GraphQL-LD: Linked Data Querying with GraphQL

Ruben Taelman, Miel Vander Sande, Ruben Verborgh

IIDLab, Department of Electronics and Information Systems, Ghent University — imec

Abstract. The Linked Open Data cloud has the potential of significantly enhanc-
ing and transforming end-user applications. For example, the use of URIs to iden-
tify things allows data joining between separate data sources. Most popular (Web)
application frameworks, such as React and Angular have limited support for
querying the Web of Linked Data, which leads to a high-entry barrier for Web ap-
plication developers. Instead, these developers increasingly use the highly popu-
lar GraphQL query language for retrieving data from GraphQL APIs, because
GraphQL is tightly integrated into these frameworks. In order to lower the barrier
for developers towards Linked Data consumption, the Linked Open Data cloud
needs to be queryable with GraphQL as well. In this article, we introduce
GraphQL-LD, an approach that consists of a method for transforming GraphQL
queries coupled with a JSON-LD context to SPARQL, and a method for convert-
ing SPARQL results to the GraphQL query-compatible response. We demonstrate
this approach by implementing it into the Comunica framework. This approach
brings us one step closer towards widespread Linked Data consumption for appli-
cation development.

1. Introduction

The SPARQL query language is a W3C recommendation for querying RDF data.
While this language has gained a lot of attention in the research domain, its wide-
spread usage within commercial applications remains limited. One of the reasons for
this is many developers are not experienced in the handling of (RDF) triples. Instead,
they are better equiped to handle nested objects. Furthermore, more libraries and
frameworks exist for the latter.

In order to bridge this gap between RDF and developers, several works have been
proposed [1, 2] to simplify the definition of queries and the shaping of results. These
approaches either only semantify the query results, or require a custom domain-spe-
cific language for defining queries.

GraphQL is a query language that has proven to be a popular among developers. In
2015, the GraphQL framework [3] was introduced by Facebook as an alternative way
of querying data through interfaces. Since then, GraphQL has been gaining increasing
attention among developers, partly due to its simplicity in usage, and its large collec-
tion of supporting tools. One major disadvantage of GraphQL compared to SPARQL
is the fact that it has no notion of semantics, i.e., it requires an interface-specific
schema. This therefore makes it difficult to combine GraphQL data that originates
from different sources. This is then further complicated by the fact that GraphQL has
no notion of global identifiers, which is possible in RDF through the use of URISs.
Furthermore, GraphQL is however not as expressive as SPARQL, as GraphQL
queries represent trees [4], and not full graphs as in SPARQL.

http://www.rubensworks.net/
https://ruben.verborgh.org/
spec:sparqllang
https://github.com/jindrichmynarz/sparql-to-jsonld
http://facebook.github.io/graphql/October2016/

In this work, we introduce GraphQL-LD, an approach for extending GraphQL
queries with a JSON-LD context [5], so that they can be used to evaluate queries over
RDF data. This results in a query language that is less expressive than SPARQL, but
can still achieve many of the typical data retrieval tasks in applications. Our approach
consists of an algorithm that translates GraphQL-LD queries to SPARQL algebra [6].
This allows such queries to be used as an alternative input to SPARQL engines, and
thereby opens up the world of RDF data to the large amount of people that already
know GraphQL. Furthermore, results can be translated into the GraphQL-prescribed
shapes. The only additional requirement is their queries would now also need a JSON-
LD context, which could be provided by external domain experts.

In related work, HyperGraphQL [7] was introduced as a way to expose access to
RDF sources through GraphQL queries and emit results as JSON-LD. The difference
with our approach is that HyperGraphQL requires a service to be set up that acts as a
intermediary between the GraphQL client and the RDF sources. Instead, our approach
enables agents to directly query RDF sources by translating GraphQL queries client-
side.

In the next section, we summarize the architecture of our approach and the SPAR-
QL algebra translation algorithm. After that, we explain our demonstration in
Section 3, after which we conclude in Section 4.

2. Approach

We define a GraphQL-LD query as a GraphQL query paired with a JSON-LD con-
text. In this demonstration, we handle GraphQL-LD queries using two standalone
modules:

e GraphQL to SPARQL algebra: Parses a GraphQL query and JSON-LD con-

text to SPARQL algebra.

¢ SPARQL results to tree: Converts SPARQL query results to a tree structure.

These modules will be explained in more detail hereafter. We plugged these mod-
ules into the Comunica [8] framework in order to evaluate SPARQL queries.

Fig. 1 shows an overview of our approach, where GraphQL queries and JSON-LD
contexts are passed to our GraphQL to SPARQL algebra module, the resulting SPAR-
QL algebra is queried with Comunica, and the results are shaped with the SPARQL
results to tree module.

JSON-LD context

Fig. 1: Flow of GraphQL queries and JSON-LD contexts to SPARQL algebra, to
SPARQL results, and to a tree shape.

