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Abstract. The article provides a view on modern technologies, which are used 
for automatic software vulnerability testing in critically important systems. Fea-
tures of fuzzing realization (which is based on making many inputs with differ-
ent mutated data) are also studied. As a result, testing algorithm picks input data 
that is more likely to cause a fail or incorrect work of software product. Deep 
learning algorithms are used to decrease the computational complexity of test-
ing process. The use of simple fuzzer and Deep Reinforcement Learning algo-
rithm shows that the amount of mutations necessary to find vulnerabilities de-
creases by 30%.  

Keywords. Fuzzing, Testing, Reinforcement Learning, Q-Learning, Software 
Security. 

1 Introduction  

The development of modern computer technology leads to the emergence of new 
high-quality information services and their implementation in all spheres of human 
activity [1-5]. The development of the IT-industry has led to the construction of 
global computer networks, extensive data warehouses, automated control systems, 
including critical infrastructures, Smart Grid and much more [6-8]. 

In the age of the Internet and global implementation of information technologies, 
information security is more important for critical infrastructures [9, 10]. Complex 
solution for problems related to informational security is connected with solving dif-
ferent objectives in cryptography [11-14], computations optimization, technical and 
physical security as well as many others [10, 15-17].  

This paper focuses on the problem of automated software vulnerability scanning 
[18-22]. As practice shows, computer programs are the most exposed fragment of 



modern IT infrastructure. Failure or configuration errors and undeclared operations 
can lead to disastrous consequences. Development and research of methods and tools 
for automated software vulnerability scanning is extremely important and relevant 
task.  

2 Known Fuzzers and Their Analysis 

Barton Miller, who is a professor at the University of Wisconsin, Madison, was the 
first to introduce the term “fuzzing” together with his students in 1989 [23]. Hence-
forward, the development of automated testing continued and the creators of fuzzing 
used this method to search for vulnerabilities in software using different operating 
systems including UNIX, Windows and Mac OS [23-26]. Today fuzzing is most 
commonly used in Software Quality Assurance. It is also one of the key steps of Mi-
crosoft Security Development Lifecycle (SDL). Software experts from Microsoft 
consider that deliberate input of wrong or random data is a sufficient and non-costly 
way to detect potential errors before product release [18-22]. 

Fuzzing testing has several advantages among which [23-26]: 

 high speed (usually much higher than manual code review); 
 no need to involve human work; 
 fuzzer does not need to be controlled, while human capabilities are finite; 
 scalability, i.e. if there is a need to find more vulnerabilities, the only thing needed 

is more fuzzers. 
However, fuzzing has several disadvantages. For example, when fuzzing is used, 

it is very difficult to discover deep errors, such as business logic errors etc. [27]. It is 
relevant to conduct comparative analysis of different fuzzing methods and experimen-
tal researches using the most common software products as an example. 

This work presents the results of analysis and comparative research of automated 
vulnerability search technologies. Particularly, the following common fuzzing utilities 
are reviewed [28-32]: American Fuzzy Lop, MiniFuzz, and Peach. Experimental re-
searches are conducted for such everyday software products as Google Chrome; 
Notepad++; Winamp; Microsoft Paint. 

American Fuzzy Lop (AFL) is an open-source fuzzer, which was developed by 
Polish computer security expert Michał Zalewski [29, 30]. The program uses genetic 
algorithms to automatically look for test cases. This fuzzer’s main goal is to cause 
unexpected behavior of target programs by changing or shifting input channel bytes. 

MiniFuzz was developed by Microsoft. This fuzzer is intended for simple and rou-
tine usage [31]. Its operating principle is forming data beforehand, then passing them 
to the target and catching errors. This utility belongs to dumb fuzzers category which 
conduct fuzzing randomly. 

Peach is more advanced tool for “intellectual” fuzzing developed by Michael Ed-
dington [32]. It supports not only mutation mode but also fuzz-file generation. Since 
program needs to know the structure of target files, specialized XML-documents are 
used as input. Peach can fuzz applications, servers, network protocols, drivers, inter-
nal protocols, devices, systems and so on. 



 
 

During experimental research of automated vulnerability search effectiveness 
MiniFuzz was used. Fuzzing process was conducted for several common desktop 
applications, including Google Chrome; Notepad++; Winamp; Microsoft Paint. 

