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Abstract Agents need to communicate in order to accomplish tasks
that they are unable to perform alone. Communication requires agents
to share a common ontology, a strong assumption in open environments
where agents from different backgrounds meet briefly, making it impos-
sible to map all the ontologies in advance. An agent, when it receives a
message, needs to compare the foreign terms in the message with all the
terms in its own local ontology, searching for the most similar one. How-
ever, the content of a message may be described using an interaction
model: the entities to which the terms refer are correlated with other
entities in the interaction, and they may also have prior probabilities
determined by earlier, similar interactions. Within the context of an in-
teraction it is possible to predict the set of possible entities a received
message may contain, and it is possible to sacrifice recall for efficiency
by comparing the foreign terms only with the most probable local ones.
This allows a novel form of dynamic ontology matching.

1 Introduction

Agents collaborate and communicate to perform tasks that they cannot accom-
plish alone. To communicate means to exchange messages, that convey meanings
encoded into signs for transmission. To understand a message, a receiver should
be able to map the signs in the messages to meanings aligned with those intended
by the transmitter.

Therefore agents should agree on the terminology used to describe the domain
of the interaction: for example, if an agent wants to buy a particular product from
a seller, it must be able to specify the properties of the products unambiguously.
Ontologies specify the terminology used to describe a domain [3].

However, shared ontology can be a strong assumption in an open environ-
ment, such as a Peer-to-Peer system: agents may come from different back-
grounds, and have different ontologies, designed for their specific needs.

In this sort of environment, communication implies translation. The standard
approach is to find mappings between the ontologies, creating a sort of bilingual
dictionary. Many different techniques have been developed for ontology mapping,
but in an open environment it is impossible to know which agents will take part in
the interactions; therefore it is impossible to anticipate which ontologies should
be mapped.
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Agents have to map ontologies dynamically when needed. Mapping full on-
tologies is a time-consuming task: in the standard process, each term in one
ontology is compared with all the terms in the other ontology, and the most
similar term is the mapping.

However, agents may meet infrequently, for a single interaction on a specific
topic. A full ontology mapping would be a waste of resources: mapping only
“foreign” terms that have appeared in the conversation can be more convenient.

Comparing a foreign term in a message with all the terms in the ontology
can still be costly. Yet, the entities referred by the signs in the message are not
randomly chosen: the dialogue has a meaning because entities are related. For
example, if the conversation is about the purchase of a laptop, entities related
to cars are unlikely to appear. It is reasonable to compare the signs in the
message with entities about laptops, rather than compare with all the entities
indiscriminately.

This paper shows how to extract, represent, and use knowledge about the
relations and properties of the entities in an interaction to support dynamic
ontology mapping.

2 Example scenario

The example scenario is a purchase interaction between the buyer and seller
agents ap and as. In the dialogue, the a; asks a; about a laptop he needs. The
seller as inquires about properties of the product in order to make an offer.
The two agents do not share the same ontology: the buyer uses the one in
figure 1 and the seller the one in figure 2. In the figures the ovals are classes and



the grey boxes are properties. The classes are structured in taxonomies, and the
domains of the properties are shown by grey arrows.

3 Communication

An approach to communication, for which Electronic Institution [8] is an exam-
ple, focuses on the interaction itself, using norms, laws and conventions to define
the expected behaviours of the agents, without specifying their mental state.

As described in [9], norms and conventions form the skeleton for many human
coordinated activities, and they work similarly in agents’ societies: they provide
a template for actions, and simplify the decision-making process, dictating the
course of action to be followed in certain situations.

3.1 Lightweight Coordination Calculus

In this paper, interaction are modelled using the Lightweight Coordination Cal-
culus [6], that borrows notions from Electronic Institutions.

The Lightweight Coordination Calculus (LCC) is an executable specification
language adapted to peer-to-peer workflow and has been used in applications
such as business process enactment [4] and e-science service integration [1].

LCC is based on process calculus: protocols are declarative scripts written in
Prolog and circulated with messages. Agents execute the protocols they receive
by applying rewrite rules to expand the state and find the next move.

