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An adaptable central pattern generator (CPG) that di-
rectly controls the rhythmic motion of multilegged robot
must combine plasticity and sustainable periodicity. This
combination requires an algorithm that searches the para-
metric space of the CPG and yields a non-stationary and
non-divergent solution. We model the CPG with the pi-
oneering Matsuoka’s neural oscillator which is (mostly)
non-divergent and provides constraints ensuring non-
stationarity. We embed these constraints into the CPG
formulation which we further implemented as a layer of
an artificial neural network. This enables the CPG to be
learnable by back-propagation algorithm while sustaining
the desirable properties. Moreover, the proposed CPG can
be integrated into more complex networks and trained un-
der different optimization objectives. In addition to the
theoretical properties of the developed system, its flexibil-
ity is demonstrated in successful learning of the tripod mo-
tion gait with its practical deployment on the real hexapod
walking robot.

1 Introduction

The movement of legged robots relies on synchronized
control of each its joint. Since these joints are part of
the same body, the velocity of each joint is dependent on
the position of all robot’s joints. The problem of generat-
ing such synchronized control signals gets harder with in-
creasing number of legs (or the number of joints per leg).
A widely used generator of such signals is a system of
interconnected Central Pattern Generators (CPGs). The
system based on CPGs can be described as two or more
coupled oscillators. CPGs appear in many vertebrates and
insects where they are responsible for controlling rhythmic
motions, such as swimming, walking or respiration [1, 2].
It also appears in biologically inspired robotics, where
CPGs are used for locomotion control of legged robots [3].

A CPG network can be modeled as a non-linear dy-
namic system with coupled variables. Such a non-linear
dynamic system is parameterized in the way that it con-
tains a stable limit cycle, but finding such a parametriza-
tion is difficult because an analytical description of the
high-dimensional non-linear dynamic system is hard or
impossible. Moreover, even a small change in the param-
eters can result in a sudden change of the system’s quali-
tative properties that can range from chaotic to stationary
and somewhere between is the desired periodic behavior.

Parameters of the CPG networks can be found ex-
perimentally (i.e., tuned manually or automatically by
evolutionary algorithms [4]) or they can be heuristically
designed. Such design-dependent methods make CPG
networks difficult to scale on other robotic bodies or
adapt to the locomotion control in different environments.
The scaling problem can be partially bypassed by pre-
computing a trajectory for each foot tip and employing in-
verse kinematics to determine the control signals for the
particular leg’s joints [5, 6]. However, the inverse kine-
matic depends on the robot’s body, and identification of
the parameters that have to be manually fine-tuned to en-
sure a proper behavior.

The motivation for the presented approach is to develop
a fully automatic CPG learning and this paper explores the
possibility of learning a CPG network modeled by Mat-
suoka’s neural oscillators [7] with back-propagation al-
gorithm (BP). To boost the BP algorithm that learns the
desired locomotion control for our multi-legged walking
robot, we propose two methods pruning the parameter
space of the CPG network.

The particular contributions presented in the paper are
considered as follows.

• A normalization layer that prunes the parameter
space from parametrization with stable stationary so-
lutions.

• An inductive learning method that exploits the struc-
ture of robot’s body and further reduces the searched
parametric space.

• Experimental evaluation of the proposed learning us-
ing real hexapod walking robot for which the pro-
posed CPG network learned by the designed algo-
rithm exhibits successful locomotion control follow-
ing tripod gait, where the developed CPG network
directly produces the control signal for each of 18 ac-
tuators of the robot.

2 Related Work

Different biomimetic approaches including CPGs [1], Re-
current Neural Networks [8] or Self-Adjusting Ring Mod-
ules [9] to produce rhythmic patterns have been studied
and deployed for locomotion control of robots [3] in recent
years. These approaches differ mainly in the complexity of
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the underlying model and have different levels of abstrac-
tion ranging from biomechanical models [10] simulating
membrane potentials and ion flows inside neurons, down
to a model of two coupled neurons in a mutual inhibi-
tion [11]. Amongst them, the CPGs based on Matsuoka’s
neural oscillator [7] are being used as the prevalent model.
Further details on the Matsuoka’s model are in Section 3
as we built on its properties [7, 12, 13] in our work.

