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ABSTRACT
Protein identification by mass spectrometry is a valuable
method in the field of proteomics and metaproteomics. For
protein identification, different protein search engines are
used such as X! Tandem, MASCOT, OMSSA, SEQUEST
etc. These search engines receive input data in form of fi-
les. With the rapid rise of proteomics and metaproteomics,
new measurement devices are introduced resulting in increa-
se of research capabilities, consequently producing enormous
chunks of data regularly. Admittedly, file-based search engi-
nes for protein identification are at their limits and IT me-
thods should be introduced for protein identification to ma-
nage huge amount of data efficiently in future. In this paper,
we focus on feasibility of Database Management Systems as
an alternative to conventional file-based approaches. We im-
plement a connector interface and integrate it into the latest
X! Tandem version (2017.02.01) , in order to couple it with a
DBMS keeping its business logic intact and study its perfor-
mance. We compared our work with the core X! Tandem and
MetaProteomeAnalyzer tool (which performs protein search
and uses a relational database for data storage). We obser-
ved there was no information loss in our approach and we
were able to successfully implement the DBMS connector
interface to X! Tandem.
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1. INTRODUCTION
Proteomics is the comprehensive study of expressed pro-

teins from one organism for a certain time point; in contrast
metaproteomics is the investigation of samples containing
proteins from different organisms [1, 2, 3]. Proteomics and
metaproteomics use mass spectrometry (MS) as an analyti-
cal technique to characterize proteins and detect their accu-
rate masses, which relies upon a protein identification algo-
rithm for cataloging of proteins present in a sample [4]. The
protein identification process is based on the study of pep-
tides generated by proteolytic digestion [5, 6]. Algorithms
such as X! Tandem [7], MASCOT [8], SEQUEST [9], OMS-
SA [10] identifies peptides from MS spectra by searching
them against a database of known peptides [11, 12, 13]. Bal-
gley et al. [14] found OMSSA and X! Tandem to perform
better than SEQUEST and MASCOT with respect to the
number of peptide identifications per protein and Quandt
et al. [15] in their analysis declared X! Tandem to be more
robust than OMSSA and MASCOT when there were chan-
ges in the precursor mass error and fragment mass error.
Also being an open source software with periodical updates,
X! Tandem appears to be a popular choice among biologists.

X! Tandem reads the input data (MS spectra and a pro-
tein sequence database) as files and writes the output into
a file as well, so any analytical study would require parsing
them. The algorithm deals with huge protein libraries (con-
taining over million peptide sequences) and spectra data,
which makes it laborious to manipulate and visualize the
data as well as the results [16]. Moreover, redundant data
tracking and version control is difficult with files. These is-



sues have already been resolved by DBMS. Therefore our
project aims to replace the conventional file-based approach
with a DBMS. We have implemented a general adapter in-
side X! Tandem, which can be connected to any DBMS, by
keeping its business logic intact and only changing the I/O
logic. In this paper we have realized an RDBMS (MySQL)
adapter. An RDBMS facilitated us to well represent the un-
derlying relation of input and output data [17, 18].

This paper compares X! Tandem successfully integrated
with an RDBMS, the core X! Tandem algorithm and Meta-
ProteomeAnalyzer [19].

Further we discuss basic concepts in the section Funda-
mentals, proposed solution in the section Our Approach, fol-
lowed by Implementation, Evaluation, and Conclusion.

2. RELATED WORK
Zeeberg et al. in their work on GoMiner [20] and Ahmad

et al. in their work on nucleolar proteome database [21] ha-
ve used RDBMS as an efficient storage engine. Yu et al.
have realized an RDBMS as a tool for safe warehousing and
analysis of quantitative proteomic data [22]. Bjornson et al.
have worked towards parallelization of X! Tandem [23] whe-
reas He et al. implemented a parallel X! Tandem with Many
Integrated Core (MIC) [24]. Field et al. [25] while working
on proteome mass spectral analysis have used RDBMS for
storing processed data and customized reporting. MetaPro-
teomeAnalyzer developed by Muth et al. [19], comes closest
to our work as they perform protein search using X! Tandem
and use RDBMS for storing search results.