For Google Chrome testing several dozens of different html-files were selected. 
Aggressiveness (how much of input data is mutated) was alternately set to 5%, 15%, 
25%, 35%. Testing results for this case are shown in Table 1. As can be seen from the 
table, fuzzing testing can help in discovering “File Not Found” type errors. Appar-
ently, higher aggressiveness leads to more errors of this type. 

Table 1.   Expected value of “File Not Found” error and confidence interval (for significance 
level α = 0,01 sample size N = 1000) 

Aggressiveness Level 
Error 

5% 15% 25% 35% 
“File Not 
Found” 

0,239±8,2310-4 0,269±2,610-4 0,295±3,4910-4 0,320±8,2810-4 

 
After several hours of fuzzing for Notepad++ no errors occurred even with 100% 

aggressiveness. This shows high level of stability and security of this application. 
Testing of Winamp led to similar results. 

To test Microsoft Paint images of different formats and sizes were selected. Test-
ing results are shown in Table 2. As it can be seen from the results, selective testing 
with fuzzing revealed errors “File Not Found” and “Wrong Format”. Frequency of 
these are almost similar and increase with higher aggressiveness. 

Table 2. Expected value for errors and confidence interval (for significance level α = 0,01 
sample size N = 1000) 

Aggressiveness Level 
Error 

5% 15% 25% 35% 
“File Not 
Found” 

0,13±2,610-4 0,15±2,5810-4 0,18±2,6410-4 0,22±1,5810-4 

“Wrong For-
mat” 

0,09±2,9610-4 0,16±3,7710-4 0,2±3,5810-4 0,23±4,5710-4 

 
Conducted tests show that the majority of common applications are secured and 

cannot be crashed using primitive fuzzing. In the case of Google Chrome, for exam-
ple, it is not a surprise, because software engineers and testing professionals at Google 
use much more complex fuzzing during the development cycle of their products [28]. 
The same goes for Microsoft. 

Thus, the analysis of different fuzzers in the area of automated testing shows that 
this approach to software vulnerability search can vary depending on the goal, tester’s 
skills, data format and other factors. Some applications have privilege separation sys-
tem, which depends on user level. Using fuzzer as a tool for automated vulnerability 
search, it is possible to find errors in software products, which let attacker gain full or 



partial control over the system. Some low-lever errors are very similar to each other 
so it is possible to use the same logic to find vulnerabilities in more applications. 

Relying on conducted experimental research for selective testing it can be said that 
fuzzing is quite promising method of automated vulnerabilities search. We were able 
to find errors even in reliable and tested applications, like Google Chrome and Micro-
soft Paint, as we managed to discover random input data, which would cause errors. 
However, these are not critical for application functioning and/or operating system, 
their handling is correct that, apparently, is stipulated behavior for such kind of cor-
rupted input data. 

It is worth mentioning that fuzzing has some limitations when it comes to practical 
use and have not gained wide popularity for automated vulnerability testing yet. 
However, considering the fact big companies, such as Google and Microsoft are using 
fuzzing as a part of their methodology and vigorously work on its development, it can 
be safely said that fuzzing has quite strong potential [29-32]. 

The most promising direction of future development of automated vulnerability 
search methods is fuzzing intellectualization [18-22]. This is about using deep learn-
ing methods to improve computational procedures for automated vulnerability search. 
It is believed that such approach can significantly improve the process of selecting 
input data, which will cause failure or errors in the target application. 

3 Intellectual Fuzzing Algorithm 

Fuzzing is a method of software and security vulnerabilities testing which is con-
ducted by making multiple tests using mutated input data [21]. Repeated testing is 
performed with random mutation, and usually testing time is far from optimal. This 
article considers the problem of intellectual fuzzing and tries to find a solution [22]. 
The main goal is to develop a technology that can be guided and will make decisions 
based on the experience it gained during testing. The solution to this question lies in 
machine learning and reinforcement learning based on the deep Q-learning algorithm 
[33]. It uses maximum possible rewards, which are defined during development proc-
ess by analyzing program source data and available rewards. This allows to apply 
optimal input data mutations. Thus, agent gets an opportunity to learn to formulate an 
optimal action policy for obtaining maximum reward. In this paper, we propose an 
algorithm and a computer model of the in-depth training as well as research of auto-
mated vulnerabilities testing effectiveness in comparison with the random mutation 
test. During testing, the "black box" method is used. It means that the available infor-
mation represents only results of the program's work and the input data that it needs to 
perform [21]. 

