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Abstract. We present a Hilbert-style axiomatization of a paraconsistent
logic, called G′

3, recently introduced. G′
3 is based on a 3-valued seman-

tics. We prove a soundness and completeness theorem. The replacement
theorem holds in G′

3. As it has already been shown in previous work, G′
3

can express some nonmonotonic semantics.

1 Introduction

A 3-valued logic called G′
3 has been recently introduced to define a new semantics

for nonmonotonic reasoning [8]. Hence it is important to study such logic. As far
as we know there is no axiomatization of G′

3. Here, we present a Hilbert-style
axiomatization of G′

3. We prove a soundness and completeness theorem, and also
that the replacement theorem holds in G′

3.
The structure of our paper is as follows. Section 2 describes the general

background of the paper including the definition of G′
3 logic. In Section 3 we

present our proofs. Finally, in Section 4 we present the conclusions of the paper.

2 Background

We first introduce the syntax of logic formulas considered in this paper. Then
we present a few basic definitions of how logics can be built to interpret the
meaning of such formulas in order to, finally, give a brief introduction to several
of the logics that are relevant for the results of our later sections.

2.1 Syntax of Formulas

We consider a formal (propositional) language built from: an enumerable set L
of elements called atoms (denoted a, b, c, . . . ); the binary connectives ∧ (con-
junction), ∨ (disjunction) and → (implication); and the unary connective ¬
(negation). Formulas (denoted A, B, C, . . . ) are constructed as usual by com-
bining these basic connectives together. We also use A↔B to abbreviate (A→
B) ∧ (B → A) and, following the tradition in logic programing, A← B as an
alternate way of writing B→ A. A theory is just a set of formulas and, in this
paper, we only consider finite theories. Moreover, if T is a theory, we use the
notation LT to stand for the set of atoms that occur in the theory T .
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2.2 Logic Systems

We consider a logic simply as a set of formulas that, moreover, satisfies the
following two properties: (i) is closed under modus ponens (i.e. if A and A→B
are in the logic, then so is B) and (ii) is closed under substitution (i.e. if a formula
A is in the logic, then any other formula obtained by replacing all occurrences
of an atom b in A with another formula B is still in the logic). The elements
of a logic are called theorems and the notation `X A is used to state that the
formula A is a theorem of X (i.e. A ∈ X). We say that a logic X is weaker than
or equal to a logic Y if X ⊆ Y , similarly we say that X is stronger than or equal
to Y if Y ⊆ X.

Hilbert Style Proof Systems. There are many different approaches that have
been used to specify the meaning of logic formulas or, in other words, to define
logics. In Hilbert style proof systems, also known as axiomatic systems, a logic
is specified by giving a set of axioms (which is usually assumed to be closed
by substitution). This set of axioms specifies, so to speak, the ‘kernel’ of the
logic. The actual logic is obtained when this ‘kernel’ is closed with respect to
the inference rule of modus ponens. Examples of Hilbert style definitions will be
given in Section 2.3.

Given a theory T, the notation `X F for provability of a logic formula F in
the logic X, denotes the fact that the formula F can be derived from the axioms
of the logic and the formulas contained in T by a sequence of applications of
modus ponens. The well known result of the deduction theorem, which is valid
in the logics considered in this paper as explained in 2.3, gives an alternate
interpretation to this notation: A formula F is a logical consequence of T , i.e.
T `X F , if and only if `X (F1 ∧ · · · ∧ Fn)→ F for some formulas Fi ∈ T .

We furthermore extend this notation, for any pair of theories T and U , using
T `X U to state the fact that T `X F for every formula F ∈ U . If M is a set
of atoms we also write T 
X M when: T `X M and M is a classical 2-valued
model of T (i.e. atoms in M are set to true, and atoms not in M to false; the
set of atoms is a classical model of T if the induced interpretation evaluates T
to true).

Recall that, in all these definitions, the logic connectives are parameterized
by some underlying logic, e.g. the expression `X (F1 ∧ · · · ∧ Fn)→ F actually
stands for `X (F1 ∧X · · · ∧X Fn)→X F .