3. FUNDAMENTALS
In this section, we explain the basics of a protein search

engine with the focus on X! Tandem and briefly about the
MPA tool.

3.1 Protein Identification Algorithm
A protein identification algorithm attempts to assign mass

spectra to proteins/peptides. Inputs to the algorithm are:

• Protein sequence database (usually found by genetics)

• Experimental spectra (tandem mass spectrometry da-
ta usually in MGF1)

• Configuration parameters

In Figure 1, we show how the experimental spectra relate
to the protein sequences in the database.

3.2 Experimental Spectra
Experimental spectra are the result of tandem MS/MS

(multiple steps of mass spectrometry, with some form of mo-
lecular fragmentation occurring between the stages). These
spectra are commonly stored in a MASCOT Generic Format
(MGF) file [26] that encodes a collection of spectra. X! Tan-
dem is built to use DTA, PKL or MGF files. We use MGF
for our evaluation.

3.3 Protein Sequence Database
Protein sequence database (stored in a file) is a library of

known protein sequences that are represented in a standard
format [27]. In our work, we used protein sequences stored

1MASCOT Generic Format

Figure 1: Protein search algorithms - General prin-
ciple

in a FASTA format file. For every protein sequence in the
FASTA file, the first line is the definition line containing an
access identifier along with some optional description. The
lines following the definition line represent sequence data.
The protein search algorithm uses these peptide sequences
to create theoretical spectra and matches them with the ex-
perimental spectra.

3.4 X! Tandem Output
The output file is in the BIOML (Biopolymer Markup

Language) [28] format, which features complex annotations
of proteins in a hierarchical manner and can be processed
using standard XML parsers.

3.5 MetaProteomeAnalyzer Tool
The MetaProteomeAnalyzer (MPA) tool [19] employs X! Tan-

dem internally with an advanced user interface view. It ex-
tracts the MGF and FASTA information from a MySQL DB
and converts them into .mgf and .fasta files. Once the prote-
in search is initiated, using these files X! Tandem identifies
the proteins and generates the output. The MPA tool then
parses the output file and stores it in DB. Hence, it uses
both file and DB information for completing the process.

4. OUR APPROACH
With growing size of data it is difficult for biologists to

manage hundreds of thousands of files where each file is in
gigabytes. Furthermore DBMS have been considered an ap-
propriate and beneficial data storage strategy as they form a
classic framework for representing and analyzing huge meta-
proteomics data [3]. We have seen in subsection 3.5 that the
MPA tool stores data in DB but does not read from it direct-
ly, during protein identification. Their process of converting
data between DB and file representation is inefficient as it
introduces an overhead of parsing. Rather than using files
if we manage to directly read input from and write output
to a DB, it would remove the parsing step, thus reducing
load on the entire process of protein identification. Our goal
was to design and develop a new architecture for X! Tan-
dem connecting it to a DBMS without altering the protein
identification algorithm inside. To store the MGF, FASTA
and output files we designed a database schema preserving
their hierarchical structure (see Figure 2, 3 and 4). We deve-
loped a special adapter interface which could communicate
with any database without influencing the functionality of
X! Tandem. We used the configuration file input.xml to de-
fine the database credentials, MGF and FASTA data source
identifier, and parameters.xml to define the calculation cri-



teria to match the protein sequences. Other configuration
information was kept as a file.

5. IMPLEMENTATION
Our work is implemented in C++ as we have modified

X! Tandem classes to read and write data, from and to,
MySQL instead of files. We have developed a MySQL adap-
ter interface, which can be modified to connect X! Tandem
to any other DB without changing its business logic. Further
we study the database design for MGF, FASTA and output
files.

6. DATABASE DESIGN
In this section, we discuss the structure of tables for spec-

tra, FASTA and output data in detail.

