CEUR-WS.org/Vol-2252/paper6.pdf

Conflict History Based Branching Heuristic
for CSP Solving*

Djamal Habet and Cyril Terrioux

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

{djamal.habet,cyril.terrioux}@univ-amu.fr

Abstract. An important feature in designing algorithms to solve Con-
straint Satisfaction Problems (CSP) is the definition of a branching
heuristic to explore efficiently the search space and exploit the prob-
lem structure. We propose Conflict-History Search (CHS), a new dy-
namic and adaptive branching heuristic for CSP solving. It is based on
the search history by considering the temporality of search failures. To
achieve that, we use the exponential recency weighted average to esti-
mate the evolution of the hardness of constraints throughout the search.
The experimental evaluation on XCSP3 instances shows that integrat-
ing CHS to solvers based on MAC obtains competitive results and can
improve those obtained through other heuristics of the state of the art.

Keywords: CSP - Conflict Based Branching Heuristic - Search History
- Exponential Recency Weighted Average

1 Introduction

The Constraint Satisfaction Problem (CSP) is a powerful framework to model
and efficiently solve problems that occur in various fields, both academic and
industrial [21]. A CSP instance is defined on a set of variables which must be
assigned in their respective finite domains by satisfying a set of constraints which
express restrictions between different assignments. A solution is an assignment
of each variable which satisfies all constraints.

CSP solving has made significant progress in recent years thanks to research
on several aspects which receive considerable efforts such as global constraints,
filtering techniques, learning and restarts. An important component in CSP
solvers is the variable branching rule. Indeed, the corresponding heuristics de-
fine, statically or dynamically, the order in which the variables will be assigned
and thus the way that the search space will be explored.

Many heuristics have been proposed (e.g. [14,6,7,9,18,20]) and aim to
satisfy the famous first-fail principle [8] which advises ”to succeed, try first where
you are likely to fail”. Nowadays, the most efficient heuristics are adaptive and
dynamic [3,6,9,18,20]. Indeed, the order of branchings is defined according to

* This work has been funded by the french Agence Nationale de la Recherche, reference

ANR-16-C40-0028.

2 D. Habet and C. Terrioux

the collected information since the beginning of the search. For instance, some
heuristics consider the effect of filtering when decisions and propagations are
applied [18,20]. Defined since 2004, the dom/wdeg heuristic remains one of the
simplest, the most popular and efficient one. It is based on the hardness of
constraints to reflect how often a constraint fails. It uses a weighting process
to focus on the variables appearing in constraints with high weights which are
assumed to be hard to satisfy [3].

In this paper, we propose Conflict-History Search (CHS), a new dynamic
and adaptive branching heuristic for CSP solving. It is based on the history of
search failures which happen as soon as a domain of a variable is emptied after
constraint propagations. The goal is to reward the scores of constraints that have
recently been involved in conflicts and therefore to favor the variables appearing
in these constraints. The scores of constraints are estimated on the basis of the
exponential recency weighted average technique which comes from reinforcement
learning [24]. It was also recently used in defining powerful branching heuristics
for solving the satisfiability problem (SAT) [15,16]. We have integrated CHS in
solvers based on MAC [22] and BTD [12]. The empirical evaluation on XCSP3
instances shows that CHS is competitive and brings improvements to the heuris-
tics of the state of the art.

The paper is organized as follows. Section 2 includes some necessary defini-
tions and notations. Section 3 describes related work on branching heuristics for
CSP and SAT. Section 4 presents and details our contribution which is evaluated
experimentally in Section 5. Finally, we conclude and give future work.

2 Preliminaries

We give some definitions including CSP and Exponential Recency Weighted
Average (ERWA).

2.1 Constraint Satisfaction Problem

An instance of a Constraint Satisfaction Problem (CSP) is given by a triple
(X, D, (), such that:

— X ={z1, - ,zn} is a set of n variables,
— D ={Dy,...,D,} is a set of finite domains, and
— C={ec1, - ,c.} is aset of e constraints.

Each constraint ¢; is defined by S(¢;) and R(c;), where S(¢;) = {4, , 24, } C
X defines the scope of ¢; and R(¢;) C Dy, x---x D;, is its compatibility relation.
The constraint satisfaction problem asks for an assignment of a value from D;
to each variable z; of X that satisfies each constraint in C'. Checking whether a
CSP instance has a solution (i.e. a consistent assignment of X) is NP-complete.

