Multimedia Authoring for CoPs

Romain Deltour, Agnes Guerraz, and Cécile Roisin

INRIA Rhéne-Alpes
655 avenue de ’Europe
38334 Saint Ismier, France
{Romain.Deltour,Agnes.Guerraz,Cecile.Roisin}@inria.fr

Abstract. One way of providing technological support for CoPs is to
help participants to produce, structure and share information. As this
information becomes more and more multimedia in nature, the challenge
is to build multimedia authoring and publishing tools that meets CoPs
requirements. In this paper we analyze these requirements and propose
a multimedia authoring model and a generic platform on which specific
CoPs-oriented authoring tools can be realized. The main idea is to pro-
vide template-based authoring tools while keeping rich composition ca-
pabilities and smooth adaptability. It is based on a component-oriented
approach integrating homogeneously logical, time and spatial structures.
Templates are defined as constraints on these structures.

1 Introduction

In order to support the activities of Communities of Practice, the Palette project
[6] will provide tools for document production and for document reuse in hetero-
geneous applications. The objective is to reduce the current limitations caused
by the proliferation of data sources deploying a variety of modalities, information
models and encoding syntaxes. This will enhance applicability and performances
of document technologies within pedagogically consistent scenarios.

The LimSee3 project aims at defining a document model dedicated to adap-
tive and evolutive multimedia authoring tools, for different categories of authors
and applications, to easily generate documents in standard formats (see the
authoring process showed in Fig. 1). Our approach is to focus on the logical
structure of the document while keeping some semantics of proven technologies
such as SMIL [7]. This provides better modularity, facilitates the definition of
document templates, and improves manipulation and reusability of content.

This paper is organized as follows: Sect. 2 presents a scenario example that
will be developed throughout the paper and thereby analyzes CoPs requirements
for authoring multimedia documents. We then define the main concepts on which
multimedia authoring tools are based and we classify existing approaches in the
light of these concepts. Section 4 introduces our LimSee3 document model and
Sect. 5 shows how it can be used for the development of authoring tools tuned
for specific CoPs. Last section presents the current state of our development and
our perspectives in the context of the Palette project.

E. Tomadaki and P. Scott (Eds.): Innovative Approaches for Learning and Knowledge Sharing,[]
EC-TEL 2006 Workshops Proceedings, ISSN 1613-0073, p. 278-287, 2006.

Multimedia Authoring for CoPs 279

LimSee3 LimSee3 SMIL
SSEN——— e
Template instanciation

Document Document
(add content) Production
e -5 ‘ﬁ’_/
—
Authoring Format Rendering Format
(LimSee3) (SMIL, XHTML+SMIL, ...}

Fig. 1. The authoring process in LimSee3

2 Real-Life Example and Requirements of CoPs

The instrumentation of CoPs heavily relies on communication technologies. In
this paper we are concerned with communication through sharing and collabo-
rative authoring of information. We are studying scenarios where experience and
knowledge are shared by means of multimedia data, such as annotated video or
synchronized slideshow. The key point is that in CoPs, content readers are also
content creators but usually have no skills in multimedia authoring. We develop
below a concrete scenario of how a particular CoP shares information and then
we identify the main requirements of multimedia authoring in such situations.

2.1 Experience sharing between reps

Studies of experiences at companies such as Xerox [8] have demonstrated that
CoPs, as the copier repair technicians ("tech reps”) CoP, are a very effective way
for professionals to share informal or tacit knowledge gained from experience in
the field. This sharing of tips, which could not be found in training manuals or
classroom settings, was critical to help the tech reps do a better job and was
even ultimately fostered by Xerox.

The practice of creating and exchanging stories has two important aspects.
First of all, telling stories helps to diagnose the state of a troublesome machine.
Reps begin by extracting a history from the users of the machine and with this
and the machine as their starting point, they construct their own account. If they
cannot tell an adequate story on their own then they seek help from specialists
or colleagues (over coffee or lunch).