Deployment of the CPG oscillators on legged robots is
also particularly difficult because of different kinematics
and dynamics of each robot. A different amount of post-
processing is used to translate the CPG outputs to joint
coordinates. Namely, approaches using inverse kinemat-
ics [5, 6] suffer from necessary hand fine-tuning of both
the parameters of CPG as-well-as kinematics. Besides, ex-
isting approaches are using the separate neural network as
motor control unit [11] or use CPG outputs directly as joint
angles [14]. Furthermore, CPGs can seamlessly switch be-
tween different output patterns, thus different gaits [15]
which further supports the direct joint control. In our
work, we use a dedicated output layer to shape the out-
puts of CPGs as we assume simple transformations of the
output signal are easier to learn by changing parameters of
the output layer while the gait change is in charge of the
CPG.

Parametrization of the oscillator can be found experi-
mentally, e.g., using evolutionary algorithms with fitness
function minimizing energy consumption [11], maximiz-
ing the velocity [4], or using parameter optimization [16].
Besides, a modified back-propagation algorithm has been
used on an adaptive neural oscillator in [17] to imitate an
external periodic signal by its output signal, but it fails
to sustain oscillations for complex waveforms. Further
works on the parameter constraining of CPGs to maintain
stable oscillations have been published [7,12,13,16]; how-
ever, to the best of our knowledge we are the first to teach
a network of CPGs to perform a locomotion gait of a hexa-
pod walking robot using back-propagation. Furthermore,
we propose two methods to prune the space of possible
CPG parameters.

3 Central Pattern Generator Network

The CPG network used in this paper is based on the Mat-
suoka’s neural oscillator [7]. Matsuoka’s neural oscillator
is a pair of symmetrically connected adaptive neurons, ex-
tensor, and flexor, that imitate the behavior of biological
neurons where after peaking, the neuron starts to repolar-
ize until its activation drops to resting potential. Features
of Matsuoka’s neurons were extensively studied; hence,
necessary conditions under which the neural network en-
ters the stable stationary state [7], effects of time-variant
tonic input [12], and approximation of oscillator’s funda-
mental frequency and amplitude [13] are well documented
in the literature. The description of the particular CPG
model used in this work is as follows.
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Figure 1: CPG unit connected to the CPG network.

3.1 CPG Model

The dynamics of the CPG network with N units can be
described by a set of equations

Tru̇e
i =−ue

i −w f eg(u f
i )−βve

i −
N

∑
j=1

wi jg(ue
j)+ ce

i , (1)

Tav̇e
i = g(ue

i )− ve
i , (2)

Tru̇
f
i =−u f

i −w f eg(ue
i )−βv f

i −
N

∑
j=1

wi jg(u
f
j )+ c f

i , (3)

Tav̇ f
i = g(u f

i )− v f
i , (4)

where the subscript i ∈ N denotes the particular CPG and
the superscript µ ∈ {e, f} distinguishes the extensor and
flexor neurons, respectively. Each tuple of the variables
ue

i ,v
e
i describes the dynamics of the extensor neuron. The

variable ue
i represents activation of the neuron and ve

i rep-
resents its self-inhibitory input, which makes this neuron
adaptive. Similarly u f

i ,v
f
i describe the dynamics of the

flexor neuron. The function g is a rectifier

g(x) = max(0,x) (5)

that is an activation function that adds non-linearity to the
system. Each neuron (i,µ) inhibits itself through the vari-
able vµ

i scaled by the parameter β > 0. The extensor-flexor
pair (i.e., the CPG unit) mutually inhibits itself through
the symmetric connection with the weight w f e > 0. Fi-
nally, the CPG units are inter-connected with the symmet-
ric inhibiting connections wi j ∈W for wi j ≥ 0 and wii = 0,
where W is a symmetric matrix. The only source of exci-
tation for this CPG network is the tonic input ce

i ,c
f
i (≥ 0)

which is given externally. In general, the tonic input may
be time-dependent and can be used to regulate the output
of the CPG network [12]. Tr and Ta (both > 0) are reac-
tion times for their respective variables. The structure of
the CPG unit is visualized in Fig. 1.

