
EchoChamber: Rule-Based Semantic Webhooks 

Jackson Morgan 

Georgia Institute of Technology, Atlanta GA 30332, USA  
jmorgan45@gatech.edu 

Abstract. The semantic web is well-suited for the storage and access of static 
information. However, the value in many datasets derives from being current and 
up-to-date. A service interested in such data could periodically query a SPARQL 
Protocol and RDF Query Language (SPARQL) enabled database to check for 
updates, but periodic querying is taxing to the receiving database and only guar-
antees new data is received within the intervals of querying. Time-sensitive da-
tasets are often served by event-driven architectures that allow interested systems 
to be alerted every time information is updated. In this poster I outline 
EchoChamber, an event-driven, webhook-based implementation of a Web On-
tology Language (OWL) triplestore using Semantic Web Rule Language 
(SWRL) rules as event triggers. 

Keywords: Event-Driven, SWRL, Webhook. 

1 Introduction 

Event-driven architectures [1] are the method of choice when building systems to han-
dle data that is quickly updated and requires external systems to be alerted. The need 
for a service to periodically query a data source to remain up-to-date is subverted by 
event-driven architectures, thus saving valuable computing resources. 

One popular practice in implementing event-driven architectures is webhooks [2]. 
Under a webhook implementation, when a data source wants to emit an update to an 
interested service, it sends an HTTP request to a route at the service’s domain or IP 
address that is provided upon configuration. 

Webhooks have the potential to transform the way semantic web services interact 
with the world around them. Yet, webhooks and semantic resources have disparate par-
adigms that require creative solutions. Mainly, webhooks are often triggered by well-
defined events. For example, when a repository on Github receives a commit it can 
trigger a webhook. Conversely, webhooks for a semantic web resource should be flex-
ible, allowing for user-defined triggers for any kind of update that might be made to a 
dataset. 

To address this problem, I propose EchoChamber, a triplestore implementation that 
takes inspiration from a solution for semantic web access control [3]. EchoChamber is 
designed to easily integrate with current standards and proposals for the semantic web 
including SWRL rules, [4] which allow for user-defined flexible triggers, and Linked 
Data Notifications, [5] within which an EchoChamber server would serve as a “sender.”  



 

2 Design 

To understand the implementation of EchoChamber, consider the hypothetical graph in 
Figure 1. Three users exist in this scenario, two of which, User A and User B, are mem-
bers of separate chat rooms, chat room A and chat room B respectively. A third user, 
User C, can be described as an “Admin” role. Each chat room has a variable number of 
messages that can be added or deleted. Finally, each user has a “chat webhook,” a URL 
that should be called if ever an EchoChamber event is encountered. These routes pre-
sumably live on a server that will send the update to the user’s device. 

 

 
Fig. 1. A hypothetical graph describing users and their relationships to various chat rooms. 

Our chat room application has two simple rules that should be provided to 
EchoChamber. 1) If a message is added or removed in a chat room within which a 
user is enrolled, alert the user via their corresponding webhook, and 2) admins should 
be alerted to all message changes regardless of chat room membership. 

When a triple is added or removed from the triplestore, EchoChamber represents 
that change as a graph that is integrated with the main triplestore. Figure 2 displays a 
graph representing a change adding the string “Hello” to chat room B via the 
“hasMessage” property. 

 

 
Fig. 2. A graph representation created by EchoChamber to represent the adding “Hello” to chat 
room B. 

After creating the graph representation of the change, EchoChamber applies the 
SWRL rules to modify the object. Based on the two rules outlined above, Figure 3 
represents the rules that would exist for our hypothetical scenario. 

 

hasMessage hasMessage 

memberOf 

chatWebhook 

hasMessage hasMessage 

memberOf 

chatWebhook 

rdf:type 

chatWebhook 

example.com/A example.com/B example.com/C 

User A User B User C 

Chatroom A Chatroom B Chatroom C 

Text Text Text Text 

ec:s 
ec:p 

ec:o ec:actionTriple 

rdf:type 
action 

ec:AddedAction 

triple 

Chatroom B 

hasMessage 

Hello! 



 

If a message is added or removed in a chat room within which a user is en-
rolled, alert the user via their corresponding webhook: 
ec:AddedAction(?action) 
∧ ec:actionTriple(?action, ?actionTriple) 
∧ ec:p(?actionTriple, <hasMessage>) 
∧ ec:s(?actionTriple, ?chatRoom) 
∧ memberOf(?user, ?chatRoom) 
∧ chatWebhook(?user, ?webhook) 
⇒ ec:sholdUpdate(?action, ?webhook) 

 
Admins should be alerted to all message changes regardless of chat room 
membership: 
ec:addedAction(?action) 
∧ ec:actionTriple(?action, ?actionTriple) 
∧ ec:p(?actionTriple, hasMessage) 
∧ Admin(?user) 
∧ chatWebhook(?user, ?webhook) 
⇒ ec:sholdUpdate(?action, ?webhook) 

Fig. 3. The SWRL rules that define the desired webhook functionality of the hypothetical sce-
nario. 