It uses roles for agents and constraints on message sending to enforce the
social norms. The basic behaviours are to send (=) or to receive (<) a mes-
sage. More complex behaviour are expressed using connectives: then creates
sequences, or creates choices. Common knowledge can be stored in the protocol.

Figure 3 shows and explains the LCC protocol used by the buyer for the
interaction in the example scenario. Figure 4 represents the sequence diagram
of the exchanged messages and of the constraints satisfied during a run of the
protocol for the purchase of a laptop.

3.2 Communication and contexts

The agents execute the protocols inside a separate “box™: in theory, it is possible
to write a protocol that can be run without requiring any specific knowledge
from the agent. It requires that the constraints are satisfied with the information
available in the common knowledge.

The “box” in which a protocol is run can be compared to the idea of context
described by Giunchiglia: in [2] he defines a context ¢; as “partial” and “approz-
imate” theory of the world, represented by the triplet (L;, A;, A;). In the tuple,
L; is the language local to the context, A; is the set of axioms of the context, and
A; is the inference engine local to the context. Moreover, a reasoner can connect
a deduction in one context with a deduction in another using bridge rules.

For the protocol run context ¢, = (L., A,, A}, the language L, is composed
by all the terms that can be introduced by the agents involved in the interaction



a((buyer(S),B) ::=

ask(Prd) = a(vendor, S) +— want(Prd)
then

a(neg_buy(Prd, S),B).

a(neg_buy(Prd,S),B) ::=
ask(Attr) < a(neg vend( ),S)
then
inform(Attr,Val) = a(neg_vend(_),S) < required(Prd, Attr, Val)
or
dontcare(Attr) = a(neg_vend(_),S)
then
a(neg_buy(Prd,S), B)
or
propose(Prd,Price, Const) <= a(neg vend( ),S)
then
accept => a(neg_vend(_),S) ¢ afford(Prd,Price)
then
ack <= a(negivend(i), S)
or

reject = a(neg_vend(_),S)
or

sorry < a(neg_vend(_),S)

In the interaction, the agent a; initially takes the role of buyer: it first sends a request
to agent as for the products it wants to buy (found satisfying want (Prd)) and then
becomes a negotiating buyer, waiting for a reply.

The agent as receives the request: if it has the product, selects the attributes the
buyer need to specify and becomes a negotiating seller; otherwise it says sorry. As a
negotiating seller, as recursively extracts the attributes from the list, and asks about
them to ay, creating a filter with the received information. The buyer agent receives
the request, and if it cares and knows about the value of the attribute (if it can satisfy
required(Prd, Attr, Val)), replies with it, otherwise sends a dontcare message.
When the list of attributes is empty, as sends an offer using the created filter. The agent
ap accepts the offer if it can afford the price (afford(Prd, Price) must be satisfied)
or reject it.

Figure3. LCC Dialogue fragment used by the buyer agent

(terms are tagged with their origin: ap introduces "Laptop’ satisfying want (Prd),
and therefore Prd is replaced throughout the protocol with the tagged value
’Laptop’@ay); the axioms A, are the role clauses together with the axioms in
the common knowledge and A, is the protocol expansion engine.

Even though protocols can be autonomous from the agent, they become
useful only if they can exploit the agents’ knowledge, that is if it is possible to
bridge the resoning between the interaction context ¢, and in the agent’s local
context ¢,. This is accomplished using a bridge rule that connects the constraints
in the protocol with the predicates in the agent’s local knowledge:

cr: kp(We, ., W)
co: ba(Y1, 0, Vi)

(1)

where &, is a formula of a protocol constraint and &, is a formula in the agent’s
local knowledge, that can be satisfied only by using its own language L,.
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4 Ontology Mapping

In traditional ontology mapping, the bridges should be valid for any value from
L, and L, in two contexts ¢, and c,:

VW1..Wp € Ly, V1.5 € Lq. ¢; : bip(Wiy ooy W) = ¢ ¢ 6g(Ya, oo, Vi) (2)

That is, for any value of Wy,...,W,, in kp, it is possible to find the values for
Y1,...,Y, so that k, is equivalent to x,. In the example scenario, the mappings
should cover the possible requests from the buyer agent a; for buying any element
in its ontology (see figure 1), such as mobile phones, analog cameras and so on
- even if these interactions never take place.

