments_information>|<semantics_information}

WHERE FIRSTCHAR = selectionStart AND LASTCHAR = selectionEnd;

and a corresponding message sent to the DBA is

CREATE ZONE INTO adbis06call

ZONETYPE = LAYOUT

ZONEDATATYPE = ‘font size, 14’

WHERE FIRSTCHAR = <selectionStart> AND LASTCHAR = <selectionEnd>;

Another SQL extension we propose deals with Deletions and takes the form
of a statement which refers to a highlighted portion of a document.

DELETE CHARACTERS FROM <document>

WHERE CHARS IN (<selectionStart> .. <selectionEnd>);

Because of concurrency issues in collaborative editing, in our implementation the
editor tool knows object IDs of the characters displayed on the screen, and the
characters correspond to CChar objects in the highlighted area. In this statement
a list of object IDs is passed down to the DB to be marked as inactive.

The select statement is extended in our work to offer both document open-
ing for reading or editing, as well as more complex search functions. A basic
document open statement specifies the document name, and is (implicitly) as-
sociated with the user, her role, and a timestamp. A sample open statement
is:

SELECT DOCUMENT ’ADBIS draft5’;

The syntax of the proposed TX SQL select statement is presented below. The
statement’s return value is a multidimensional array where each array slice con-
sists of the CFile ID and the start and end character of the specified document
or its part. This is sufficient to rebuild the selected document section, includ-
ing content and structure. Searching options (presented in 3.3) are part of the
where clause. For ranking, the SQL order by clause is extended. The four new
ranking options frequently read, newest, most copied and distance are all
based on meta data.

SELECT {DOCUMENTS|CHAPTERS|SECTIONS|PARAGRAPHS|SENTENCES|WORDS}

[WHERE [EXACT|SUBSTRING|ORIGINAL] <searchstring> |

[STRUCTURE = <literal>|ROLE = <literal>|<metadata> = <literal>|...]

[ORDER BY {FREQUENTLY READ|NEWEST|MOST COPIED|DISTANCE];

The next statement shows a select example. All documents that exactly contain
the terms ‘ICDE Proceedings’ are returned. The document which was most
frequently read is listed on top.

SELECT DOCUMENT

WHERE EXACT ‘ICDE Proceedings’

ORDER BY FREQUENTLY READ;



3.6 Associated data types

Rich document functionality requires additional support for data types which
are parts of documents or serve as exchange formats. With this aim in mind we
provide additional SQL support to handle tables, images and video. Insert and
Delete statements are provided for table, image, and video objects. Data ex-
change is supported by import doc and export doc SQL statements. Import
and export statements support document conversion to and from XML, PDF,
HTML, and DOC. They also facilitate conversion between ASCII and Unicode.

4 Discussion and Future Work

We will discuss the following two issues: system functionality and the relationship
between our work and the issue of data provenance.

Figure 3 gives an overview of various requirements for the integration of doc-
ument data into the database, and compares our work with previous approaches,
discussed in Section 2.

Fig. 3. Overview of the presented approaches

In the following we refer to table columns. Document Data Type: Several ap-
proaches provide a data type for textual data but only our approach adopts the
definition of a document as consisting of content, structure and meta data. SQL
Schema/Data Support, Content: Most of the approaches support standard
schema and data statements and all approaches support the storage of text con-
tent. Multi structure refers to the support and storage of document structure
such as markup, semantics, business process and security. Markup is most com-
monly supported. With the different zone types (semantics, layout, template,
process (workflow), security and comments), TX SQL is the only approach of-
fering multi-structure support at an arbitrary level of granularity. Text editing
is a basic requirement which is supported by some of the approaches, whereas



Collaborative editing is only supported by TX SQL (via text editing API,
and extended SQL including statements such as insert characters). Multi
publishing refers to document export in different formats and encodings, which
is a key requirement for interoperability. However, only a limited number of ap-
proaches support such functionality. TX SQL fulfils that requirement with the
previously presented export doc statement.
Multi-search refers to searching and ranking based on content, structure and
meta data. Whereas most of the approaches support content search, search on
structure and meta data is only supported by our TX SQL.

Our work is related to current research into data provenance [27], [5]. TENDaX
records and manages document provenance metadata, and supports provenance
queries. Current implementation results in a storage overhead of a factor of eight,
as compared to MS Word. This storage overhead can be reduced significantly
using well-proven storage reduction methods. For instance, Buneman et al. [4]
show that their transactional-hierarchical storage approach reduces the storage
overhead by a factor of five and also reduces query processing costs in comparison
with a naive storage approach.