All the equations (1), (2), (3), and (4) are differentiable
except the cases when uµ

i = 0, since the rectifier is used as
the activation function. However, we assume this will not
cause any problems because the rectifier is used inside the
Rectified Linear Units (ReLU), which are widely used in
deep neural networks.
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Figure 2: The CPG network connected to the output layer
Out. Notice the output y is not fed back to the network.
Also notice that the self-inhibitory input u is not connected
to Out.

Note that except tonic inputs ce
i ,c

f
i , there are used only

inhibiting connections, because such a system is less prone
to become chaotic or divergent [13].

3.2 Output layer

In this work, we consider the self-inhibitory inputs ve,v f

as hidden variables, we do not work with them outside of
the CPG network. The output layer combines the activa-
tion variables ue,u f with the affine transformation

y =Woutu+bout , (6)

where u = (ue,u f ) and Wout ∈RN×2N ,bout ∈RN×1 are the
learnable parameters. The connection of the CPG network
and the output layer is illustrated in Fig. 2.

The main advantage of having Wout and bout as learnable
parameters are that the BP algorithm can scale and trans-
late the limit cycle formed by the CPG network. Here, we
assume that these transformations are easier to learn by
changing the parameters of the output layer than by chang-
ing parameters of the CPG network. It is because a change
of any parameter of the CPG network can generally cause
a non-linear change in the amplitude, frequency, and shift
of the generated signals [6]. Another advantage of the pro-
posed output layer is that it can develop complex signals
as it can combine outputs from different CPGs.

4 Proposed Locomotion Control Learning

In this section, we propose the normalization layer and in-
ductive learning method adapted to learning a CPG net-
work for a hexapod walking robot, see Fig. 3a. Each leg
of the robot has three joints called coxa, femur, and tibia
(see Fig. 3b) for which an appropriate control signal has
to be generated to control the locomotion of the robot. In
the total, the robot has 18 controllable joints and depend-
ing on the control signals; the robot can move with various
motion gaits [18], e.g., tripod, quadruped, wave, and pen-
tapod. During the locomotion, each leg is either in a swing
phase to reach a new foothold or in the stance phase in
which it supports the body. The motion gait prescribes the

(a)

Coxa Fe
m
ur

T
ib
ia

θC

θF

θT

(b)

Figure 3: (a) Hexapod robot with the numbered legs. (b)
Schema of the leg. Each leg consists of three parts – Coxa,
Femur, and Tibia.

order in which the swing and support phases alternate for
individual legs; hence, all the legs must work in coordina-
tion to simultaneously achieve the desired behavior. The
hexapod walking robot is thus used for benchmarking the
proposed learning method, where the CPG network has to
learn to generate control signals that realize the locomo-
tion control of the robot with the tripod motion gait.

4.1 Normalization layer

The proposed normalization layer is based on early exper-
iments with randomly parametrized CPG networks which
in most cases ends up oscillating or converges to a static
behavior. The static behavior is caused by the stable fixed
points that may appear in the corresponding dynamic sys-
tem. Therefore, we propose to employ a sufficient condi-
tion for the CPG network to be free of stable fixed points.

Condition. For a CPG network of N units, if all the values
of the tonic input cµ

i , where i ∈ N and µ ∈ {e, f}, are from
the range [cmin,cmax] and

w f e <
cmin

cmax
(1+β )−max

i∈N

(
N

∑
j

wi j

)
, (7)

w f e > 1+Tr/Ta (8)

then the CPG network has no stable fixed point.

Proof. First, we state adapted theorem from [7].