This is a strong requirement: it implies that it is possible to find a corre-
sponding term in L, for every term in L,, and this may not always be the case.
Static ontology mapping tries to achieve this. An ontology mapping function
receives two ontologies and returns the relations between their entities:

map: O x 0 — 2

where (2 contains all the binary relations r (equivalence, similarity, generalisa-
tion, specialisation, etc) between entities in 01 and Oa,.

Inconsistencies in the ontologies undermines the possibility of satisfying the
definition in expression 2. Mapping systems use various methods to verify the
relations between terms: detailed reviews of these approaches can be found in
[7,5].

5 Dynamic Ontology Mapping: Motivation

As said in the introduction, it is possible to limit the mappings to those needed
to perform the occurring interactions, and there is no need to guarantee complete
equivalence between the languages. Therefore an agent needs to map only the
terms that appear in &, in order to satisfy &, :

W W e L Y1..Y, € Ly ¢t kp(Wh, oy, Wo) Acg t ko(Y1, o0y Vi) 3)
that is a much weaker requirement: we need to find the values for Yi,...,Y, so

that k, is valid for the given instances of Wy, ..., W,,. In the example, it means
that only the mappings required for buying the laptop are needed.



Not every grounding of the variables is meaningful: some will make k, more
similar to &, than others. The mapping function:

singlemap : tr, X Ly, =t

is the “oracle” used to search the best possible mapping to make the bridge in
expression 1 meaningful. It does this by comparing ¢, with all the terms in L,.

The values for the variables Wy, ..., W, in &, are introduced by received mes-
sages (for example, the first ask (Attr) in figure 4 introduces Memory_Ram@s?),
by satisfying constraints (for example, want (P) introduces ’Laptop@b’) or when
a role is invoked with parameters. Only terms introduced by received messages
can be defined in other ontologies and require mapping.

Suppose an agent receives a message my, (..., w;,...), where w; ¢ L, is the
foreign term. The task of the oracle is to find what entity or concept, represented
in the agent’s ontology by the term ¢,,, was encoded in w; by the transmitter.
Not all the comparisons between w; and terms t; € L, are useful: the aim of
this work is to specify a method for choosing the smallest set I" C L, of terms
to compare with w;, given a probability of finding the matching term t,, € L,.
We assume that t¢,, exists and that there is a single best match.

Let p(t;) be the probability that the entity represented by t; € L, was used
in W; inside my. The oracle will find ¢, if t,,, € I', event that has a probability:
p(tm €)= Etjerp(tj)

If all terms are equiprobable, then p (¢, € I') will be proportional to |I"|. For ex-
ample, if |L,| = 1000, then p (t;) = 0.001. Setting |I"| = 800 yields p (tm, € I') =
0.8, and there is no strategy for choosing the elements to add to I.

Instead, if the probability is distributed unevenly, as described in section
6, and we keep the most likely terms discarding the others, we can obtain a
higher probability for smaller I". For example, suppose that p (¢;) is distributed
approximately according to Zipf’s law (an empirical law mainly used in lan-
guage processing that states that the frequency of a word in corpora is inversely
proportional to its rank):

1/k°
p(k;s;N) = Ezﬂvjﬁ
where k is the rank of the term, s is a parameter (which we set to 1 to simplify
the example), and N is the number of terms in the vocabulary. The probability
of finding t,, becomes:

Ir|
p(tm€l) = E|kL=al| o

et 1/n
For |L,| = 1000, then p (¢, € I') = 0.70 for |I'| = 110 and maybe more remark-
ably p (¢, € I') = 0.5 for |I'| = 25.

Therefore, given a probability distribution for the terms, it is possible to
trade off a decrement in the probability of finding the matching term ¢, in I’
with an important reduction of comparisons made by the oracle.

The core issue dealt with by this paper is how to create and assign probabil-
ities to the entities that can be used in a message my (..., w;,...). Intuitively,



the type of interaction, the specific topic and the messages already exchanged
bind w; to a set of possible expected entities.

