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ABSTRACT
In the field of recommendation, there have been many efforts to

help users interact with recommender systems in ways that ap-

propriately elucidate user preferences. To let users interact with

recommender systems, it is desirable that recommender systems

are as transparent as possible. However, it is difficult to achieve

complete transparency even with a simple method for interactive

recommender systems because the relationship between the item

features and the user preference is not intuitive when there is a

utility function to generate recommendations. We focus on multi-

attribute utility theory (MAUT) as one of the simplest methods for

recommender systems and clarify the difficulties with its usage in

interactive environments. Then, to overcome the difficulties, we

propose an algorithm to generate natural language hints to let users

understand ways of operation and see more items that match their

preferences. The results of an offline simulation demonstrate that

our method can effectively recommend a diverse range of items to

users. As future work, we will conduct empirical experiments to

evaluate the performance of our method in online situations.
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1 INTRODUCTION
Interactive recommender systems have been developed to eluci-

date user preferences [5, 6, 8]. To grasp the real preferences of the

user, recommendations that cannot be changed by the user are

sometimes inappropriate. This is because, while the user models

are generated on the basis of the historical record of user behavior,

the models are not one-size-fit-all and sometimes do not match

new users. Therefore, users need to convey their preferences to

the recommender systems through some form of interaction. To

do this, the ideal interactions between recommender systems and
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users should be achieved in the situation where users understand

how their operations are recognized by the systems and how they

are represented as the preference.

To achieve this ideal interaction between recommender systems

and users, the systems should be transparent in that users can

understand the relationship between item feature space and user

preference space. This is difficult, however, due to the relationship

between the two spaces with utility functions, and according to

previous research, users do not tend to obtain a detailed enough

understanding of the intelligent systemwithout a technical explana-

tion [11]. Despite this knowledge, the system needs to be as simple

as possible to make the process of recommendation transparent for

users. Systems that are incomprehensible to users on the technical

side, or that can not form deep mental models, are not transparent.

In this paper, we propose a new algorithm to help users under-

stand the specific characteristics of the relationship between prefer-

ence space and item space with one of the simplest utility functions

and conduct an offline experiment. As a simple method to relate

item space and preference space, we utilize Multi-Attribute Utility

Theory (MAUT) [9], which is a general method for supporting hu-

man decision making using linear utility functions [4, 17, 19, 20].

While MAUT is a simple method, there are difficulties for users in

operating MAUT-based interactive recommender systems because

of the unintuitive characteristics of the interactions between the

users and the systems. To overcome this difficulty, we develop an

algorithm to generate natural language hints to provide users with

information about the item feature space in the direction where the

user preference moves in. The ultimate purpose of this algorithm is

to let users obtain more detailed understandings of the algorithmic

behaviors by seeing more diverse items. In this work, as a first step,

we conduct an offline experiment and investigate the potential ef-

fect on the simulated behavior of users. The research question for

our offline experiment is whether users can see more diverse items

with the existence of hints generated with our method. We set up

this research question because users need to observe as diverse

items as possible to recognize the relationship between item space

and feature space.

The remaining of this paper is organized as follows: In Section 2,

we provide a brief overview of previous works related to interactive

recommender systems and MAUT. We describe the difficulties in

operating MAUT-based interactive recommender systems and pro-

pose our algorithm in Section 3. In Section 4, we explain the detailed

settings of our experiment. In Section 5, we report the results of

our experiment. Additionally, in Section 6, we discuss the results

in more detail and outline future work. Finally, the conclusion of

the paper shown in Section 7. Our contribution to the community

is two-fold: first, we point out the critical difficulties in one of the
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simplest utility functions, MAUT, when it is used in interactive rec-

ommender systems, and second, we offer an algorithm to generate

natural language hints to overcome these difficulties.

2 RELATEDWORK AND BACKGROUND
There have been many efforts to develop interactive recommender

systems [6] for recommending movies [5, 18], music [2, 8], restau-

rants [16], researchers [21], and so on. In the previous works, the

transparency of the system is evaluated as the subjective estimation

of transparency or satisfaction through the evaluation methodol-

ogy [10, 15]. It is appropriate to evaluate not the detailed under-

standing of the functions of systems but rather to investigate sub-

jective impressions when evaluating the transparency of systems

because, according to research on the formation of the mental mod-

els of a recommender system [11], people tend to have difficulty in

forming deep mental models without any technical explanations.

However, despite the negative results of the previous work, it is nec-

essary to have users understand the characteristics of the method

used in recommender systems in as much detail as possible in order

to achieve complete transparency. In this paper, we offer a new

algorithm that helps users understand the critical difficulties in one

of the simplest recommendation methods, MAUT. It is necessary

for users to see more diverse items related to their preferences to

understand the characteristics of the recommendation method.