Theorem. Assume that for some i and k (i 6= k)

ci(1+β )−
2N

∑
j

ai jc j > 0, (9)

ck(1+β )−
2N

∑
j

ak jc j > 0, (10)

aik > 1+Tr/Ta, (11)

then the CPG network has no stable fixed point. The term
{ai j}= A(2N,2N) is a matrix of the form

A =

[
W w f eI

w f eI W

]
(12)
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and c = (ce,c f ), where I is the identity matrix of the same
dimensions as W.

Since the CPGs should act as independent units, it is
intuitive that each extensor-flexor neuron pair (a CPG) is
able to oscillate on its own. Thus, a weaker form of the
theorem is used, where the following conditions must hold
for each i-th CPG:

ce
i

c f
i

(1+β )− 1

c f
i

N

∑
j

wi jce
j > w f e (13)

c f
i

ce
i
(1+β )− 1

ce
i

N

∑
j

wi jc
f
j > w f e (14)

w f e > 1+Tr/Ta. (15)

Now, we can focus on the effect of the tonic input c. For
any parametrization W,β ,Tr,Ta,w f e we can find a vector
c that would break these conditions. Let’s relax the prob-
lem by clipping the values of c into the range [cmin,cmax]
where cmin > 0. Then, it must become independent on the
mutable c vector to simplify the system of conditions. This
can be done by substituting c with such c−i that minimizes
the left side expression of (13) or (14) for the i-th CPG.
W.l.o.g. we consider finding c−i just for (13) as

c−i = argmin
c∈[cmin,cmax]2N

ce
i

c f
i

(1+β )− 1

c f
i

N

∑
j

wi jce
j. (16)

Since all the parameters are positive and wii = 0, the min
argument in (16) decreases monotonically with decreasing
ce

i and increasing c f
j values. Thus, we can substitute these

variables with their respective extremes

c−i =





ce
j ∈ R+, j 6= i

ce
i = cmin

c f
j = cmax, j 6= i

c f
i = c′i

(17)

that leaves just c′i as the variable to minimize

F(c) =
cmin

c
(1+β )− cmax

c

N

∑
j

wi j, (18)

c′i = argmin
c f

i ∈[cmin,cmax]

F(c f
i ). (19)

Notice that now, we are searching a scalar value c′i that
minimizes the given expression.

The equation dF(c)
dc = 0 has a solution only if F has such

parameters β ,W,cmin, and cmax that make the function F
constant. Since it is unlikely that such a parametrization
will emerge during the learning, we consider F does not
have any local extremes in the range [cmin,cmax]. There-
fore, the minimization (19) can be simplified to

c′i = argmin{F(cmin),F(cmax)}. (20)

The condition (13) implies F > 0, because w f e must be
greater than zero and the following condition must hold
too

1+β >
cmax

cmin

N

∑
j

wi j. (21)

Now, we define variable ε > 0 that

1+β =
cmax

cmin

N

∑
j

wi j + ε (22)

and substitute the right side of (22) into F(cmin) and
F(cmax)

F(cmax) =
cmin

cmax
ε, (23)

F(cmin) = ε. (24)

Since cmin
cmax
∈ (0,1] and ε > 0, the expression F(cmax) al-

ways minimizes (20). Therefore

c′i = cmax. (25)

After substituting c′i into (17) and then c−i into (13) we
get

cmin

cmax
(1+β )−

N

∑
j

wi j > w f e. (26)

Finally, to make this condition independent on the i-th
CPG, we can choose such an inequality (26) that has the

largest value of the
N
∑
j

wi j expression

w f e <
cmin

cmax
(1+β )−max

i∈N

(
N

∑
j

wi j

)
. (27)

Combining (15) and (27) we get the desired (8) and (7).
�

We integrate the conditions (7) and (8) into the BP
framework by redefining the variables w f e and β as func-
tions

w f e(ŵ f e,Tr,Ta) = 1+Tr/Ta + exp(ŵ f e), (28)

β (β̂ ,w f e,w∗) = (w f e +w∗)
cmax

cmin
+ exp(β̂ )−1, (29)

where ŵ f e, β̂ ∈ R are new independent parameters and w∗

is defined as

w∗ = max
i∈N

(
N

∑
j

wi j

)
. (30)