In particular, this paper shows how an interaction model as LCC forms a
framework that enforces relations between the entities: the roles provide a first
filter for them. For example, messages in a buyer role will likely refer to entities
like products, prices, and attributes of the products. Different runs of the same
protocol tend to follow the same path, adding predictability to the interaction.

6 Modelling the interactions

6.1 Asserting the possible values

The solution proposed is a model that stores and updates properties of the
entities used to instantiate each variable W; in different runs of the same protocol.

As seen in section 3.1, the variables are replaced by values during protocol
execution, and therefore it is not possible to refer to them directly. A variable
Wi is a slot A (an argument position), in a LCC node N (that can be a message,
a constraint or a role header) inside a role R, and it is represented as (N, A),. For
example, the variable Prd appears in (want, 1),, where b means buyer.

In general, the possible values for the slot (N;, A), are modelled by M asser-
tions, each assigning a probability to the hypothesis that the matching entity
for the slot belongs to a set ¥:

AT = pr((ng, B), € Pc) (4)

The probability can be made dependent on the value of another slot. Therefore
the assertion is in the form of a posterior probability: the element ¢ can become a
constraint on the value of another slot. The probability can also be independent
from any other slot: in this case the element ¢ becomes the true constant and
can be omitted.

How assertions are obtained Assertions are created and updated every time
a protocol is executed. Let’s suppose that the agents a; and a have already used
the protocol in different interactions with other agents. The agent a; has used it
12 times with different vendors: 6 times searching a laptop, and 6 times seeking
a digital camera. In total, it has received 40 times the message ask (Attr) that
inquired about properties of the requested product. The content of the slot in
the received messages has been mapped to the entities from its own ontology (see
figure 1) with the frequencies in table 1. The seller agent a, has used the protocol
100 times with different buyers, receiving every time the message ask (Prd). The
content of the slot has been mapped to entities in its own ontology (see figure
2) with the frequencies in table 1. The frequencies of the mappings are used to
compute dynamically the probabilities in the assertions.

Assertions about entities Assertions can simply be about the prior proba-
bility of entities in a slot, disregarding the values of other slots in the protocol
run:



| o e )
has_ brand 4 5 9 | (ask,1), |T0tal|
has_cpu 6 0 6 Digital_ Cameras| 40
has_ ram 6 0 6 Cell_Phones | 30
has_ hard_ disk 4 0 4 Laptops 20
has_ weight 3 1 4 PC_ Desktops 10
has_ optical_ zoom 0 5 5 Total 100
has_ sensor_ resolution 0 6 6
Total 23 17 40

Tablel. Mappings for (ask, 1) , and (ask, 1),

(N;,a), -
Aj "= Pr((Ns,a), € {eq}) =p;
In the scenario, assertions about (ask, 1)
A§“k’i)“b = Pr ((ask, 1), € {”hasihmnfl”}) = % = 0.225

AP = Pr ((ask, 1), € {7 has_sensor_resotution”}) = £5 = 0.15

More precise assertions can be about the posterior probability of the entity given
the values of previous slots:

(Ni,a), - — —
Aj = Pr((Ni,a), € {eg} [(Ni—q,a); =€) = p;
In the example scenario, we have:
A%M’l)“b = Pr ((ask, 1), € {"has_brand”} | (want, 1), =7 Luptnp”) =4 =0.174
A{3 R = pr ((ask, 1), € {7has_ep” } | (wamt, 1), = Laptop” ) = 5 = 0.2

Assertions about properties and relations Assertions can also be about
ontological relations between the entities in the slot and other entities. The
possible relations depend on the expressivity of the ontology: if it is a simple list
of allowed terms, it will not possible to verify any relation; if it is a taxonomy,
subsumption can be found; for a richer ontology, more complex relations such
as domain or range can be found. The assertions about the probabilities of
ontological relations are obtained generating hypotheses about different relations
and counting the frequencies of the proved ones.