Brown took example on one service call observed by the ethnograph Orr
n [12]. A rep confronted a machine that produced copious raw information in
the form of error codes and obligingly crashed when tested. As the error codes
and the nature of the crashes did not correspond, the case immediately fell
outside the directive training and documentation provided by the organization.
Unfortunately, the problem also fell outside the rep’s accumulated, improvised
experience ; his technical specialist was equally baffled. Solving the problem
in situ required constructing a coherent account of the malfunction out of the
incoherence of the data and the documentation. To do this, the rep and the
specialist embarked on a long story-telling procedure. They explored the machine

280 R. Deltour, A. Guerraz, and C. Roisin

or waited for it to crash for collecting data such as logs, screenshots, sound
records. The rep and specialist recalled and discussed other occasions on which
they had encountered some of the present symptoms via phone calls, webcam
records, user feedback... Each story presented an exchangeable account that
could be examined and reflected upon to provoke old memories and new insights.
Yet more tests and more stories were thereby generated. The story-telling process
continued forming a purposeful progression from incoherence to coherence.

Ultimately, these stories generated sufficient interplay among memories, tests,
the machine’s responses, and the ensuing insights to lead to diagnosis and repair.
Through story-telling, these separate experiences converged, leading to a shared
diagnosis of previously encountered but unresolved symptoms. Rep and specialist
were now in a position to modify previous stories and build a more insightful one.
They both increased their own understanding and added to their community’s
collective knowledge. A story, once in the possession of the community, can then
be used — and further modified — in similar diagnostic sessions.

The information units that are exchanged in this particular CoP are mul-
timedia story documents that are composed of sequences of story steps where
data elements are heterogeneous and multimedia. The challenges are to enrich
information with the synchronization of data elements (for instance a phone call
with the corresponding webcam excerpt) and to provide a document structure
enabling knowledge sharing and reusability (of experience stories).

2.2 Basic requirements

The cooperative platform to be provided to the CoPs must have the two following
basic features: (i) authoring tool of stories dedicated to tech reps ; (ii) access
tool to read the existing stories on different devices (desktop PC, PDA, mobile
phone...). Looking more closely at the ways in which CoPs participants are
producing multimedia information, we can identify some requirements for the
authoring and presentation platform:

1. Simple and efficient authoring paradigms — because CoPs members are not
(always) computer science technicians.

2. Easy and rapid handling of the authoring tool — because new members can
join CoPs.

3. Modular and reusable content — because multimedia information results in
a co-construction process between members.

4. Evolutive structuring of documents — because of the dynamic nature of CoPs.

5. Use of standard formats — because CoPs need portability, easy publishing
process and platform-independence.

Basically, our approach proposes a template mechanism to cope with require-
ments 1 and 2, a component-based structuring enabling requirements 3 and 4,
and relies on proven standard technologies to ensure the last requirement. Be-
fore further stating our authoring model, we present in the next section the main
concepts and approaches of multimedia authoring on which this work is based.

Multimedia Authoring for CoPs 281

3 Multimedia Documents and Multimedia Authoring

In traditional text oriented document systems, the communication mode is char-
acterized by the spatial nature of information layout and the eye’s ability to
actively browse parts of the display. The reader is active while the rendering
itself is passive. This active-passive role is reversed in audio-video communica-
tions: active information flows to a passive listener or viewer. As multimedia
documents combine time, space and interactivity, the reader is both active and
passive. Such documents contain different types of elements such as video, audio,
still-picture, text, synthesized image, and so on, some of which having intrinsic
duration. Time schedule is also defined by a time structure synchronizing these
media elements. Interactivity is provided through hypermedia links that can be
used to navigate inside the same document and/or between different documents.

Due to this time dimension, building an authoring tool is a challenging task
because the WYSIWYG paradigm, used for classical documents, is not relevant
anymore: it is not possible to specify a dynamic behavior and to immediately
see its result. Within the past years, numerous researches have presented various
ways of authoring multimedia scenarios, focusing on the understanding and the
expressive power of synchronization between media components: approaches can
be classified in absolute-based [1], constraint-based [9], [11], event-based [14]
and hierarchical models [7], [15]. Besides, to cope with the inherent complexity
of this kind of authoring, several tools [1], [4], [10] have proposed limited but
quite simple solutions for the same objective. Dedicated authoring, template-
based authoring and reduced synchronization features are the main techniques to
provide reasonable editing facilities. But we can notice that these tools generally
also provide scripting facilities to enrich the authoring capabilities and therefore
loose in some way their easiness.

Beside timelines, script languages and templates, intermediate approaches
have been proposed through ”direct manipulation” and multi-views interface
paradigms. IBM XMT authoring tool [2] and SMIL tools such as LimSee2 [3]
and Grins [5] are good examples. In LimSee2, the time structure of SMIL is
represented for instance in a hierarchical timeline as shown in of Fig. 2 (4).
Time bars can be moved or resized to finely author the timing scenario. This
kind of manipulation has proven very useful to manipulate efficiently the complex
structures representing time in multimedia XML documents.