During research, we realized there is a serious problem with randomized fuzzing: if 
it works with randomly generated input data, the time will not be optimal, since the 
process is performed blindfold. There may be a lot of testing rounds resulting in huge 
amounts of mutations that do not provide any progress. The process of fuzzing is an 
execution of a task cycle in certain defined program, where input is a sequence that 
was changed by some mutation. The ideal solution to solve such problem is machine-



 
 

learning technology called reinforcement learning. The best example of using this 
algorithm is the AlphaGO developed by Google DeepMind in 2015. It becomes the 
world's first program to win the game of "Go" with a top-ranked professional Lee 
Sedol [34]. 

As a combination of fuzzing and reinforcement training, a system capable of 
changing the rules for selecting specific mutation was created. It sends mutated data 
to input and, depending on the program’s source data, generates a reward in order to 
rely on its own experience and select optimal mutations for particular case upon fur-
ther testing. Thus, the amount of mutations does not contribute to the testing process 
significantly reduces. This makes testing process faster. Schematic diagram of the 
developed system is shown in Fig. 1. Testing process begins by defining the original 
non-mutated input data. Its format depends on fuzzing kind. Packages are submitted 
to the program's input channel and the response of the program is determined using 
special debugging software. From obtained data (this may be the program execution 
time, code coverage, code completion, etc.) system’s State is formed. It will be pre-
processed and presented to the Deep Q-learning model’s input. The system then de-
cides what Action should be taken next. 

 

Fig. 1. Simplified diagram of the intellectual fuzzing algorithm 

At the same time, depending on the selected action and the obtained program state, 
system forms the Reward for the algorithm. Using this reward, algorithm understands 
assigned task and determines optimal behavior for its implementation. In addition, 
algorithm remembers which actions brought it to the maximum reward (finding a 
mistake or a program failure, etc.) and, in the following testing rounds, decides what 
action should be taken based on its already gained experience. To calculate the next 
step, the previous inputs are mutated according to the action that was selected. Pro-
gram input receives new mutated data. This procedure is repeated until the algorithm 
reaches its goal. Developed model uses Markov decision-making process – deep Q-
learning [35]. 



4 Reinforcement Learning  

This section provides necessary data about the algorithm of reinforcement training. 
Reinforcement learning is a computational approach to understanding and automating 
targeted learning and decision making. It stands out among other machine learning 
algorithms by the fact that agent learns directly by interacting with the environment 
without referring to examples [35]. This algorithm is primarily aimed to solve prob-
lems that arise during interaction with the environment to achieve long-term action. It 
uses formal structure of Markov decision-making process [35], defining the interac-
tion between agent and environment in terms of states, actions and rewards. These 
features include understanding of causes and effects, as well as presence of clear 
goals. The notion of value and function of value is the main features of reinforcement 
training methods. 

As noted earlier, the interaction between agent and environment can be described 
using Markov decision-making process ( , , )M S A P , where S  – a set of system’s 

states, A  – action’s set, P  – transition probabilities set. For each state-action 
pair ( , )s a S A  , P  is a set of probabilities ( ' , )P s s a  , where s′ corresponds to the 

next system’s state. Agent considers possible system states for the selected action, 
where each transition has its own reward ( , )r s a , and studies the optimal behavior for 

maximizing the reward. 
During the learning process, the main goal is to maximize the finite amount of re-

wards: 
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where (0,1)   – discount rate, which determines the remuneration priority over time. 