Just like Comunica, our modules are implemented in JavaScript, and are compati-
ble with the API specification by the RDFJS W3C community group (https:/
www.w3.org/community/rdfjs/). This enables interaction between different JavaScript

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://hypergraphql.org/
https://comunica.github.io/Article-ISWC2018-Resource/
https://www.w3.org/community/rdfjs/

applications that supports this API.

2.1. GraphQL to SPARQL algebra

The GraphQL to SPARQL algebra module is responsible for parsing a GraphQL
query to SPARQL algebra, based on a JSON-LD context. The conversion algorithm is
based on translating GraphQL’s tree-based structures to links of triple patterns in
SPARQL.

Triple patterns are however not sufficient to express all of GraphQL’s features. For
instance, GraphQL allows queries to contain reusable fragments. These fragments are
reusable query blocks, which must be applied on a certain type. If this type does not
match, then the fragment will be ignored. We consider fragments to use the left-join
semantics, which translates to the OPTIONAL keyword in SPARQL. Furthermore,
GraphQL queries also allow pagination with the first and offset, which we
translate to SPARQL OFFSET and LIMIT.

This module is available under the open MIT license on GitHub (https://github.-
com/rubensworks/graphql-to-sparql.js), where more information on the conversion
process can be found.

2.2. SPARQL results to tree

The SPARQL results to tree module can convert SPARQL query results to a tree-
based structure. This is done by splitting combining variables prefix-based, and aggre-
gating results in a tree structure. In order to determine whether a certain variable bind-
ing should be seen as an array or a single value, we require a mapping to be passed
inside the context that defines which variables are singular. If variables are not de-
fined in this mapping, they are considered plural by default.

This module is also available under the open MIT license on GitHub (https:/
github.com/rubensworks/sparqljson-to-tree.js).

3. Demonstration Overview

In our demonstration during the conference, we will offer the live evaluation of a
set of GraphQL-LD queries using the Comunica framework. All of these queries, to-
gether with a guide to run the demonstration can be found as a gist (https://
gist.github.com/rubensworks/9d6eccce996317677d71944ed1087¢ab).

For example, Listing 1 and Listing 2 contain respectively a query and context that
will produce the results from Listing 3 when executing against a DBpedia endpoint.

{ label
writer(label en: "Michael Jackson")
artist { label }

}

Listing 1: GraphQL query to find all bands that Michael Jackson has written a song
for.

http://facebook.github.io/graphql/October2016/#sec-Validation.Fragments
https://github.com/rubensworks/graphql-to-sparql.js
https://github.com/rubensworks/sparqljson-to-tree.js
https://gist.github.com/rubensworks/9d6eccce996317677d71944ed1087ea6

{ "label": "http://www.w3.0rg/2000/01/rdf-schema#label",
"label en": { "@id": "http://www.w3.0rg/2000/01/rdf-schema#label
"writer": "http://dbpedia.org/ontology/writer",
"artist": "http://dbpedia.org/ontology/musicalArtist" }

Listing 2: JSON-LD context for the query in Listing 1.

[«
"artist": { "label": "Barry Gibb" },
"label": "All in Your Name"

Pooeee

Listing 3: Results of the GraphQL-LD query in Listing 1 and Listing 2.

4. Conclusions

In this work, we propose GraphQL-LD as a technique for combining the worlds of
GraphQL and the Semantic Web. We provide an implementation of this approach, and
demonstrate this with a set of example queries.

In future work, we intend to formalize our GraphQL-LD conversion algorithm.
Furthermore, we intend to improve the way in which we determine which variables
should be considered singular or plural. OWL’s InverseFunctionalProperty
or JSON-LD framing are potential options that we consider for this.

In summary, this work allows GraphQL developers to query the Linked Open Data
cloud. But also Linked Data experts can use it an an alternative to SPARQL.

References

1. Mynarz, J.: sparql-to-jsonld. https://github.com/jindrichmynarz/sparql-to-jsonld

2. Lisena, P., Troncy, R.: Transforming the JSON Output of SPARQL Queries for
Linked Data Clients. In: Companion of the The Web Conference 2018 on The
Web Conference 2018 (2018).

3. Facebook, 1. GraphQL. Working Draft, Oct. 2016. http:/
facebook.github.io/graphql/October2016/

4. Hartig, O., Pérez, J.: Semantics and Complexity of GraphQL. In: Proceedings of
the 2018 World Wide Web Conference on World Wide Web (2018).

5. Consortium, W.W.W., others: JSON-LD 1.0: a JSON-based serialization for
linked data. (2014).

6. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language.
W3C, https://www.w3.0rg/TR/2013/REC-sparql11-query-20130321/ (2013).

7. Semantic Integration Ltd.: HyperGraphQL. http://hypergraphql.org/

8. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
Modular SPARQL Query Engine for the Web. In: Proceedings of the 17th In-
ternational Semantic Web Conference (2018).

https://github.com/jindrichmynarz/sparql-to-jsonld
http://facebook.github.io/graphql/October2016/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://hypergraphql.org/