4.1 Future work

We plan to carry out extensive performance measurements in the near future
as well as a user acceptance test. Additionally, we plan to extend the search
facilities by supporting approximate matching using an ngram index [16]. We
will consider ideas expressed by Chaudhuri [6] on combining flexible scoring
with query optimization techniques.

Finally, we would like to benchmark the system against other implementa-
tions.

5 Conclusion

This paper presents a TeXt SQL Extension for an operational document database
system. The system stores documents in an object-relational database. It pro-
vides full collaborative text editing and multi-search functionality as well as data
definition, retrieval, and manipulation for the data type Document. Document
data is integrated into the database as a first-class data type, as proposed in
[1] and is the first collaborative and transactional document data type we know.
TX SQL offers an abstract interface to the TeNDaX System and makes the
implemented functionality available for other word-processing applications.

References

1. S. Abiteboul et al. The lowell database research self-assessment. Commun. ACM,
48(5), 2005, 111-118.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press,
1999.



3. G. Blake et al. Text / relational database management systems: Harmonizing SQL
and SGML. In Applications of Databases, 1994, 267-280.

4. P. Buneman et al. Provenance management in curated databases In SIGMOD
2006.

5. P. Buneman et al. Why and where: a characterization of provenance Management.
In ICDT 2001, 316-330.

6. S. Chaudhuri et al. Integrating DB and IR technologies: what is the sound of one
Hand Clapping In CIDR 2005.

7. T.B. Hodel et al. Supporting collaborative layouting in word processing. In
CoopIS/DOA/ODBASE 2004, 355-372.

8. T.B. Hodel and K.R. Dittrich. A collaborative, real-time insert transaction for a
native text database system. In IRMA 2004.

9. T.B. Hodel and K.R. Dittrich. Concept and prototype of a collaborative business
process environment for document processing. Data & Knowledge Engineering,
Special Issue:Collaborative Business Process Technologies, Elsevier Science Jour-
nal, 2004, 61-120.

10. T.B. Hodel et al. Dynamic collaborative business processes within documents. In
SIGDOC 2004, 97-103.

11. T.B. Hodel et al. Using text editing creation time meta data for document man-
agement. In CAiSE 2005, 105-118.

12. IBM DB2 Universal Database. Text extender administration and programming.
http://www-306.ibm.com/software/data/db2/extenders/text/, 2000.

13. D. Iseminger. Microsoft SQL Sever 2000 Reference Library. Microsoft Press, 2000.
14. ISO/IEC 9075–14:2003. Database languages – SQL – Part 14: XML-Related Spec-

ifications (SQL/XML), 2003.
15. ISO/IEC 9075-2:1999. DatabaseLanguageSQL Part2: Founda-

tion(SQL/Foundation), 1999.
16. N. Koudas et al. Flexible String Matching Against Large Databases in Practice.

In VLDB 2004, 1078-1086.
17. S. Leone et al. Concept and architecture of a pervasive document editing and

managing system. In SIGDOC 2005, 41-47.
18. Z.H. Liu et al. Native Xquery processing in Oracle XMLDB. In SIGMOD 2005,

828-833.
19. J. Melton and A. Eisenberg. SQL Multimedia and Application Packages

(SQL/MM). SIGMOD Rec., 30(4), 2001, 97-102.
20. G. Navarro and R. Baeza-Yates. A language for queries on structure and contents

of textual databases. In SIGIR 1995, 93-101.
21. G. Navarro and R. Baeza-Yates. Proximal nodes: a model to query document

databases by content and structure. ACM Trans. Inf. Syst., 15(4), 1997, 400-435.
22. M. Nicola and B. van der Linden. Native XML support in DB2 Universal Database.

In VLDB 2005, 1164-1174.
23. Oracle Corporation. Oracle Text Application Devel-

oper’s Guide 10g Release 2 (10.2). http://download-
east.oracle.com/docs/cd/B19306 01/text.102/b14217.pdf, 2005.

24. S. Pal et al. XQuery implementation in a relational database system. In VLDB
2005, 1175-1186.

25. R. Sedgewick. Algorithms. Addison-Wesley, 1983.
26. M. Toyama. SuperSQL: an extended SQL for database publishing and presentation.

In SIGMOD 1998, 584-586.
27. J. Widom. Trio: a system for integrated management of access, accuracy, and

lineage. In CIDR 2005, 262-276.