6.1 Tables for input spectra
MS spectra information is stored into tables: ms dataset

and fragment ion list. While ms dataset stores peptide mass,
charge, precursor intensity, retention time (RT) and spec-
trum title, the peak-list of mass and intensity pairs for each
spectrum is stored in fragment ion list table. Records in
fragment ion list table are mapped to a specific spectrum
in ms dataset using a foreign key constraint ‘Map ID’ (see
Figure 2). Although a join operation on these two tables for
reading spectra information would introduce a performance
penalty, we do get the flexibility of studying selective spec-
tra as and when required instead of reading the entire file.

Figure 2: Tables for MS spectra input

6.2 Tables for FASTA input
Understanding its structure (see subsection 3.3), we split

each protein sequence into access identifier, description and
sequence data and store them in protein reference data(see
Figure 3). The protein reference data info table stores the
information about the FASTA library loaded into DB.

Figure 3: Tables for FASTA input

6.3 Output tables
The X! Tandem output data objects are stored in the ta-

bles out group (original mass spectrum), out protein (prote-
in containing matching peptides), out domain (peptide se-
quences that match to a spectrum), out gaml trace histograms
(histograms about statistics of an identification),
out gaml attributes (histogram attributes), out gaml xy data
(histogram values) and out parameters info (input parame-
ters and performance statistics). The output tables conform
to the output standards2 of core X! Tandem. The complete
structure of output tables can be observed in Figure 4.

Figure 4: Output tables

7. FACTORY ADAPTER INTERFACE
Factory adapter interface is developed to establish a data-

base connection with X! Tandem. Its implementation only
modifies the I/O logic of X! Tandem. The database enti-
ties are not coupled with C++ objects of X! Tandem, which
means X! Tandem functions without any knowledge of the
DB schema. This provides a generic interface where any da-
tabase can be connected to X! Tandem with changes in in-
put and output schema (pertaining to the DB used) without
even worrying about the access and manipulation of data.
In our case, we developed a factory adapter interface for
MySQL.

8. EVALUATION
We evaluated our work to study the feasibility of integra-

ting X! Tandem with a DBMS with an aim to perform as
good as the core X! Tandem. The evaluation was performed
on the following hardware:

RAM : 8GB
Processor : i5 6th Generation Intel core 2.3 GHz
Operating System : Windows 10
We conducted experiments with varying sizes of spec-

tra and FASTA data. FASTA datasets used for evaluation-
100K FASTA.fasta and 552K FASTA.fasta, which contai-
ned 100,000 and 552,884 protein sequences respectively were

2http://www.thegpm.org/docs/X series output form.pdf



taken from ‘UniProt Knowledgebase’. Spectra datasets used
were 100 file.mgf, 2k file.mgf and 20K file.mgf which were
100, 2000 and 20000 in spectra counts respectively.

The evaluation was done by assessing the outcomes of all
experiments on three performance measures namely com-
putation time, CPU usage, and RAM usage for original file-
based X! Tandem, the MPA Tool and our approach- X! Tan-
dem using DBMS (MySQL).

For each performance measure, comparing the aforemen-
tioned systems, the results were presented in two graphs,
one for 100K FASTA and another for 552K FASTA against
all the three datasets of spectra. Consequently we verified
them and concluded that there was no information loss from
our approach.

8.1 Computation time
For small-sized input data (100 spectra with 100K, 552K

FASTA and 2000 spectra with 552K FASTA) our work (8.48,
24.67 and 32.34 seconds) outperforms the core X! Tandem
(9.06, 46.56 and 73.25 seconds). For 2000 spectra with 100K
FASTA our approach (32.34 seconds) was slightly slower
than the core X! Tandem (23.67 seconds). However instead
for input spectra of size 20K with 100K and 552K FASTA,
our approach (606.06 and 1168.33 seconds) was considerably
slower than core X! Tandem (185.34 and 449.94) as it takes
almost 3 times more time to execute. To deal with this issue,
batch processing of data should be included in our approach.
In comparison to the MPA tool, our approach performs si-
gnificantly better in all cases (see Figure 5 and 6.