However even if XMT and SMIL are well-established languages, the above-
mentioned tools are too complex for most users because they require a deep
understanding of the semantics of the language (e.g. the SMIL timing model).
Moreover these models generally put the time structure at the heart of the
document whereas it does not always reflect exactly the logical structure in
the way it is considered by the author. Our approach instead sets this logical
dimension as the master structure of the document, which is a tree of modular
components each one specifying its own time and spatial structures. Additionally,
the document can be constrained by a dedicated template mechanism.

A template document is a kind of reusable document skeleton that provides a
starting point to create document instances. Domain specific template systems

282 R. Deltour, A. Guerraz, and C. Roisin

ot vien Too: oy
Dodd bl eosd -

@ v e B o1 |
o

FBaawwe 9 o [b] [0 [[
[w0 [T O [O [[

T o

—®wom
o > N
o i

7

fimglima_Boo,_steve

Fig. 2. Multiview authoring in LimSee2

are a user-friendly authoring solution but require hardly extensible dedicated
transformation process to output the rendering format. We chose on the contrary
to tightly integrate the template syntax in the document: the template is itself
a document constrained by schema-like syntax. The continuum between both
template and document permits to edit templates as any other document, within
the same environment, and enables an evolutive authoring of document instances
under the control of templates. There is no need to define a dedicated language
to adapt to each different use case.

We believe that the combination of document structuring and template defi-
nition will considerably help CoPs in (i) reusability of materials, (ii) optimization
of the composition and life cycle of documents, (iii) development and transmis-
sion of knowledge, (iv) drawing global communities together effectively.

4 The LimSee3 Authoring Language

4.1 Main Features

In the LimSee3 project, we define a structured authoring language independently
of any publication language. Elements of the master structure are components
that represent semantically significant objects. For instance a story report docu-
ment is a list of step components. Each step is composed of several media objects
and describes a phase of the story (failure description, machine exploration...).
Components can be authored independently, integrated in the document struc-
ture, extracted for reusability, constrained by templates or referenced by other
components.

Multimedia Authoring for CoPs 283

The different components of a multimedia document are often tightly related
one with another: when they are synchronized or aligned in space, when one
contains an interactive link to another, and so on. Our approach, which is close
to the one proposed in [13] is for each component to abstract its dependencies
to external components by giving them symbolic names that are used in the
timing and layout sections. This abstraction layer facilitates the extraction of a
component from its context, thus enhancing modularity and reusability.

Finally, the goal was to rely on proven existing technologies, in both con-
texts of authoring environments and multimedia representation. The timing and
positioning models are wholly taken from SMIL. Using XML provides excellent
structuring properties and enables the use of many related technologies. Among
them are XPath, used to provide fine-grained access to components, and XSLT,
used in templates for structural transformation and content generation.

The authoring language is twofold: it consists in a generic document model for
the representation of multimedia documents, and it defines a dedicated syntax
to represent templates for these documents.

4.2 Document Model

A document is no more than a document element wrapping the root of the object
hierarchy and a head element containing metadata. This greatly facilitates the
insertion of the content of a document in a tree of objects, or the extraction of
a document from a sub-tree of objects.

A compound object is a tree structure composed of nested objects. Each
compound object is defined by the object element with the type attribute set
to compound. It contains a children element that lists children objects, a timing
element that describes its timing scenario and a layout element that describes
its spatial layout.

The value of the required localld attribute uniquely identifies the compo-
nent in the scope of its parent object, thereby also implicitly defining a global
identifier id when associated with the locallId of the ancestors. In Example 1,
the first child of object stepl has the local id copyLog and hence is globally
identified as stepl.copyLog.

The timing model, and similarly the positioning model, is taken from SMIL
2.1. The timing element defines a SMIL time container. The timing scenario of
a component is obtained by composition of the timed inclusions defined by the
timeRef elements, whose refId attributes are set to local ids of children.