Conflict History Based Branching Heuristic for CSP Solving 3

2.2 Exponential Recency Weighted Average

Given a time series of m numbers y = (y1, Y2, - ,Ym), the simple average of y
is > %yl where each y; has the same weight % However, recent data may
be more pertinent than the older ones to characterize the current situation. The
Exponential Recency Weighted Average (ERWA) [24] takes into account such
considerations by giving to the recent data higher weights than the older ones.
In fact, the ezponential moving average yp, is computed by: g, = > 10 a.(1 —
a)™ Ly, where 0 < a < 1 is a step-size parameter which controls the relative
weights between recent and past data. The moving average can also be calculated
incrementally by the formula: gp+1 = (1 — @).m + @ Ymt1-

ERWA was used to solve the bandit problem to estimate the expected reward
of different actions in non-stationary environments [24]. In bandit problems,
there is a set of actions and the agent must select the action to play in order to
maximize its long term expected reward.

3 Related Work

We present the most efficient branching heuristics for CSP and SAT. The recalled
heuristics share the same behavior. Indeed, the variables and/or constraints are
weighted dynamically throughout the search by considering the collected infor-
mation since the beginning of the search. Also, some heuristics smooth (or decay)
these weights as it will be explained further.

3.1 Impact-Based Search (IBS)

This heuristic selects the variable which leads to the largest search space reduc-
tion [20]. This impact on the search space size is approximated as the reduction
of the product of the variable domain sizes. Formally, the impact of assigning
the variable x; to the value v; € D; is defined by I(z; = v;) =1 — %. Pytter
and Pyeyfore are respectively the products of the domain cardinalities after and
before branching on x; = v; and applying constraint propagations.

3.2 Conflict-Driven Heuristic

A popular branching heuristic for CSP solving is dom/wdeg [3]. It guides the
search towards the variables appearing in the constraints which seem to be hard
to satisfy. For each constraint c¢;, the dom/wdeg heuristic maintains a weight
w(c;) (initially set to 1) counting the number of times that ¢; has led to a
failure (i.e. the domain of a variable x; in S(c;) is emptied during propagation
thanks to ¢;). The weighted degree of a variable x; is defined as:

wdeg(z;) = Z w(c;)

c; €C|z€S(c;j)N |Uvars(cj)|>1

4 D. Habet and C. Terrioux

with Uvars(c;) the set of unassigned variables in S(c;). The dom/wdeg heuristic
selects the variable z; to branch on with the smallest ratio |D;|/wdeg(x;), such
that D; is the current domain of x; (potentially, the size of D; may be reduced
by the propagation process in the current step of the search). The constraint
weights are not smoothed in dom/wdeg. Variants of dom/wdeg were introduced
(for example, see [9]).

3.3 Activity-Based Heuristic (ABS)

This heuristic is motivated by the prominent role of filtering techniques in CSP
solving [18]. It exploits this filtering information and maintains measures of
how often the variable domains are reduced during the search. Indeed, at each
node of the search tree, constraint propagation may filter the domains of some
variables after the decision has been made. Let X be the set of such variables.
Accordingly, the activities A(x;) (initially set to 0) of the variables x; € X are
updated as follows: A(x;) = A(z;) +1if z; € Xy and A(z;) = v x A(z;) if
x; & Xy. v is a decay parameter, such that 0 <~ < 1. The ABS heuristic selects
the variable x; with the highest ratio A(z;)/|D;|.

3.4 Branching Heuristics for SAT

In the context of the satisfiability problem (SAT), modern solvers based on
Conflict-Driven Clause Learning (CDCL) [5,17,19] employ variable branching
heuristics correlated to the ability of the variable to participate in producing
learnt clauses when conflicts arise (a conflict is a clause falsification). The Vari-
able State Independent Decaying Sum (VSIDS) heuristic [19] maintains an activ-
ity value for each Boolean variable. The activities are modified by two operations:
the bump (increase the activity of variables appearing in the process of generat-
ing a new learnt clause when a conflict is analyzed) and the multiplicative decay
of the activities (often applied at each conflict). VSIDS selects the variable with
the highest activity to branch on.