Action ta  at state ts  is determined by the policy of action ( )t ta s  . Policy   at-

taches considered possible states to action, which in turn determines agent’s behavior. 
Expected cumulative reward for the policy-maker   is defined as: 
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The problem of finding the optimal value ( , )Q s a  can be reduced to the procedure of 

function approximation. To achieve this ( , )Q s a  needs to be updated after each itera-

tion of receiving the award [36]. It is defined as 

( , ) ( , )t t t tQ s a Q s a   , 

where   – learning rate. The entire procedure can be stated in the following se-
quence: agent gets the status ts , takes action  

arg max( ( , ))t ta Q s a , 



 
 

which defines the reward tr , and causes the system to go to the state 1ts  .  

After receiving a reward tr  and state 1ts  , agent determines the best possible ef-

fect 

1 arg max( ( , ))ta Q s a  . 

Then it updates the value ( , )t tQ s a . To approximate the function ( , )t tQ s a , deep 

neural networks are used (it defines the name of deep Q-learning), which in turn aim 
to minimize the loss function: 

2( max( ( 1, )) ( , )t t t tL r Q s a Q s a     . 

5 Simulation Results 

To conduct an experiment simple fuzzer was used. Its main function is to implement 
input data selection for automated software vulnerability search. Software launch 
process was simulated and special logic tests were developed. The program could 
return an error code when certain data is received to compare fuzzing with and with-
out artificial intelligence. Possible states of the system are presented in the form of 
data generated after the completion of the program. This data is transmitted by neural 
network, which consists of one input layer, two hidden layers with 50 neurons each 
and activation functions (Rectified Linear Unit): ( ) max(0, )f x x .  

The output of the neural network has 45 elements, representing the number of pos-
sible mutations. Complete scheme of neural network for function approxima-
tion ( , )t tQ s a is shown in Fig. 2. 

 

 

Fig. 2. Neural network scheme Network training is performed using Adam optimization algo-
rithm [36] 



Let  f   be noisy target function: a stochastic scalar function is differentiated 

relatively to the parameter . The expected cost of this feature,  E f     relatives 

to must be minimized. Using    1 , , Tf f   the implementation of a stochastic 

function in the next steps 1, , T is denoted. Stochasticity can be based on the estima-
tion of random subsets (mini-groups) of data points or noise of a function. At 

  t tg f   the gradient is denoted – the vector of partial derivatives  tf relatively 

to θ, which is estimated by time t. 
The algorithm updates exponential moving average values of the gradient ( tm ) and 

the square of the gradient ( tv ), where hyper parameters  1 2, 0,1    control the 

exponential velocity of decomposition for these moving averages. The most moving 
averages are the estimations of the first moment (mean value) and the second moment 
(uncentered dispersion) of the gradient. However, these moving averages are initial-
ized as zero vectors, which lead to the estimation of moments moving in zero direc-
tion, especially in the initial time steps and when expansion rates are small (for exam-
ple, the value s close to 1). The good news is this bias initialization can be easily 

prevented by getting bug fixes btm and btv . 

The algorithm itself has the following form: 
Required input data: 

  : Learning speed 
 1 2, [0,1)   : Exponential decay rates for moment estimates (standard settings 

1 20.9, 0.999   ) 

 ( )f  : Stochastic function with parameter   

 0 :  Vector of initial parameters 

 Algorithm: 
  0 0m   (Initialize the first moment vector); 

 0 0v    (Initialize the second moment vector); 

 0t   (Initialize the time); 
 while t  not converged: 

o 1t t  ; 

o  0 1t tg f    (Take the gradient relative to the stochastic function dur-

ing t ); 

o   1 1 1 1t t tm m g     (Update rejected first moment);   

o  2 2 21 1  t t tv v g     (Update the second estimation for a rejection); 

o 
1

    
1

t
b

t

m
m t





(Calculate the corrected bias estimation of the first moment); 



 
 

o 
2

  
1

t
t

t

y
yb





 (Calculate the corrected bias estimation of the second mo-

ment);  

o   1 t
t t

t

mb

vb
      (Update parameters); 

end while 

 return t  (Calculated parameters). 

Input mutations were selected based on the standard list: increasing and decreasing 
line length, integer insertion, adding special characters (for example, "%s", which 
may also cause errors). In sum, 45 functions were created and placed in a dictionary 
for further use. 