Then, the max operator is approximated by the differen-
tiable smoothmax defined as

softmax(x) =
exp(x)

∑exp(x)
, (31)

smoothmax(x) = softmax(x)x. (32)
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Since all the parameters must be positive, other parameters
are defined as exponent of the underlying parameter as

Ta = exp(T̂a),

Tr = exp(T̂r), (33)
wi j = exp(ŵi j), i 6= j,

where T̂a, T̂r, ŵi j ∈ R. The weights wi j, i 6= j cannot reach
zero during learning, but they can approach it.

The BP algorithm learns the proposed new param-
eters T̂a, T̂r, ŵi j, ŵ f e, and β̂ that are later normalized
by (28), (29), and (33).

4.2 Proposed Architecture and Inductive Learning

We propose to divide the CPG network into smaller sub-
networks to reduce the search parameter space. These
sub-networks are independently learned and then merged
into larger sub-networks until a single final network re-
mains. The proposed learning of the CPG network is
performed in three phases. First, we learn a single CPG
to generate a signal for one joint which gives us the
shared parameters (w f e,Ta,Tr,β ). Then, six triplets of
CPGs are learned to generate a control signal for the par-
ticular leg. Therefore, for each leg k ∈ [1, . . . ,6], we
get parameters W k and W k

out ,bk
out . In the final phase,

we connect all six CPG sub-networks into one. We
choose to connect CPG sub-networks only by coxa-CPGs
as it is assumed this is enough for each CPG sub-
network to synchronize. Therefore, for the subspace ue =
(ue

coxa,1, . . . ,u
e
coxa,6,u

e
f emur,1, . . . ,u

e
tibia,1) (and similarly for

u f ), W ∈ R18×18 is organized as follows

W =




Wcoxa,coxa Wcoxa, f emur Wcoxa,tibia

Wf emur,coxa 0 Wf emur,tibia

Wtibia,coxa Wtibia, f emur 0


 ,

where Wi j, i 6= j is the matrix of the connections between
the i-th and j-th joints that can be expressed as

Wi j =




w1
i j 0 0

0 · · · 0
0 0 w6

i j


 ,

where the weights {wk
i j}=W k are taken from the matrices

parametrizing the previously learned CPG sub-networks.
For the rearranged vector u = (ue

1,u
f
1 , . . . ,u

e
6,u

f
6), the

term Wout ∈ R18×36 is composed of the matrices W k
out of

the previously learned CPG network that controls the k-th
leg

Wout =




W 1
out 0 0
0 · · · 0
0 0 W 6

out


 .

All the zeroes in the W and Wout matrices are unlearnable
constants imposing a structure onto the CPG network.

4.3 Objective Function

The utilized loss function of the CPG network is defined
as a positive distance of the output vector from the desired
one

L (y(t),d(t)) = ‖y(t)−d(t)‖ , (34)

where d(t) ∈ [0,1]18 is the target signal for each of 18
robot’s actuators at the time t.

During early evaluation of the proposed learning, we
observed that in many cases, the output signal has unde-
sired lower frequency harmonics. This caused the output
signal to fit the target signal only for a couple of the first
periods. We propose to address this issue by an additional
term to the objective function (34)

+‖r−ω‖ , (35)

where r ∈ R+ is a new hyperparameter and ω is an ap-
proximation of the fundamental frequency of the CPG os-
cillations that can be expressed as [13]

ω =
1
Ta

√
(Tr +Ta)β −Trw f e

Trw f e
. (36)

The hyperparameter r should be equal to the fundamen-
tal frequency of the desired signal. However, since (36)
is just an approximation; it might lead to undesired local
minima. Therefore, we propose to switch off the regu-
larization once the term (35) is lesser than a predefined
threshold.