Recently, a conflict history based branching heuristic (CHB) [15], based on
the exponential recency weighted average, was introduced. It rewards the activi-
ties to favor the variables that were recently assigned by decision or propagation.
The rewards are higher if a conflict is discovered!. The Learning Rate Branch-
ing (LRB) heuristic [16] extends CHB by exploiting locality and introducing the
learning rate of the variables.

4 Conflict-History Search for CSP

Inspired by the CHB heuristic for SAT, we define a new branching heuristic for
CSP solving which we call Conflict-History Search (CHS). The central idea is

! Regarding constraint programming, the Gecode solver implements CHB since version
5.1.0 released in April 2017 [23]. Similarly to SAT, the variables of a CSP instance
are weighted according to ERWA in Gecode.

Conflict History Based Branching Heuristic for CSP Solving 5

to consider the history of constraint failures and favor the variables that often
appear in recent failures. So, the conflicts are dated and the constraints are
weighted on the basis of the exponential recency weighted average. These weights
are coupled to the variable domains to calculate the Conflict-History scores of
the variables.

4.1 CHS Description

Formally, CHS maintains for each constraint c; a score ¢(c;) which is initialized
to 0 at the beginning of the search. If ¢; leads to a failure during the search
because the domain of a variable in S(c;) is emptied by propagation then g¢(c;)
is updated by the formula below derived from ERWA:

q(¢;) = (1 = a) x q(¢;) + a x r(c;)

The parameter 0 < o < 1 is the step-size and r(c;) is the reward value. It defines
the importance given to the old value of ¢ at the expense of the reward r. The
value of a decreases over time as it is applied in ERWA [24]. Indeed, starting
from its initial value ag, o decreases by 107 at each constraint failure to a
minimum of 0.06. Decreasing the a value amounts to giving more importance
to the last value of ¢ and considering that the values of ¢ are more and more
relevant as the search progresses.

The reward value r(c;) is based on how recently ¢; occurred in conflicts. The
goal is to give a higher reward to constraints that fail regularly over short periods
of time during the search space exploration. The reward value is calculated
according to the formula:

1
~ #Conflicts — Conflict(cj) + 1

r(cs)

Initialized to 0, #Con flicts is the number of conflicts which have occurred since
the beginning of the search. Also initialized to 0 for each constraint ¢; € C,
Conflict(c;) stores the last #Conflicts value where ¢; led to a failure. Once
r(c;) and ¢(c;) are updated, #Con flicts is incremented by 1.

At this stage, we are able to define the Conflict-History score of the variables
x; € X, which will be used in selecting the branching variable as follows:

q(c;)
c; €Clx;€S8(cj)AN|Uvars(c;)|>1

| D

chv(x;) =

CHS keeps the variable to branch on with the highest chv value. In this manner,
CHS focuses branching on the variables with small size of domain while belonging
to constraints which appear recently and repetitively in conflicts.

One can observe that at the beginning of the search, all the variables have
the same score equal to 0. To avoid random selection of the branching variable,

6 D. Habet and C. Terrioux

we reformulate the calculation of chv as given below, where ¢ is a positive real
number close to 0.

(q(¢;) +9)

c¢;€Clz;€S(cj)AN|Uvars(c;)|>1
| D

chv(z;) =

Thus, at the beginning of the search, the branching will be oriented according
to the degree of the variables without having a negative influence on the ERWA-
based calculation later in the search.

4.2 CHS and Restarts

Nowadays, restart techniques are important for the efficiency of solving algo-
rithms (see for example [13]). Restarts may allow to reduce the impact of irrele-
vant choices done during search according to heuristics such as variable selection.

As it will be detailed in the next section, CHS is integrated into CSP solving
algorithms which include restarts. In the corresponding implementations, the
Conflict(c;) value of each constraint c¢; is not reinitialized when a restart oc-
curs. It is the same for g(c;) (however, a smoothing may be applied and will be
explained later). Keeping this information unchanged reinforces learning from
the search history.

Concerning the step-size «, which defines the importance given to the old
value of ¢(c;) at the expense of the reward r(c;), CHS reinitializes the step-size
value «a to o at each restart. This may guide the search through different parts
of the search space.