Relating toMAUT, there aremany studies that utilize thismethod

to support human decision making [4, 17, 19, 20, 23]. Moreover,

MAUT is well known as a traditional decision support technol-

ogy used in the early steps of decision makings [4], and at the

same time, is versatile technology that is a mathematical analogy

to matrix factorization [22]. While user preferences for items are

calculated based on uninterpretable latent features of user pref-

erences and item features with matrix factorization, with MAUT,

the features are interpretable [22]. Additionally, some interactive

recommender systems already utilize it as the method to generate

recommendations [7, 23]. In Zhang et al. [23], MAUT was used

with a critique-based interactive recommender system [13]. In their

system, the weights for each feature of items were calculated based

on the items chosen by users, and the resulting recommendations

became more accurate. However, the detailed functions are not

shown to the users, so the system is still not fully transparent. In

this paper, we provide an algorithm that generates hints about the

operation in an attempt to make the function fully transparent.

Additionally, by evaluating the performance of our method as di-

versity and novelty, we investigate the effects of our method of

letting users observe a wider range of items.

3 METHOD
In this section, first, we explain the functions of the MAUT-based

interactive recommender system in detail. Then, we describe the dif-

ficulty experienced by users and present the method we developed

to overcome the difficulty.

3.1 Characteristics of MAUT
3.1.1 MAUT-based Interactive Recommendation. First, we briefly
explain the characteristics of our MAUT-based interactive recom-

mender system. As a method of recommendation, we utilize MAUT

to recommend top-N items (top-10 items in practice). To rank items,

the personalized utility (Vu(i)) of each item (i) for each user (u) is
calculated on the basis of MAUT, as follows:

Vu (i) =
∑
f

β
(u)
f xf (i) (1)

where a feature for an item is denoted as f and the normalized

value for each feature is denoted as xf (i). In this paper, we use

the word ‘feature’ in the same meaning of ‘attribute’ of MAUT.

With this function, we calculate a user’s preference as the values

of coefficient (βf (u)), which show to what extent the feature f is

considered an important one by the user u. An item i is denoted as

K-dimensional feature vector x(i) : x1(i), ...,xK (i).
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Figure 1: Conceptual model of developed interface. The bar
graphs indicating the preference for each feature are dis-
played. Users click above and below the bar graphs andmove
their own preferences. Users canmove values of preferences
for multiple features at a time. The values for each feature
correspond to the user preference in Figure 2
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Figure 2: A simple visualization of the functions of MAUT.
The score of an item for a user is calculated as the dis-
tance between the origin and the foot of a perpendicular line
drawn from the item to the user preference vector.

We developed an interactive recommender system to collect real

user data by using this method. In our system, the users’ preferences

are displayed as bar graphs that indicate the value of β . The concept
of our interface is shown in Figure 1, where there are two bars
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Figure 3: Characteristics of user movement. (a) First, items A, B, and C are displayed for the user who has a certain preference.
This user wants to find an itemwhose F2 score is as high as possible. The itemwith the highest F2 score is E, so item E should be
displayed for the user ideally. (b) Following her/his inclination, the user increases the preference of F2. However, item E is not
recommended in the top-3 list. (c) Due to the characteristics of MAUT, to find item E, the user should increase the preference
of F2, and at the same time, decrease the preference of F1.

representing the user preference (β) for each feature of items. The

values in Figure 1 correspond to the states of user preference in

Figure 2. This user has a value of 15 for the preference of Feature
1 (F1) and a value of 10 for the preference of Feature 2 (F2). In our

system, users can see the bar graphs as well as the recommended

item list and change their preferences with a fixed length by clicking

the buttons above and below the graphs. Moreover, they can change

preferences for multiple features at a time. In the following, the

number of times a user changes her/his preference (i.e., the number

of interactions) is denoted as t .

3.1.2 Difficulties in MAUT. Users are confronted with difficulty

when MAUT is used in interactive recommender systems. With

MAUT, the scores of the items are calculated as the inner products of

user preference and the position vectors of items in the item feature

space. This means that the ranking of the items is the same as the

order of the perpendicular feet drawn from the items to the user

preference vector, as shown in Figure 2. This leads to unintuitive

behavior of the recommender system and to difficulties in operating

preference for the user. For example, as we show in Figure 3, when

there are two features and the top-3 item list is displayed to a user,

if the user wants to see items with a higher value of Feature 2, s/he
naturally increases the preference for Feature 2. Ideally, s/he will see
the item with the highest value for Feature 2 (item E) by increasing

the preference for Feature 2 just once. However, it is difficult to

see item E by increasing only feature 2, as shown in Figure 3(b).

To see item E, the user has to decrease the preference for feature 1

while simultaneously increasing that for Feature 2 (Fig. 3(c)). This
implicates that it is necessary for users to change their preferences

in unintuitive manners.

7 items with higher values of Feature 1 and with lower values of 
Feature 2 can be shown. (Your preference for Feature 3 will decrease.) 

Jump in this 
direction

Figure 4: The assumed natural language hint. Users can see
new items matching their preferences with clicking ‘jump
in this direction’ button.