Multivalued Logics. An alternative way to define the semantics for a logic is by
the use of truth values and interpretations. Multivalued logics generalize the idea
of using truth tables to determine the validity of formulas in classical logic. The
core of a multivalued logic is its domain of values D, where some of such values
are special and identified as designated. Logic connectives (e.g. ∧, ∨, →, ¬) are
then introduced as operators over D according to the particular definition of the
logic.

An interpretation is a function I : L → D that maps atoms to elements in the
domain. The application of I is then extended to arbitrary formulas by mapping



first the atoms to values in D, and then evaluating the resulting expression in
terms of the connectives of the logic (which are defined over D). A formula is
said to be a tautology if, for every possible interpretation, the formula evaluates
to a designated value. The most simple example of a multivalued logic is classical
logic where: D = {0, 1}, 1 is the unique designated value, and connectives are
defined through the usual basic truth tables.

Note that in a multivalued logic, so that it can truly be a logic, the implication
connective has to satisfy the following property: for every value x ∈ D, if there
is a designated value y ∈ D such that y→ x is designated, then x must also be
a designated value. This restriction enforces the validity of modus ponens in the
logic. The inference rule of substitution holds without further conditions because
of the functional nature of interpretations and how they are evaluated.

2.3 Basic Logics

In this subsection we introduce positive and Cω logics.

Positive Logic Pos, is defined by the following set of axioms:

Pos1 a→ (b→ a)
Pos2 (a→ (b→ c))→ ((a→ b)→ (a→ c))
Pos3 a ∧ b→ a
Pos4 a ∧ b→ b
Pos5 a→ (b→ (a ∧ b))
Pos6 a→ (a ∨ b)
Pos7 b→ (a ∨ b)
Pos8 (a→ c)→ ((b→ c)→ (a ∨ b→ c))

Note that this axioms somewhat constraint the meaning of the →, ∧ and
∨ connectives to match our usual intuition. Positive logic however, as its name
suggests, does not contain formulas with negation.

It is a well known result that in any logic satisfying axioms Pos1 and Pos2,
and with modus ponens as its unique inference rule, the deduction theorem holds
[5]. This theorem holds, in particular, for all the logics considered in this paper.

The Cω logic, the weakest paraconsistent logic due to daCosta [3], is defined
as positive logic plus the following two axioms:

Cw1 a ∨ ¬a
Cw2 ¬¬a→ a

Note that a ∨ ¬a is a theorem of Cω (it is an axiom of the logic), while the
formula (¬a ∧ a)→ b is not. This non-theorem shows one of the motivations of
paraconsistent logics: they do allow, so to speak, ‘local inconsistencies’ (global
inconsistencies are disallowed as usual). All the paraconsistent logics that we
will consider in this paper share the same property. It follows that results such
as the contrapositive of implication, i.e. (a→ b)→ (¬b→¬a), are no longer valid
in paraconsistent logics.



2.4 Defining G3 and G′
3

Both logics, G3 and G′
3 are 3-valued logics where their truth values are 0,1 and

2 where 2 is the unique designated value.
We first define the truth tables for the → and ¬ connectives of the G3 and

G′
3 logics in Table 1. For more information about G3 read [9].

Table 1. Truth tables of connectives in G3 and G′
3.

x ¬G3x ¬G′
3
x

0 2 2
1 0 2
2 0 0

→ 0 1 2

0 2 2 2
1 0 2 2
2 0 1 2

Conjunction and disjunction are defined as the min and max functions, re-
spectively.

In [2], G′
3 is introduced only to prove that a∨ (a→ b) is not a theorem of Cω.

It is quite obvious but still interesting to observe that in G′
3 one can still

express the G3 logic, since ¬G3a = a→G′
3
(¬G′

3
a ∧ ¬G′

3
¬G′

3
a).

3 Axiomatization of G′
3

We present a Hilbert-style axiomatization of G′
3. Our logic has 3 primitive logical

conectives, namely →, ∧, and ¬. We also have several defined conectives.