5 Experimental evaluation

The proposed learning method has been experimentally
verified using rmsprop [19] algorithm, which is com-
monly used to learn recurrent neural networks. Since the
following experiments are meant to benchmark and map
problems of the CPG network learning, we use a constant
tonic input c = 1. Therefore, cmin = cmax = 1. The initial
state (ue

init ,ve
init ,u

f
init ,v

f
init) is set to ue

init = 0.1, u f
init =−0.1,

and v f
init = v f

init = 0. The target signal is formed of eighteen
sequences of joint angles that were recorded for a course
of five tripod gait cycles. The hexapod robot was driven by
a default regular gait based on [20], which is suitable for
traversing flat terrains, and it uses the inverse kinematics
for following the prescribed triangular leg foot-tip trajec-
tory. This 4.7 seconds long record of all joint signals is
sampled to 2350 equidistant data points, and each signal
is further normalized in the range [0,1], smoothed using
Gaussian convolution to filter out signal peaks, and finally
downsampled by the factor of 3.

Preliminary experiments have shown that the process of
learning profoundly depends on initial parameters and in
some runs, the BP algorithm seems to stuck in local min-
ima from which the learning becomes very slow. This ob-
servation is consistent with [17]. The performance of the
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Figure 4: Squared signal errors of the first leg (a) and body
(b) caused by perturbations. The perturbations have been
introduced only at the start by adding a constant value to
all the trajectory components. For the leg CPG network
(a) after 500 iterations, the errors vanished except for +0.9
perturbation. The body CPG network (b) does not recover
even after 500 iterations except for +0.3 perturbation.

BP algorithm has been improved by adding the regulariza-
tion term (35). After that, the learning is performed in the
three following consecutive steps.

First, each single CPG unit is learned to generate the
sinusoid sin(t/2) that has the same frequency as the fun-
damental frequency of the desired control signal, which
is deterministically set to 3 Hz. The CPG is learned in
2000 epochs, each back-propagating a batch of size 50
data-points. Note that the number of the needed epochs
depends on the initial random parametrization.

Next, the parameters of the sinusoid generator is re-
trained to generate the desired joint control signals. The
generator of each joint control is learned with 2000
epochs. We experimented with the stability of the learned
limit cycle of the first leg by perturbing it, see Fig. 4a. Fi-
nally, the joints CPGs are connected as described in Sec. 4
with non-diagonal values of Wcoxa,coxa initialized to 0.5,
and learned with 4000 epochs. We experimented with the
stability of this final CPG network and results are depicted
in Fig. 4b.

A comparison of the desired control signal of the first
leg and the learned signal is depicted in Fig. 5. The learned
signal has a similar shape and the same frequency as the
original signal. Binding between different triplets of the
legs, the most difficult part is shown in Fig. 6. We can
see that the learned trajectory has a similar structure to the
desired limit cycles. The trajectory also stays within its
limit cycle; the trajectory was generated by six gait-cycles,
therefore, traveled the limit cycle multiple times.
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Figure 5: Signals controlling the joints of the first leg.
Green ones are desired, and blue ones are generated by
the CPG network. The time evolution is on the left, while
projected phase-space trajectories are on the right. Each
row corresponds to one joint, i.e., coxa, femur, and tibia.
In the phase-space column, the variable pairs from the top
are coxa-femur, femur-tibia, and tibia-coxa.
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Figure 6: Synchronization of multiple legs. On the left,
the coxa-control trajectory for legs 1, 2, and 3 depicted in
Fig. 3a. The original trajectory moves almost diagonally
in the pictured cube and is “wrapped” by the learned tra-
jectory. On the right, the tibia-control trajectory for the
legs 1, 2, and 3.

We deployed the resultant CPG locomotion controller
on the real hexapod (see Fig. 3a) and compared with the
original controller [20] in 10 trials. The robot was re-
quested to crawl on flat surface for 10 s and then stop.
The velocity of the robot was estimated using an exter-
nal visual localization system based on tracking of visual
marker [21] running with 25 Hz. Moreover, the robot’s
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Figure 7: (a) Used experimental setup of the robot with
the tracking marker. (b) Visualization of the performed
trajectories using the proposed CPG locomotion control
and the reference controller.

stability was measured as smoothness of the locomotion
using an XSens MTi-30 inertial measurement unit (IMU)
attached to the robot trunk. The variances in vertical ac-
celeration (Accz) and the orientation (pitch and roll angles)
of the robot’s body are the selected indicators of the loco-
motion stability.