4.3 CHS and Smoothing

At each conflict and as in the dom/wdeg heuristic, CHS updates the chv score of
one constraint at a time: the constraint ¢; which is used to wipe out the domain
of a variable in S(c;). As long as they do not appear in new conflicts, some
constraints can have their weights unchanged for several search steps. These
constraints may have high scores while their importance does not seem high for
the current part of the search. To avoid this situation, we propose to smooth
the scores g(c;) of all the constraints ¢; € C at each restart by the following
formula:

q(cj) _ q(Cj) % 0.995#Conflicts7Conflict(0j)

Hence, the scores of constraints are decayed according to the date of their last
appearances in conflicts. Decaying is also used in other heuristics such as ABS
[18] for CSP and VSIDS [19] for SAT. However, it is applied to the score of the
variables and not that of the constraints (or clauses).

Conflict History Based Branching Heuristic for CSP Solving 7
5 Experimental Evaluation

5.1 Experimental Protocol

We consider 10,785 instances from the XCSP3 repository?, including notably
structured instances and discarding fully random instances. This latter restric-
tion is quite natural since adaptive heuristics aim to exploit the underlying
structure of the instances to solve.

Regarding the solving step, we exploit MAC with restarts [14]. MAC uses
a geometric restart strategy based on the number of backtracks with an initial
cutoff set to 100 and an increasing factor set to 1.1. In order to make the com-
parison fair, the lexicographic ordering is used for the choice of the next value to
assign. Furthermore, no probing process is used for any heuristic for parameter
tuning.

All the algorithms are written in C++. The experiments are performed on
Dell PowerEdge M610 blade servers with Intel Xeon E5620 processors under
Ubuntu 18.04. Each solving process is allocated a slot of 30 minutes and at
most 12 GB of memory per instance. In the following tables, #solv denotes the
number of solved instances by a given solver and time is the cumulative runtime.

5.2 Impact of CHS Settings

In this part, we assess the sensitivity of CHS with respect to the chosen values
for a or §. First, we fix 6 to 10™* (to start the search by considering the variable
degrees then quickly exploit ERWA-based computation) and vary the value of ag
between 0.1 and 0.9 with a step of 0.1. Figure 1 presents the number of instances
solved by MAC depending on the value of cg and the corresponding cumulative
runtime. We also provide the results of the Virtual Best Solver (VBS) when
varying the value of «.

T T T T T T T 520

T T T
9600 #solved instances HEBEM cumulative runtime I
-1 510
9500 -
- 500
9400

-1 490
9300 -

- 480
9200 [~

#instances
runtime (h)

9100 -1 470

9000 - 460

8900 - 4 450

01 02 03 04 05 06 07 08 09 VBS

Fig. 1. Number of instances solved by MAC+CHS depending on the initial value of «
and cumulative runtime in hours for all the instances.

2 http://www.xcsp.org/series

8 D. Habet and C. Terrioux

‘We can observe that the value ag = 0.4 allows MAC to solve more instances
(9,525 solved instances with a cumulative solving time of 493 hours) than the
other considered values. The worst case is g = 0.7 with 9,515 solved instances
in 496 hours. This shows the robustness of CHS w.r.t. the o parameter.

Regarding the VBS, we note that it can solve 64 additional instances than
MAC+CHS when ap = 0.4. Among these instances, some of them seem to be
hard. Indeed, often, only one of the checked values of a allows MAC to solve
them and the required runtime generally exceeds several minutes. Therefore, a
finer adjustment of the value of ag or its adaptation to the treated instance
would allow MAC+CHS to perform even better.

Now, we set ag to 0.4 and evaluate different values of §. From Table 1, the
observations are similar to those presented previously, showing the robustness of
CHS regarding §. Also, it is interesting to highlight that MAC+CHS with 6 = 0
solves 9,517 instances while it solves 9,525 instances if § = 10~%. This illustrates
the relevance of introducing ¢ in CHS.

Table 1. Impact of § value on MAC+CHS

#solv.|time (h)
0 9,517| 498.17
1075] 9,520| 494.07
1074 9,525| 493.41
1073] 9,524| 493.91

Table 2 gives the results of MAC+CHS (ag = 0.4, § = 10~%) with smoothing
(+s) or not (-s) the constraint scores and/or with resetting (+r) or not (-r) the
value of o to 0.4 at each new restart. The observed behaviors clearly support
the importance of these two operations for CHS. For example, MAC+CHS-s-r
solves 43 less instances than MAC+CHS.