1. A ∨B := ((A→B)→B) ∧ ((B→A)→A).
2. 4A := (A→¬¬A).
3. ∇A := ¬4A.

From now on the symbol ` will stand for `G′
3
, unless otherwise stated. Logic

G′
3 has all the axioms of Cω logic plus the following:

E1 (4β ∧ β)→ (4¬β ∧ ¬¬β)
E2 ∇β→ (4¬β ∧ ¬β)
E3 ¬¬¬β ↔ ¬β
E4 (4β ∧ ¬β)→ (4(β→ θ) ∧ (β→ θ))
E5 (4θ ∧ θ)→ (4(β→ θ) ∧ (β→ θ))
E6 (∇β ∧4θ ∧ ¬θ)→ (4(β→ θ) ∧ ¬(β→ θ))
E7 (∇β ∧∇θ)→ (4(β→ θ) ∧ (β→ θ))
E8 (4β ∧ β ∧∇θ)→∇(β→ θ)
E9 (4β ∧ β ∧4θ ∧ ¬θ)→ (4(β→ θ) ∧ ¬(β→ θ))
E10 (4β ∧ ¬β)→ (4(β ∧ θ) ∧ ¬(β ∧ θ))
E11 (4θ ∧ ¬θ)→ (4(β ∧ θ) ∧ ¬(β ∧ θ))
E12 (∇β ∧∇θ)→∇(β ∧ θ)
E13 (∇β ∧ (4θ ∧ θ))→∇(β ∧ θ)



E14 (∇θ ∧ (4β ∧ β))→∇(β ∧ θ)
E15 ((4β ∧ β) ∧ (4θ ∧ θ))→ (4(β ∧ θ) ∧ (β ∧ θ))

A simple but useful result is the following.

Theorem 1. Let Γ and ∆ be two set of formulas. Let θ, θ1, θ2, α, and ψ be
arbitrary formulas. Then the following basic properties hold.

1. Γ ` α implies Γ ∪∆ ` α
2. Γ, θ ` α iff Γ ` θ→ α
3. Γ ` θ1 ∧ θ2 iff Γ ` θ1 and Γ ` θ2
4. Γ, θ ` α and Γ,¬θ ` α iff Γ ` α
5. Γ ` α and ∆,α ` ψ then Γ ∪∆ ` ψ

Proof.

1. It follows directly from the definition of proof.
2. Since we have axioms Pos 1 and Pos 2 and modus ponens, then The Deduc-

tion Theorem holds. So the implication “Γ, θ ` α then Γ ` θ → α” follows
from The Deduction Theorem and the converse follows from monotonicity
(part 1 in this theorem).

3. The first implication follows from axioms Pos 3, Pos 4 and modus ponens;
The converse follows from axiom Pos 5 and modus ponens.

4. Suppose that Γ, θ ` α and Γ,¬θ ` α, by part 2 on this theorem, we have
Γ ` θ → α and Γ ` ¬θ → α. Then, by Pos 8 we obtain Γ ` (θ∨¬θ)→ α.
Since a ∨ ¬a is an axiom of Cω, we obtain the result. The converse follows
from monotonicity (part 1 on this theorem).

5. Since ∆,α ` φ, then there exist formulas β1, β2, . . . , βn such that βn = φ
and each βi is an axiom or βi ∈ ∆ or βi = α or βi is a direct conse-
quence of preceding formulas. Also, since Γ ` α, then there exist for-
mulas γ1, γ2, . . . , γm such that that γm = α and each γi is an axiom or
γi ∈ Γ or γi is a direct consequence of preceding formulas. Then we have
that β1, β2, · · · , γ1, γ2, · · · , γm, · · · , βn is a proof in Γ ∪ ∆ of φ. Therefore,
Γ ∪∆ ` φ.

Theorem 2. (Soundness) Every theorem in G′
3 is a tautology in G′

3.

Proof. Every axiom is logically valid and modus ponens preserves validity.

3.1 Completeness

Definition 1. Given a 3-valuation v of G′
3, we define for each formula A an

associated formula Av as follows:

1. Av := 4A ∧A, if v(A) = 2.
2. Av := ∇A, if v(A) = 1.
3. Av := 4A ∧ ¬A, if v(A) = 0.

For a set Γ of formulas, we write Γv to denote the set of formulas {αv : α ∈ Γ}.



Lemma 1. Given a formula α, whose set of atomic formulas is ∆, the following
holds: ∆v ` αv.

Proof. The proof is by induction on the size of α, and is modeled after Kalmar‘s
Lemma [5].