The recorded robot trajectories visualized in Fig. 7 show
that there is a transition effect for our CPG locomotion
controller at the beginning of the trajectory where the
CPG network starts to oscillate which makes the robot ini-
tial acceleration lower; however, the overall locomotion is
smoother, as the velocity deviation is smaller.

The quantitative results are listed in Table 1 as aver-
age values of the indicators. The results indicate that the
performance of the CPG locomotion controller is similar
to the implementation [20] based on inverse kinematics
(IKT).

Table 1: Experimental results

Unit IKT [20] CPG (Ours)

Velocity [m·s−1] 0.18±0.03 0.15±0.01
Accz var. [m·s−2] 18.31 23.03
Pitch var. ×10−3[rad] 0.14 0.23
Roll var. ×10−3[rad] 0.25 0.28

5.1 Lessons Learned and Discussion

During the experimental evaluation of the proposed learn-
ing of the CPG network, a couple of good practices how
to learn the sinusoid generator came up as follows.

1. It is better to learn the network in batches containing
at most two periods.

2. If the CPG network is restarted to the initial state, it
is good to ignore the transient states.

3. Since it is not important at which place the system
enters the limit cycle, it is suitable to phase-shift the
target signal; so, to minimize the distance from the
output signal.

Combination of sub-networks into one network has two
difficulties. The parameters (w f e,Ta,Tr,β ) must be the
same for the whole CPG network, but the sub-networks
are trained independently; so, they can end up with dif-
ferent parameters. In our case, the parameters are similar
because all the CPG sub-networks are based on one CPG
sub-network. Thus, the BP algorithm is able to adjust them
during the learning of the complete network. Another dif-
ficulty is the choice of the initial Wcoxa,coxa weights. The
higher the weights are, the stronger is the coupling be-
tween the legs. However, if the weight values are too high,
the constraint (7) would be violated. Therefore, we used
(7) to choose the initial Wcoxa,coxa weights.

Even though that the robustness is not the objective
of the learning algorithm, it is a property of single Mat-
suoka’s oscillator [22]. This property translated well into
our 3-unit CPG network (see Fig. 4a) where the network
can recover from perturbations. In the real world, robust-
ness helps quickly react to simple temporal events, e.g.,
servo errors, or feedback from the environment.

In this work, we chose a simple model with cmin =
cmax = 1, i.e., we have a constant tonic input. The time-
variant tonic input; however, introduces dynamic changes
as we can see in Fig. 8. In the future work, we would
like to use the tonic input to control the output of the CPG
network dynamically.

6 Conclusion

In this paper, we propose a new methodology for learn-
ing a CPG network modeled by symmetrically connected
neural oscillators. The method is based on a combination
of the back-propagation learning algorithm, normalization
layer, and regularization term, where the normalization
layer prunes the parameters spaces of the CPG network
from the undesired non-periodic results, and thus help to
speed up the learning process. The advantage of the pro-
posed solution over the previous work on the CPG-based
locomotion control is in the scalability of the method that
enables to create such a CPG network that can directly
control each actuator without the need to employ the in-
verse kinematics. The proposed method has been success-
fully deployed in the locomotion control of the real hexa-
pod walking robot.

The main properties of the proposed methodology arise
from the idea that the proposed CPG network for the hexa-
pod locomotion control is based on the architecture of the
CPG connections that imitates the structure of the robot.
The CPG is inductively learned by learning its parts and
merging them. Therefore, the proposed method is promis-
ing to be easily extendable to other multi-legged robot
bodies. Furthermore, since the proposed CPG network
is learnable by the back-propagation algorithm, it can be
integrated into more complex neural networks supporting
back-propagation, which is a subject of our future work.
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