Table 2. Impact of smoothing the scores and « resetting on MAC+CHS

#solv.[time (h)
MAC+CHS-s-r | 9,482 514.73
MACHCHS-s+r| 9,478 518.05
MAC+CHS+s-r| 9,509 498.80
MAC+CHS 9,5625| 493.41

5.3 CHS vs. Other Search Heuristics

Now, we compare CHS (ag = 0.4, 6 = 107%) to other search strategies: dom /wdeg,
ABS and CHB as implemented in Gecode. For ABS, we fix the decay parameter

Conflict History Based Branching Heuristic for CSP Solving 9

v to 0.999 as in [18]. For CHB, we use the value parameters as given in [23]. We
add a variant dom/wdeg+s which is dom/wdeg but the weights of constraints
are smoothed exactly as in CHS.

Table 3. MAC+CHS vs. MAC with other heuristics

#solv.|time (h)
MAC+Hdom/wdeg 9,501| 507.17
MAC+Hdom/wdeg+s| 9,500 505.13

MAC+ABS 9,476 515.17
MAC+CHB 9,458| 525.38
MAC+CHS 9,525| 493.41

From Table 3, it is clear that MAC with CHS performs better than with
the other heuristics. Indeed, it solves 24 instances more than MAC+dom /wdeg,
49 instances more than MAC+ABS and 67 instances more than MAC+CHB.
Interestingly, whatever the value of ay, MAC with CHS remains better than
all its competitors. Indeed, the worst case is when oy = 0.7 where MAC+CHS
solves 9,515 instances. Moreover, the results obtained by MAC+CHB show that
the calculation of weights by ERWA on the constraints (as done in CHS) is more
relevant than its calculation on the variables (as done in CHB). Furthermore,
the smoothing phase introduced in dom/wdeg allows MAC+dom/wdeg+s to
reduce slightly the computation time when compared to MAC+dom /wdeg, while
solving one less instance.

Table 4. Results on some instance families. Cumulative solving times are in seconds.

Family dom /wdeg ABS CHB CHS

Origin Name #inst. | #solv. [time (s) |#solv.[time (s)|#solv.[time (s)|#solv.[time (s)
Alllnterval-m1-s1 32 25| 15,406 32 9 32 9 32 9
Blackhole-xcsp2-s04 10 10 5.51 10 4.82 10 5.15 10 5.46
Dubois-m1-s1 30 10| 38,249 16| 28,639 10| 38,111 11| 37,234
GracefulGraph-m1-s1 104 17| 160,007 16| 160,090 16| 160,355 18| 155,667
Kakuro-sumdiff-hard 187 187 285 185 4,216 180| 15,044 187 811

Academic |Nonogram-table-s1 176 167 1,991 168 34.56 168 35.19 168| 331.67
PigeonsPlus-m1-s1 38 37 4,860 29| 20,120 37 5,192 37 4,878
Sat-xcsp2-bme 24 24 1,816 24 518 20 51 24 4,708
Subisomorphism-m1-LV 1,176| 1,100| 151,661| 1,108| 136,868| 1,101|147,664| 1,109 134,787
SuperSolutions-Taillard-os05 30 23| 14,102 19 20,036 26| 11,125 21| 16,386
TravellingSalesman-xcsp2-s20a4 15 15 64.29 15 60.77 15| 311.45 15| 116.59
OpenStacks 76 40 4,663 40 6,342 41 5,757 41 5,007
Real-world | RenaultMod-m1-s1 50 50 1.70 50 0.61 50 0.99 50 0.52
SocialGolfers-xcsp2-s1 12 4| 14,576 4| 16,300 5| 14,030 6| 11,404

Table 4 provides the results of MAC variants on some instance families chosen
form a representative panel of our benchmark and allow to show the different
trends we observed. First, we can note that no heuristic is always better than
the others. However, if we sort the heuristics with respect to the number of
solved instances per family, CHS is ranked at the first place for 88% of the
141 considered families, by performing better or similarly than the two other
heuristics. This percentage exceeds respectively 93% and 99% if we consider
the first two places or the first three places. Hence, CHS is clearly competitive.

10 D. Habet and C. Terrioux

Also, one might think that dom/wdeg performs worse than ABS and CHB. This
impression is explained by the fact that, when MAC+dom/wdeg is better on
a given family, it solves only few additional instances. In contrast, when it is
outperformed, this is done by several additional solved instances. Finally, if we
compare the results on the instances labeled real-world in the XCSP3 repository,
we observe that MAC with CHS solves more instances and performs faster,
between 10% and 30%, than any other combination.