Base Case: α is an atomic formula, say p. Hence we need to show that pv ` pv,
but this immediately true.
Inductive step: Suppose that α is a non atomic formula. Then, we have 3 cases:

(Case ¬) Suppose that α is of the form ¬β. By inductive hypothesis we know
that ∆v ` βv. We need to consider 3 subcases:
v(β) = 2. Hence ∆v ` 4β ∧ β. Since v(α) = 0, we need to show that ∆v `
4α∧¬α, that is ∆v ` 4¬β∧¬¬β. It suffices to show that4β∧β ` 4¬β∧¬¬β.
It follows directly from the axioms.
v(β) = 1. Hence ∆v ` ∇β. Since v(α) = 2, we need to show that ∆v ` 4α ∧ α,
that is ∆v ` 4¬β ∧ ¬β. It suffices to show that ∇β ` 4¬β ∧ ¬β. It follows
directly from the axioms.
v(β) = 0. Hence ∆v ` 4β ∧ ¬β. Since v(α) = 2, we need to show that ∆v `
4α∧α, that is ∆v ` 4¬β ∧¬β. It suffices to show that 4β ∧¬β ` 4¬β ∧¬β.
It follows directly from the axioms.

(Case →) Suppose that α is of the form β → θ. By inductive hypothesis we
know that ∆v ` βv, and ∆v ` θv. We need to consider 6 subcases:
v(β) = 0. Hence ∆v ` 4β ∧ ¬β. Since v(α) = 2, we need to show that
∆v ` 4α ∧ α, that is ∆v ` 4(β → θ) ∧ (β → θ) It suffices to show that
4β ∧ ¬β ` 4(β→ θ) ∧ (β→ θ). It follows directly from the axioms.
v(θ) = 2. Hence ∆v ` 4θ∧θ. Since v(α) = 2, we need to show that ∆v ` 4α∧α,
that is∆v ` 4(β→θ)∧(β→θ) It suffices to show that4θ∧θ ` 4(β→θ)∧(β→θ).
It follows directly from the axioms.
v(β) = 1, v(θ) = 0. Hence ∆v ` ∇β and ∆v ` 4θ ∧¬θ. Since v(α) = 0, we need
to show that ∆v ` 4α ∧ ¬α, that is ∆v ` 4(β→ θ) ∧ ¬(β→ θ). It suffices to
show that (∇β ∧4θ ∧ ¬θ) ` 4(β→ θ) ∧ ¬(β→ θ). It follows directly from the
axioms.
v(β) = 1, v(θ) = 1. Hence ∆v ` ∇β and ∆v ` ∇θ. Since v(α) = 2, we need to
show that ∆v ` 4α ∧ α, that is ∆v ` 4(β → θ) ∧ (β → θ). It suffices to show
that (∇β ∧∇θ) ` 4(β→ θ) ∧ (β→ θ). It follows directly from the axioms.
v(β) = 2, v(θ) = 1. Hence ∆v ` 4β ∧ β and ∆v ` ∇θ. Since v(α) = 1, we
need to show that ∆v ` ∇α, that is ∆v ` ∇(β → θ). It suffices to show that
4β ∧ β ∧∇θ ` ∇(β→ θ). It follows directly from the axioms.
v(β) = 2, v(θ) = 0. Hence ∆v ` 4β ∧ β and ∆v ` 4θ ∧ ¬θ. Since v(α) = 0, we
need to show that ∆v ` 4α∧¬α, that is ∆v ` 4(β→ θ)∧¬(β→ θ). It suffices
to show that 4β ∧ β ∧4θ ∧¬θ ` 4(β→ θ)∧¬(β→ θ). It follows directly from
the axioms.