The hypotheses can be about an ontological relation between the entity in
the slot and an entity e, in the agent’s ontology:

A = pr (N3, ), € {X|rel (X, e)}) = py

In the example scenario, the seller can prove some relations between the entities
in (ask, 1)  and other entities in its ontology (see figure 2):
Agaﬂ’i)s = Pr ((ask, 1), € {X|subClass(X,” C’omputers”)}) = % =0.3

The assertions can also regard the relation with another slot in the protocol:

A = pr (N5, a), € {X]rel (X, (Ni—a, ax)y)}) = pj



In the example scenario the buyer can prove the relation between (ask, 1), , and
(want, 1), in its ontology (see figure 1):

A;Bsk’i)“b = Pr ((ask, 1), € {X|hasDomain (X, (want, l)b) }) =1.0

which means that the domain of the entity in the (ask,1), in the negotiator
clause is always the content of the first slot in the node want in the buyer role.

Assertion reliability Assertions that assign probabilities to entities work cor-
rectly in well known and stationary situations. But interactions can have differ-
ent content, such as the purchase of a different product, and the probabilities
of entities can change over time (for example, a type of product may go out of
fashion). Assertions about ontological relations can work on new content, but
sometimes they can over fit the actual relations in interactions.

6.2 Using assertions

When a known protocol about a role R is used and the message my, (..., w;,...)
arrives, the system computes the probability distribution for the terms in (my, i):
all the assertions relative to the slot are selected and instantiated if needed.

In the example in figure 4, a; receives the message ask(’Memory_Ram’@s),
and (want, 1), contains "Laptop’@b . Thus, the assertions about (ask, 1) , are:
AP 2 pr((ask, 1), € {7hes_brand”}) = 0.225
Al 2 py ((ask, 1), € {7has_opticat_z0m”}) = 0.125
;24.%5’6’1)’"’ = Pr ((ask, 1), € {"has_brand”} |tTue) =0.174
X;Esk,i)nb = Pr ((ask, 1).0 € {"has_brand”,”has__cpu”,”has_ram” “has_hard_disk”,” has_weight” }) = 1.0

The assertions can be generated using different strategies, and assign proba-
bilities to overlapping sets that can be either singletons or larger. The motivation
of the work is to select the most likely entities for a slot in order to reach a given
probability of finding the mapping, and therefore we need to assign to the terms
the probabilities computed with the assertions.

This requires two steps. First, probabilities given to sets are uniformely dis-
tributed among the members: according to the principle of indifference, the
probability of mutually exclusive elements in a set should be evenly distributed.
Then, the probability of an entity ¢; is computed by summing all its probabilities,
and dividing it by the sum of all the probabilities about the slot:

AR (N AY et}
p(t;) = E : EA(;N,A)RR )

In the example above, the entities will have the probabilities:

()

A1+A10+A490/5__0.22540.174+0.2 _( o
= =0.

P(has__brand)= y TE e rr e

P(has__sensor __resoluti )=A1+A1A20=

The probabilities of terms related to the interactions have higher probabilities
than those of unrelated terms. Using the first four terms for the set I" of terms
to compare with the term ’Memory_Ram’@s in the received message yields a
probability of finding the mapping in I" greater than 0.8.

0.15=0.05



7 Conclusion

In this paper we showed an approach for dynamic ontology mapping that exploits
knowledge about interactions to reduce the waste of resources normally employed
to verify unlikely similarities between unrelated terms in the different ontologies.

The traditional approaches aim at finding all the possible mappings between
the ontologies, so that any possible interaction that can occur. As shown in
section 5, our goal is pragmatic: only the mappings required for the interactions
that take place need to be found. For an agent, this means that only the terms
in received messages and defined in external ontologies will be mapped.

In the standard approach, an ontology mapper oracle compares these “for-
eign” terms with all the terms in the agent’s ontology, although most of the
compared terms are not related. However, the terms that appear in messages
are not all equally probable: given the context of the interaction, some will be
more likely than others. The use of protocols allows us to collect consistent in-
formation about the mappings used during an interaction: in section 6 we show
first how to create and update a probabilistic model of the content of the mes-
sages and then how to use the model to select what are the most likely entities
contained in a message, so that the mapper oracle can focus on them, improving
the efficiency.
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