The system receives an award if execution time was greater than the previous or if 
there were errors occurred during testing. When an error occurs, the algorithm fin-
ishes its work. While forming this type of award, there was a problem when algorithm 
already found one error and started calling it repeatedly to get maximum reward. To 
avoid this problem, two constants must be set: (0,1)   – discount rate and (0,1)   

– intelligence speed. The first constant was already being mentioned before. The sec-
ond one determines how the algorithm is capable in terms of discovering new solu-
tions. Random action will be chosen with probability ε, and the most profitable action 
will be selected with probability 1 – ε. The hypothesis is a scientific assumption that 
made to explain any phenomenon and requires testing on theoretical basis in order to 
become a reliable scientific theory [37]. Statistical hypothesis is any assertion (as-
sumption) concerning the type or distribution parameters of a certain feature of the 
objects being studied [37]. 

The following sequence of actions was necessary to test the hypotheses: 

1. Make calculations of certain statistics, the distribution of which is known. 
2. Find the P-value for the calculated results. 
3. Make appropriate conclusions depending on the significance criterion and P-value. 

A special test for identifying an error was developed. The hypothesis of the ex-
periment is Q-learning fuzzing works faster than randomized one. The discount rate is 
set at 0.9, and the exploration speed is equal to 0.5. The latter parameter decreases 
0.99 times after each era. The Student's t-test was used [38] to test the hypothesis.  

Student's t-test – the general name for the class of methods for statistical criteria 
testing. It is based on comparison with the Student’s distribution. The most common 
application of the criteria is related to checking the equality of mean values in two 
samples [38]. To use this criterion, some conditions must be met: the initial data must 
have normal distribution and dispersion must be equal. 

The first group contains the results of testing using developed algorithm, while the 
second one presents the results of random mutations. Testing was performed in the 
following sequence: generate 15 experiments, and record the amount of mutations 



necessary to find an error at the end of each. The results of the experiments are shown 
in Table 3.  

The results of Student’s t-test calculation: 12.40t   . The number of degrees of 
freedom: 

 2 2 2 15 2 28v n       

Considering significance criteria 

 0.01   and  2.763P value  ,  

while t P value  , the hypothesis is valid.  

The result is statistically significant for a given criterion, if the probability of acci-
dental occurrence of the same or extreme result is less than the given level (0.01) 
under the condition of loyalty of the null hypothesis. 

Table 3. Experimental Results 

№ Deep Q-learning model Random selection of muta-
tions 

1 3671 3686 
2 1191 1897 
3 1879 3164 
4 1640 3233 
5 1966 10446 
6 1585 5358 
7 1135 1134 
8 4877 752 
9 2465 2157 
10 3266 3684 
11 1895 2026 
12 2093 2993 
13 1150 295 
14 1181 3381 
15 1153 358 

 
The testing time of developed algorithm is better than the time of random muta-

tions testing considering the fact the algorithm did not learn before. On average, de-
veloped algorithm finds an error after 2076 mutations, whereas random testing needs 
2832 mutations. Represented algorithm finds error 30% faster.  

This result proves the direction of research was chosen right. Particularly, it shows 
that the main problem of fuzzing (large amount of mutations) can be solved using 
artificial intelligence methods. Actually, if input data is changed directionally depend-
ing on previous results, it can speed up mutation process and receive results (which 



 
 

are finding the vulnerability in certain software product) after less amount of muta-
tions. 

6 Conclusions 

Due to conducted research, one of promising automated software testing methods in 
critically important systems was analyzed. Fuzzing bases on multiple input of differ-
ent (mutated) data to find parameters, which will cause failure or incorrect function-
ing of software. Repeated testing is usually carried using randomized mutations and 
the time of testing is very high in the most cases. This article researches the problem 
of intellectual fuzzing – the technology, which uses previous testing experience to 
make choices, related to mutation, and reduce testing time. 

Deep Reinforcement Learning algorithm was used to implement intellectual fuzz-
ing. With the use of simple fuzzing app, it becomes possible to prove that testing time 
decreases by 30%. This result was received because fuzzer used previous experience 
to adjust mutations. 

This research may continue in other spheres. For example, Intrusion Detection and 
Prevention Systems [39-42] are also can be built using some elements of artificial 
intelligence. Critically important information systems in different spheres, including 
banking, industrial facilities management and Smart Grids are especially interesting 
for further research [43-50]. 
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