<document xmlns="http://wam.inrialpes.fr/limsee3/"
xmlns:smil="http://wuw.w3.o0rg/2005/SMIL21/">

<head><!-- some metadata --></head>
<object localld="stepl" type="compound">
<children>

<object type="text" localld="copyLog">...</object>
<object type="image" localld="screenshot">...</object>
<object type="compound" localld="AnnotatedVid">...</object>

284 R. Deltour, A. Guerraz, and C. Roisin

</children>
<timing timeContainer="par">
<timeRef refId="AnnotatedVid" begin="0s"/>
<smil:seq begin="0s">
<timeRef refId="screeshot"/>
<timeRef reflId="copyLog"/></smil:seq></timing>
<layout height="100" width="100">
<layoutRef refId="AnnotatedVid" left="0"/>...</layout>
</object></document>

Ezample 1. A simple story step LimSee3 document

A media object is actually a simple object that wraps a media asset, i.e. an
external resource (such as an image, a video, an audio track, a text...) referenced
by its URI. It is defined by the object element with the type attribute set to
either text, image, audio, video or animation. The URI of the wrapped media
asset is the value of the src attribute. Example 2 shows a text media object
with local id menuIteml which wraps the media asset identified by the relative
URI ./medias/iteml.txt.

Area objects inspired from the SMIL area element can be associated with
media objects. They are used for instance to structure the content of a media
object or to add a timed link to a media object. An area is defined as an object
element with the type attribute set to area. For instance, in Example 2 the
media object menuEntryl has a child area which defines a hyperlink.

Relations of dependency between objects are described independently of their
semantics in the document. External dependencies are declared with ref ele-
ments grouped inside the related child element of objects. The value of refId
of a ref element is the id of the related element and the value of localld is a
symbolic name that is used within the object to refer to the related object. For
instance, in Example 2, object menuIteml describes a text that links to the ob-
ject story.stepl, by first declaring the relation in a ref element and then using
this external object locally named target to set the value of the href attribute
of the link, using attribute and value-of elements taken form XSLT.

<object localld="menulteml" type="txt" src="./medias/iteml.txt">
<related><ref localld="target" refId="story.stepl"/></related>
<children><object type="area" localld="link"/></children>
<timing>
<attribute name="begin">
<value-of refName="target" select="@id"/>.begin</attribute>
<timeRef reflId="1link">
<attribute name="href">
#<value-of refName="target" select="Qid"/></attribute>
</timeRef></timing>...</object>

Ezample 2. A LimSee3 object with external dependency relations

Multimedia Authoring for CoPs 285

4.3 Templates

Template nodes aim at guiding and constraining the edition of the document.
In order to have better control and easy GUI set up, the language includes two
template nodes: media zone and repeatable structure.

A media zone is a template node that defines a reserved place for a media
object. It is represented by the zone element, that accepts a type attribute
(text, img, audio, video, animation, any, or a list of these types) to define
what types of media object can be inserted in this zone. The author can also
specify content that will be displayed to invite the user to edit the media zone
with the invite element (of any media type). For instance Example 3 shows a
media zone for an image, with textual invitation. During the authoring process
zone elements are filled with media objects inserted by the user.

A repeatable structure, represented by the objList element, is a template
node that defines a homogeneous list of objects. Each item of the list matches
a model object declared in the model child of the list. The cardinality of the
list can be specified with the minOccurs and maxOccurs attributes. Example 3
shows a story template document based on an objList named step-list, and
partially instanciated with three compound objects respecting the step model.
Thanks to the use of XSLT-like syntax, the timing scenario can be specified
independently of the content of children instances.

It is possible to lock parts of a document with the locked attribute, to
prevent the author from editing anything. This permits for instance to guide
more strongly inexperienced users by restricting their access to the only parts
of the document that make sense to them.

<object localld="story" type="compound">
<children>
<objList localld="step-list" maxOccurs="20">
<model name="step">
<object type="compound">...</object></model>

<object type="compound" localld="stepl">...</object>
<object type="compound" localld="step2">...</object>
<object type="compound" localld="step3">...</object>

</objList></children>

<timing>
<smil:seq begin="1s">
<for-each
select="children/objList [@name="step-list"]/object">
<timeRef>

<attribute name="refId">
<value-of select="@localId"/>
</attribute></timeRef></for-each></smil:seq>
</timing>...</object>

Ezample 3. A partially instanciated story template

286 R. Deltour, A. Guerraz, and C. Roisin

(1) If/ Use Generic GUI

Add a Story Step:
* create object
* fill with multimedia content Story Decimant Standard
= !r?e'rune the internals w—\‘b Dactiment] | (final) Document
(timing, layout) | Export (SMIL)
" * integrate in context /
(menu, links) Vi

Story
Document &

S

' repeat

Corporation
Add a Story Step:
Story yeen Story Document Document Base

Document F) msen pre-made f:ompone : b Document | (final)
* fill with multimedia content J
/