5.4 CHS and Tree-Decomposition

We now assess the behavior of CHS when the search is guided by a tree-
decomposition. Studying this question is quite natural since CHS aims at ex-
ploiting the structure of the instance, but in a way different from what the tree-
decomposition does. With this aim in view, we consider BTD-MAC+RST+Merge
[10]. The parameters of BTD-MAC+RST+Merge are set like in [11] except the
variable heuristic which can be one of the two best heuristics considered previ-
ously, namely dom/wdeg or CHS.

Like for MAC, the solving is more efficient with CHS than with dom/wdeg.
Indeed, BTD-MAC+RST+Merge with CHS solves 9,525 instances (in 485 h)
against 9,495 instances (in 501 h) for dom/wdeg. This observation shows that
exploiting both CHS and tree-decomposition may be of interest and that these
two strategies can be complementary.

6 Conclusion

We have proposed CHS, a new branching heuristic for CSP based on the search
history and designed following techniques coming from reinforcement learning.
The experimental results confirm the relevance of CHS which is competitive with
the powerful heuristics dom/wdeg and ABS, when implemented in solvers based
on MAC or tree-decomposition exploitation.

The experimental study suggests that the o parameter value could be refined.
We will explore the possibility of defining its value depending on the instance to
be solved. Furthermore, similarly to the ABS heuristic, we will also consider to
include information provided by filtering operations in CHS.

References

1. Bessiere, C., Chmeiss, A., Sais, L.: Neighborhood-based variable ordering heuristics
for the constraint satisfaction problem. In: CP. pp. 565-569 (2001)

2. Bessiere, C., Régin, J.C.: MAC and Combined Heuristics: Two Reasons to Forsake
FC (and CBJ?) on Hard Problems. In: CP. pp. 61-75 (1996)

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAL pp. 146-150 (2004)

4. Brélaz, D.: New Methods to Color Vertices of a Graph. Communications of the
ACM 22(4), 251-256 (1979)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Conflict History Based Branching Heuristic for CSP Solving 11

Eén, N., Sorensson, N.: An Extensible SAT-solver. In: SAT. pp. 502-518 (2003)
Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems.
In: ECAL pp. 31-35 (1992)

Golomb, S.W., Baumert, L.D.: Backtrack programming. Journal of the ACM 12,
516-524 (1965)

Haralick, R.M., Elliot, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. AIJ 14, 263-313 (1980)

Hebrard, E., Siala, M.: Explanation-based weighted degree. In: CPAIOR. pp. 167—
175 (2017)

Jégou, P., Kanso, H., Terrioux, C.: Towards a Dynamic Decomposition of CSPs
with Separators of Bounded Size. In: CP. pp. 298-315 (2016)

Jégou, P., Kanso, H., Terrioux”, C.: BTD and miniBTD. In: XCSP3 Competition
(2017)

Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of
constraint networks. AIJ 146, 43-75 (2003)

Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In:
IJCAL pp. 131-136 (2007)

Lecoutre, C., Sals, L., Tabary, S., Vidal, V.: Recording and Minimizing Nogoods
from Restarts. JSAT 1(3-4), 147-167 (2007)

Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential Recency Weighted
Average Branching Heuristic for SAT Solvers. In: AAAI pp. 3434-3440 (2016)
Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning Rate Based Branch-
ing Heuristic for SAT Solvers. In: SAT. pp. 123-140 (2016)

Marques-Silva, J., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506-521 (August 1999)
Michel, L., Hentenryck, P.V.: Activity-based search for black-box constraint pro-
gramming solvers. In: CPAIOR. pp. 228-243 (2012)

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an Efficient SAT Solver. In: DAC. pp. 530-535 (2001)

Refalo, P.: Impact-based search strategies for constraint programming. In: CP. pp.
557-571 (2004)

Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming, Foun-
dations of Artificial Intelligence, vol. 2. Elsevier (2006)

Sabin, D., Freuder, E.C.: Contradicting Conventional Wisdom in Constraint Sat-
isfaction. In: ECAIL pp. 125-129 (1994)

Schulte, C.: Programming branchers. In: Schulte, C., Tack, G., Lagerkvist, M.Z.
(eds.) Modeling and Programming with Gecode (2018), corresponds to Gecode
6.0.1

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, USA, 1st edn. (1998)