Figure 5: Computation Time Comparison - 100k
FASTA with Spectra up to 20K

8.2 CPU Usage
We studied CPU usage of the three systems when no other

process was running on the machine. We noticed that CPU
usage is remarkably less for our approach (varying from 8.88
to 17.95%) irrespective of the size of data whereas in case of
core X! Tandem and the MPA tool, CPU usage varies from
71.69% to 100% and 85-100% respectively (see Figure 7 and
8). Higher CPU usages could lead to performance issues in
the system.

8.3 RAM Usage
We can observe from Figure 9 and 10 that RAM usa-

ge is comparatively same in all the systems for small-sized

Figure 6: Computation Time Comparison - 552k
FASTA with Spectra up to 20K

Figure 7: CPU Usage Comparison - 100k FASTA
with Spectra up to 20K

Figure 8: CPU Usage Comparison - 552k FASTA
with Spectra up to 20K

input data (100 spectra with 100K & 552K FASTA) with
core X! Tandem, MPA and our work having 66.69 & 190.61,
56.96 & 177.54, 54.48 & 248.04 bytes consumption respec-



tively. However, our approach consumes significantly more
amount of RAM (2429.94 & 2974.06 bytes) for large input
data (20K spectra with 100K/552K FASTA) against that of
core X! Tandem (237.94 & 392.83 bytes) and the MPA tool
(47.93 & 177.34 bytes). RAM consumption increases linearly
with data size, in our case. The MPA tool recorded lowest
RAM consumption in all the cases.

Figure 9: RAM Usage Comparison - 100k FASTA
with Spectra up to 20K

Figure 10: RAM Usage Comparison - 552k FASTA
with Spectra up to 20K

The evaluation results show that core X! Tandem is the
fastest as it is highly optimized. Our approach was noted to
be faster than core X! Tandem while dealing with small-sized
data whereas for larger data it was almost 3 times slower,
further drawing our attention to a necessary implementati-
on of batch processing. Our approach was quicker than the
MPA tool in all the cases. However our approach exhibited
efficient CPU usages across all the experiments, outshining
the other two systems by a wide margin. In terms of RAM
usage, our approach needs improvement as it consumed a
lot more memory than the other two systems when data
size increased.

9. CONCLUSION

We have not only engineered a connector interface bet-
ween X! Tandem and a DBMS but also systematically in-
vestigated the feasibility of moving from file-based protein
search algorithm to DBMS based algorithm without any in-
formation loss. We observed that DBMS offers accessibility
to data in a structured manner that was much needed for
biologists. A biologist may create SQL queries on results to
create customized reports without going through the hassle
of parsing the files. Also in file-based approach, FASTA data
was separated with respect to taxon, in different files. Howe-
ver with a connection to DBMS, all the FASTA data could
be stored in one database and could be selectively used for
experiments.

During evaluation we observed core X! Tandem to be the
fastest of the three systems as it is highly optimized. Our
work was faster than core X! Tandem for small datasets but
needed batch processing for handling large datasets efficient-
ly. We were significantly faster than MPA in all the cases.
There was no overhead noticed on database access in our
approach for small-sized input spectra, but a drastic over-
head was noticed for large input spectra. This implies our
approach needs multi-threading for cost-effective RAM usa-
ge. Our approach exhibited efficient CPU usages across all
the experiments, outshining the other two systems by a wide
margin.
We have successfully developed an adapter to connect X! Tan-
dem to any database (Section 7), opening up many possibili-
ties for future improvements. For instance, an implementati-
on of NoSQL database using our approach would provide an
easy scale-out architecture with efficient performance where-
as file-based X! Tandem could not scale. Also our work pro-
vides a basis for realizing protein identification algorithms
in cloud environments while utilizing features of BigData.

10. FUTURE WORK
Our connector interface for MySQL could be exchanged

(Section 7) for cloud-based endpoints such as Cassandra.
Such cloud-based endpoints provide elastic scalability, high
availability and fault tolerance with high performance. That
way protein identification could be developed as a service,
which would bring an effective way of collaboration amongst
biologists because of its central storage. Multi-threading ap-
proach should be adopted to tackle high RAM usage in our
work.
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