If a rule’s antecedent is satisfied, the action will now have a variable number 
“ec:shouldUpdate” properties that correspond with the URL that should be requested 
as outlined in Figure 4. 

 

 
Fig. 4. The action graph after being augmented with the SWRL rules. 

Finally, EchoChamber sends an HTTP request to each of the webhooks containing 
the action graph. The shouldUpdate properties are excluded for privacy reasons. 

3 Implementation 

EchoChamber is implemented in Java Spring using owlapi [6] and swrlapi [7]. The 
main datastore has a simple interface to include swrl rules and the ability to add triples 
as seen in Figure 5. After adding a tiple to the datastore, EchoChamber loops through 
all given rules and sends a request to the desired url. 

One deviation of this implementation from the proposal above is the use of SQWRL 
queries in the stead of SWRL rules. When defining the query, a user is expected to 
include a ?webhook variable that will include the url of the desired target. While it 

ec:s 
ec:p 

ec:o ec:actionTriple 

rdf:type 

ec:shouldUpdate 

ec:shouldUpdate example.com/B 

example.com/C 
action 

ec:AddedAction 

triple 

Chatroom B 

hasMessage 

Hello! 



 

would be more advantageous to use SWRL rules for the sake of simplicity, it would 
require modifications to the core systems of swrlapi and owlapi as the object property 
ec:p which defines the predicate of an inserted triple is an object property that refer-
ences another object property. Such a property does not currently exist in owlapi. 

 
EchochamberDatastore datastore = new EchochamberDatastore("file.owl"); 
datastore.addRule( 
    "ec:AddedAction(?action) ^ ec:actionTriple(?action, ?actionTriple) ^ " + 
    "ec:p(?actionTriple, hasMessage) ^ ec:s(?actionTriple, ?chatRoom) ^ " + 
    "memberOf(?user, ?chatRoom) ^ chatWebhook(?user, ?webhook)” 
    “-> sqwrl:select(?webhook)"); 
datastore.addDataPropertyTriple("ChatroomB", "hasMessage", "Hello!"); 

Fig 5. An example use case for the EchoChamber datastore implemented in Java. 
 
An implementation of EchoChamber’s core features can be found at 
https://github.com/jaxoncreed/echochamber. 

4 Further Considerations 

Further work for EchoChamber includes efficiency improvements and the construction 
of a more complete interface for the datastore. Such an interface would include methods 
for removing triples and compatibility with SPARQL update queries while still main-
taining the ability to send webhook requests based on updates. 

A major inefficiency in EchoChamber is the need to loop through all rules given to 
the datastore to collect webhook urls. Given a datastore with millions of rules, this 
would be quite taxing to do on every update. Therefore, a scheme to retrieve SWRL 
consequents through indexing antecedents as boolean expressions [8] would greatly 
improve the implementation’s efficiency. 

References 

1. Event-Drive Architecture Overview, http://elementallinks.com/el-reports/EventDrivenAr-
chitectureOverview_ElementalLinks_Feb2011.pdf, last accessed 2018/6/1. 

2. Web hooks to revolutionize the web, http://progrium.com/blog/2007/05/03/web-hooks-to-
revolutionize-the-web, last accessed 2018/6/1. 

3. Kagal, L., Finin, T., Paolucci, M., Srinivasan, N., Sycara, K., Denker, G.: Authorization and 
privacy for semantic web services. IEEE Intelligent Systems 19(4), 50-56 (2004). 

4. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabel, S., Grosof, B., Dean, M.: SWRL: A 
semantic web rule language combining OWL and RuleML. W3C Member submission, 21 
(2004). 

5. Capadisli, S., Guy, Amy.: Linked Data Notifications. (2017) 
6. The OWL API, http://owlcs.github.io/owlapi, last accessed 2018/7/17 
7. SWRLAPI, https://github.com/protegeproject/swrlapi, last accessed 2018/7/17 
8. Whang, S. E., Garcia-Molina, H., Brower, C., Shanmugasundaram, J., Vassilvitskii, S., Vee, 

E., & Yerneni, R.: Indexing boolean expressions. Proceedings of the VLDB Endowment, 
2(1), 37-48 (2009). 


