QED: Out-of-the-box Datasets for
SPARQL Query Evaluation

Veronika Thost* and Julian Dolby

IBM Research
veronika.thost@ibm.com, dolby@us.ibm.com

1 Introduction

The SPARQL query language is probably the most popular technology for query-
ing the Semantic Web and supported by most triple stores and graph databases
[6,7,3]. Several benchmarks have been developed to evaluate their efficiency
(a good overview is provided by the W3C!), but correctness tests are not so
common. In fact, to the best of our knowledge, the W3C compliance tests?
are the only test suite publicly available and commonly applied [1, 4]. However,
these tests mostly contain fairly synthetic queries over similarly artificial example
data and, in particular, comprise only few more complex queries nesting different
SPARQL features, which model real user queries more faithfully. A simple text
search reveals, for example, that the UNION keyword only occurs in nine® and
rather simple SELECT queries, such as the following query Qe :

SELECT 7s 7p 7o 7z { 7s 7p 7o .
{ BIND(?7o+1 AS 7z) } UNION { BIND(70o+2 AS ?7z) }}

Moreover, UNION occurs only together with the BIND keyword and once with the
FILTER key, but with none other. Naturally, hand-crafted tests cannot cover all
possible combinations of features. But the following example from the DBpedia
query log shows that real queries often contain various and nested features.*

SELECT * WHERE {

?city a <http://dbpedia.org/ontology/Place>; rdfs:label ’Rom’Qen.
7airport a <http://dbpedia.org/ontology/Airport>.

{?7airport <http://dbpedia.org/ontology/city> ?city} UNION
{?airport <http://dbpedia.org/ontology/location> 7city} UNION
{?airport <http://dbpedia.org/property/cityServed> 7city.} UNION ...
OPTIONAL { 7airport foaf:homepage 7airport_home. }

OPTIONAL { ?7airport rdfs:label ?7name. }

FILTER (!'bound(7name) || langMatches(lang(?name), ’de’))}

* Supported by DFG within the Cluster of Excellence “Center for Advancing Electron-
ics Dresden” (cfaed) in CRC 912 (HAEC).

! https://www.w3.org/wiki/RdfStoreBenchmarking

2 https://www.w3.org/2009 /sparql/docs/tests/

3 The 2009 tests actually contain some more such queries, but these regard an empty
dataset and hence represent rather unrealistic test cases.

4 We obtained the query from LSQ: http://aksw.github.io/LSQ/.

Query

Queries [y

[Query Extractor] [Dataset Generator —_ Data
Data >
SPARQL QED Answers
Test Case
Test Suite

Fig. 1. The approach of SPARQL QED. The input consists of a query log and a
SPARQL endpoint providing the data. The application first extracts queries from the
log based on their features. Then, a test case is created for each of them by generating
a dataset (including some of the input data), and by computing the answers over this
data. This test suite then represents the output of the system.

We thus have a considerable gap between the tests and reality. And similar for
the data: the test data for Q.. consists of the few triples below, but DBpedia
contains over 13 billion triples® and neither contains only triples on one property
nor does it contain one per subject and property.

:s1 :p1 . :s2 :p2 . :s3 :p3. :s4 :p4d.

As a consequence of this mismatch, many public endpoints do not really comply
to the specification and exhibit non-standard behavior.%

To complement the existing benchmarks, we present the SPARQL Query
Evaluation Dataset generator (QED), which closes the aforementioned gap by
generating out-of-the-box datasets for given SPARQL queries over linked data
(note that QED similarly works over local data). QED is highly customizable and
thus enables users to create correctness tests tailored to their specific SPARQL
applications. QED is available at https://github.com/vthost/qed.

2 SPARQL QED

SPARQL QED is a framework for generating datasets for SPARQL query evalu-
ation as outlined in Figure 1. The input consists of two endpoints, one providing
the data and the other one log queries over that data. QED distinguishes the
given queries according to different SPARQL features, selects some of them,
and creates, for each query, a dataset comprising comprehensive samples of the
linked data (i.e., triples) and the query answers over this data. Thereby, it is
ensured that the created datasets are small, but diverse, and that they cover
various practical use cases. We also verify that the sets of answers included are
the correct ones.

® http://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
5 https://www.w3.org/2009/sparql/implementations/

1. Query Extraction The queries are assumed to be given in the LSQ RDF
format [5], which captures specific characteristics, such as number of triples, fea-
tures contained in them (e.g., the OPTIONAL or FILTER counstruct), and number
of answers. This allows query extraction to be configurable accordingly. For in-
stance, the configuration (2,1, {{0PTIONAL, FILTER}, {UNION}}, 10) makes QED
construct a test suite containing 10 test cases with queries that contain both
OPTIONAL and FILTER, and 10 test cases with queries that contain UNION (and
possibly other features); and all of the queries contain at least two triples and
have at least one answer. Note that there is a tool for transforming SPARQL
queries into this format relatively easily.” We also have filters that ensure that
the extracted queries are diverse and do not contain near-duplicates as generated
by bots, for example.