(Case ∧) Suppose that α is of the form β ∧ θ. By inductive hypothesis we know



that ∆v ` βv, and ∆v ` θv. We need to consider 6 subcases:
v(β) = 0. Hence ∆v ` 4β ∧ ¬β. Since v(α) = 0, we need to show that
∆v ` 4α ∧ ¬α, that is ∆v ` 4(β ∧ θ) ∧ ¬(β ∧ θ). It suffices to show that
4β ∧ ¬β ` 4(β ∧ θ) ∧ ¬(β ∧ θ). It follows directly from the axioms.
v(θ) = 0. Hence ∆v ` 4θ ∧ ¬θ. Since v(α) = 0, we need to show that ∆v `
4α ∧ ¬α, that is ∆v ` 4(β ∧ θ) ∧ ¬(β ∧ θ). It suffices to show that 4θ ∧ ¬θ `
4(β ∧ θ) ∧ ¬(β ∧ θ). It follows directly from the axioms.
v(β) = 1, v(θ) = 1. Hence ∆v ` ∇β and ∆v ` ∇θ. Since v(α) = 1, we
need to show that ∆v ` ∇α, that is ∆v ` ∇(β ∧ θ). It suffices to show that
(∇β ∧∇θ) ` ∇(β ∧ θ). It follows directly from the axioms.
v(β) = 1, v(θ) = 2. Hence ∆v ` ∇β and ∆v ` 4θ ∧ θ. Since v(α) = 1, we
need to show that ∆v ` ∇α, that is ∆v ` ∇(β ∧ θ). It suffices to show that
∇β ∧ (4θ ∧ θ) ` ∇(β ∧ θ). It follows directly from the axioms.
v(β) = 2, v(θ) = 1. Hence ∆v ` ∇θ and ∆v ` 4β ∧ β. Since v(α) = 1, we
need to show that ∆v ` ∇α, that is ∆v ` ∇(β ∧ θ). It suffices to show that
∇θ ∧ (4β ∧ β) ` ∇(β ∧ θ). It follows directly from the axioms.
v(β) = 2, v(θ) = 2. Hence ∆v ` 4β ∧ β and ∆v ` 4θ ∧ θ Since v(α) = 2, we
need to show that ∆v ` 4α ∧ α, that is ∆v ` 4(β ∧ θ) ∧ (β ∧ θ) It suffices to
show that (4β ∧ β)∧ (4θ ∧ θ) ` 4(β ∧ θ)∧ (β ∧ θ). It follows directly from the
axioms.

Theorem 3. (Completeness) Every tautology in G′
3 is a theorem in G′

3.

Proof. LetA ba a tautology en G′
3 and letB1, ..., Bn its atoms. Let {B1, , , , Bn−1} =

∆. For any values assigned to B1, ...Bn, we have: B1v, ..., Bnv ` A ∧4A
Let Bn take the values 0,1 and 2 respectively, according to Lemma 1 we obtain:
∆v,¬Bn ∧ (Bn→¬¬Bn) ` A
∆v,¬(Bn→¬¬Bn) ` A
∆v, Bn ∧ (Bn→¬¬Bn) ` A
Making use of A ∧ 4A ` A and property 4 in Theorem 1, twice, we obtain:
∆v ` A. The result follows after repeating the same argument several times.

It is also important to notice that our logic is different from other paraconsi-
tent logics, for example the one by da Costa’s C1. This can be seen from the fact
that the axiom scheme ¬(α ∧ ¬α) is not valid in C1 , but it is a theorem in G′

3.
Furthermore, Pierce’s Law is valid in C1 but not in G′

3. Also, we have already
seen in [8] that G′

3 is also different from Pac [1]. Finally, G′
3 is also different from

a paraconsisten four-valued logic introduced by [7], as it was shown in [8].

3.2 A Relevant property of G′
3

We define ↔ as usual, that means α↔ β is (α→ β) ∧ (β → α). For a pair of
formulas θ, α and an atom p, we write θ[α/p] for the formula obtained from θ
after replacing every occurrence of atom p in θ by the formula α.

Lemma 2. Let α1 and α2 be two formulas such that ` α1 ↔ α2. Let θ be a
formula and p an atom. Then ` θ[α1/p]↔ θ[α2/p].



Proof. By soundness and completeness it is enough to check that |= α1↔α2 then
|= θ[α1/p]↔ θ[α2/p]. This proof is done by induction on the size of θ and taking
into account the following property: If β1 and β2 are formulas, then |= β1↔ β2

iff for every 3-valuation v of G′
3 it holds that v(β1) = v(β2). The rest is a simple

exercise.

4 Conclusions

The proof presented here for the soundness and completeness theorem uses a
result analogous to Kalmar′s Lemma, as in the proof of the soundness and com-
pleteness theorem for Classical Logic in the introductory book by Mendelson [5].
We do not know of other axiomatization for G′

3 and so far, our work has not
gone further to find out about the possibility of reducing the number of axioms
presented here.
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