'Fép?atf ¥,
\based J =
on
=t £
epository o -,
= pository (2)

; = - Reusable
/ eusable Components
Document bt

Template /i (from document)

/

Tech Rep

A

Fig. 3. Authoring with LimSee3

5 Authoring with LimSee3

Figure 3 (2) also shows the creation of a template document from an existing
document. The main structure of the document, in this case a sequence of story
steps, can be constrained by template nodes such as repeatable structures. Ad-
ditionally, inter-object relations described in Sect. 4 facilitate the extraction of
components from their context so that they can be reused in other documents.
In the tech reps CoP, a possible workflow is to first create a story report from
scratch (1), then to extract a template document from this report (2), along
with a dedicated GUI, to ease the creation of further story reports (1’). This is a
typical example of participative design leading to the development of a dedicated
tool based on the LimSee3 generic platform.

The LimSee3 model leads to the development of authoring tools that fit
the requirements of Sect. 2.2. We are defining a generic platform that permits
to manipulate all the elements defined in the model (documents, compound
objects, timing and layout details, relations...). It provides features based on the
proven authoring paradigms described in Sect. 3 such as multi-views, timeline,
structure tree an 2D canvas. In the reps CoP example described in Sect. 2, a
tech rep could have used the generic GUI to create the story report ex-nihilo, as
shown in Fig. 3 (1), incrementally adding story steps by creating and integrating
new objects in the document (resulting in the LimSee3 document of Example
1). Once fully authored, the story report can be persistently added to the base

Multimedia Authoring for CoPs 287

of documentation maintained by the company, and published on demand to any
output format (provided its semantics is included in the document model).
Another approach is to use a domain-specific template with dedicated GUI,
as shown in Fig. 3 (1’). For instance, a template for a story report could consist
in a repeatable structure of story steps. These steps could be instanciated from
existing template components such as an audio zone for phone calls, a text zone
for machine logs, The constraints of the template would guide the tech rep
in the creation of the document, reflected in the GUI by dedicated buttons or
menu items such as "add a story step”, ”insert a phone call record”, or a form-
based interface for adding titles or comments to multimedia content. In the
underneath manipulated model, the tight integration of template nodes in the
document ensures a smooth evolution from the template to the final document.

6 Conclusion

The model presented in this paper develops a practice-based approach to multi-
media authoring dedicated to communities where collaborative and participative
design is of high importance. It improves reusability with template definitions
and with the homogeneous structuring of documents. This document model is
being implemented as cross-platform java software. In the context of Palette, we
will use this model to develop dedicated authoring tools for pedagogical CoPs.

References

. Adobe Authorware 7 and Director MX 2004. http://www.adobe.com/products/.
. LimSee2. http://wam.inrialpes.fr/software/limsee2/.

. Oratriz Grins. http://www.oratrix.com/.

. Palette. http://palette.ercim.org/.

W3C SMIL. http://www.w3.org/AudioVideo/.

J. S. Brown and P. Duguid. Organizational learning and communities-of-practice:

Toward a unified view of working, learning and innovation. Journal Information

for Organization Science, 2(1):40-57, 1991.

9. M. Buchanan and P. Zellweger. Automatic temporal layout mechanisms. In ACM
Multimedia’93.

10. X. Hua, Z. Wang, and S. Li. LazyCut: Content-aware template based video au-
thoring. In ACM Multimedia’05.

11. M. Jourdan, N. Layaida, C. Roisin, L. Sabry, and L. Tardif. Madeus, an authoring
environment for interactive multimedia documents. In ACM Multimedia’98.

12. J. Orr. Sharing Knowledge, Celebrating Identity: War Stories and Community
Memory in a Service Culture, pages 169—189. Sage Publications.

13. H. Silva, R. Rodrigues, L. Soares, and D. M. Saade. NCL 2.0: integrating new
concepts to XML modular languages. In ACM DocEng’0/.

14. P. Sénac, M. Diaz, A. Léger, and P. de Saqui-Sannes. Modeling logical and temporal
synchronization in hypermedia. IEEE J. on Sel. Areas in Comm., 14(1), 1996.

15. G. van Rossum, J. Jansen, K. Mullender, and D. Bulterman. CMIFed : a presen-

tation environment for portable hypermedia documents. In ACM Multimedia’93.

90N Do W

Authoring in XMT. http://www.research.ibm.com/mpeg4/Projects/ AuthoringXMT/.

MS Producer for PowerPoint. http://www.microsoft.com /office /powerpoint /producer/.