2. Data Extraction The sheer number of triples given as input often makes
it impossible to include all the relevant data from the endpoint since the test
cases should be of reasonable size. On the other hand, the tests should not be
too simplistic (i.e., with a minimal data set of the kind as given for Q.. above).
We therefore do not only take a subset of the relevant data that is restricted in
size but also ensure that it reflects the variability of the possible answers. For
instance, regarding the pattern QQ;UNION @, we include four kinds of data (if
available): data that satisfies both Q1 and @3, only one, and none of them; and
similarly for OPTIONAL and FILTER.

Alas, we cannot assume that we find all these different kinds of data. In fact,
the portion of the provided data matching a query usually only covers a few. To
tackle this problem, we generate synthetic data for the remaining cases.

3. Data Generation For those of the above cases where data is not pro-
vided but which could arise theoretically,® we generate synthetic data. We use
Kodkod?, a SAT-based constraint solver for extensions of first-order logic with
relations to construct the dataset we target. In a nutshell, we consider each
query @ of the different versions of the queries (e.g., for the above pattern, we
have queries Q1&Q2, Q1&!Q2, etc.) and represent the answers over the unknown
data D in a relational logic formula Ans(Q, D) as proposed in [2]. The resulting
equation then simply requires this set to be non-empty and can be solved by
Kodkod, yielding a dataset as intended (i.e., satisfying the given query).

4. Answer Generation For all queries and the corresponding data, we
include the corresponding answers into the test suite. However, the fact that
we rely on a standard endpoint to retrieve the answers must not be ignored if
there is no correctness guarantee for the endpoint. For that reason, we establish
the correctness of the answers based on the declarative semantics of SPARQL
already mentioned above [2], again using Kodkod; note that the semantics has
been validated. That is, for each test generated, consisting of sets @, D, and A,
the answers we found, we verify the truth of the assertion A = Ans(Q, D).

7 http:/ /aksw.github.io /LSQ/

8 For some cases, corresponding data cannot exist; for instance, the two subqueries of
a may contradict each other and then never be satisfied together.

9 http://emina.github.io/kodkod /index.html

The created test suite is in the format of the W3C tests: a machine-readable
custom format that relies on manifest files specifying the single test cases. This
allows testers to reuse existing infrastructure (originally created for the W3C
tests) to directly run the tests generated with QED.

3 Future Extensions and Use Cases

We present the initial version of QED together with various exemplary, generated
datasets and are interested in community feedback as well as suggestions for
improvements. There are several useful extensions we have made out so far:

— Performance The complexity of some queries still represents a challenge
for the system and leaves room for improvement in efficiency and robustness.

— Query Features There are query features such as property paths, aggre-
gation, or complex filters, whose consideration in the tests would certainly
benefit applications, but which would need to be handled carefully.

— Query Forms We currently focus on the SELECT query form, but the stan-
dard specifies others too.!® While our implementation can easily be adapted
w.r.t. the ASK form, the CONSTRUCT form requires a more elaborate extension.

— Syntax Tests We concentrate on query evaluation but plan to also provide
tests to check whether syntactically (in)correct queries yield exceptions or
not, as they are included in the W3C test suite.

— Application We plan to do extensive correctness testing of publicly avail-
able endpoints in order to demonstrate the usefulness of our system.

Nevertheless, we believe that correctness testing only represents one use case for
our datasets. Since QED is highly customizable, it should be applicable in various
scenarios by a wider community. We are hence also interested in discussions on
other potential applications, such as for developing query-by-example systems,
auto-completion add-ons, or query learning systems.

References

1. Aranda, C.B., Hogan, A., Umbrich, J., Vandenbussche, P.: SPARQL web-querying
infrastructure: Ready for action? In: ISWC (2013)

2. Bornea, M.A., Dolby, J., Fokoue, A., Kementsietsidis, A., Srinivas, K., Vaziri, M.:
An executable specification for SPARQL. In: WISE (2) (2016)

3. Erling, O.: Virtuoso, a hybrid rdbms/graph column store. IEEE Data Eng. Bull.
35(1), 3-8 (2012)

4. Rafes, K., Nauroy, J., Germain, C.: Certifying the interoperability of RDF database
systems. In: ESWC (2015)

5. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ: the linked
SPARQL queries dataset. In: ISWC (2015)

6. Thompson, B.B., Personick, M., Cutcher, M.: The bigdata® RDF graph database.
In: Linked Data Management., pp. 193-237 (2014)

7. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D., Ding, L.: Supporting scalable,
persistent semantic web applications. IEEE Data Eng. Bull. 26(4), 33-39 (2003)

https://www.w3.org/ TR /sparqll1l-query/