3.2 Method to Generate Hints
To overcome the difficulties in operating the MAUT-based interac-

tive recommender system described above, we propose a technology

that generates hints to achieve more effective operation for users.

The hints will be shown in the form of natural language
1
. As in-

dicated in Figure 4, the hint suggests a direction users can take to

see more diverse items and users can move toward this direction

by clicking the ‘jump in this direction’ button. Therefore, users

can decide to use or not to use hints whenever the hints are dis-

played. Our algorithm calculates the appropriate direction to be

suggested to users. The appropriate direction is determined on the

basis of the tendency of the user’s movement. First, our method

calculates preferences that make as many items Top-1 as possible.

With MAUT, items that can be top-1 are vertices of the convex

hull of items. Therefore, we calculate every preference that makes

each vertex of the convex hull of items Top-1 respectively. We call

these preferences ‘top-1 vectors’. After that, we calculate which
direction a user wants to move toward and which features s/he does

not take into account. We call the direction in which the user moves

‘favored direction’ or more simply, ‘direction’, and the features

that are not taken into account by users ‘ignored features’. Then,

1
While we do not show the natural language hints to real users in our offline simulation,

we plan to conduct an online experiment by showing natural language hints as future

work.
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we suggest the appropriate operation that enables the user to see

items that have values matching the user’s tendency to move based

on the top-1 vectors. Additionally, we offer the user a way of op-

eration that lets him/her see more items by adjusting the features

that have been ignored until then. The details of this algorithm are

described in the following subsection.

Feature 1 (F1)

Fe
at

u
re

 2
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)

: Top-3 Items with user      
preference

Item 
space

: Items

B

D

A

Top-1 Vector for A

: Vertices of convex 
hull 

: Vertex made top-1

Convex hull of items

Figure 5: Top-1 Vector for A. The vector is orthogonal to the
line passing through the vertices B and D that are next to A.

3.2.1 Calculation of Top-1 Vectors. To generate hints, we utilize the
characteristics of MAUT that only vertices of the convex hull can

be top-1 and calculate preferences making each vertex top-1. One

of the preference vectors that makes a vertex top-1 (top-1 convex)

is orthogonal to the plane (or hyper-plane) passing through vertices

that are next to the top-1 vertex. This is because only vertices can

be top-1 and rankings of items are decided as the order of the

perpendicular feet drawn from items; therefore, when making a

vertex top-1, it is enough that the perpendicular feet drawn from

vertices that are next to the top-1 vertex are the same order. A

2-dimensional version is shown in Figure 5, where the top-1 vector

for a vertex, A, is drawn. The vector is orthogonal to the line passing
through the vertices B and D, which are next to A.

To generate top-1 vectors, we calculate the hyper-plane passing

through vertices that are next to a vertex that is made top-1 with

the vector. We can calculate this hyper-plane as the support vector

of the hard margin support vector classification for two classes: the

class of the top-1 vertex and the class of the other vertices [1]. Let

aI denote the position vector of item I and let z be a vector that
is orthogonal to the support vector. When b denotes a bias term,

the labels are yi = 1 for the top-1 vertex and yi = −1 for the class
of the other vertices, and there are M vertices. We calculate the

hyper-plane as follows:

minimize | |z| |2

subject to yi (zT ai + b) ≥ 1 for i = 1, ...,M .
(2)

zT ai + b = 0 is the equation of the hyper-plane that is parallel to

the hyper-plane passing through next vertices to top-1 vertex and

z is a perpendicular line for the hyper-plane. Therefore, we obtain
the top-1 vector as z.

3.2.2 Tendency of Users’ Behavior. Next, we calculate which di-

rections a user should move toward. A direction is defined as the

combination of features and the movement of increasing or decreas-

ing of the value for the features. We name the value that represents

to what extent a user wants to make a value of a feature up or

down Tendency. To identify the direction favored by the user, we

calculate a Score to generate the values of Tendency. When cal-

culating the Score , we consider the more recent movement of the

user as more important. First, we set the weight wt = wt
, which

indicates the importance of the movement of t th interaction as the

number that increases in proportion to the number of interactions

(t ) between the recommender system and the user. This means that

ifw1 = w = 1.2, thenw2 = w ∗w = 1.44, that indicates the impor-

tance of the movement of second interaction. The vector consisting

of all weights is denoted as wt and the history of choice for up (+)

or down (−) for a certain feature value is denoted as hf,±. Here, we
define the Score as

Scoref ,± = hf,± ·wt. (3)

For example, when a user change the preference for Feature 1 in the

three interactions like UP → DOWN → UP , h1,+ = (1, 0, 1) and
h1,− = (0, 1, 0). When w = 1.2, w3 = (1.2, 1.44, 1.73). Therefore,
Score1,+ = (1, 0, 1) · (1.2, 1.44, 1.73) = 2.93 and Score1,− = (0, 1, 0) ·
(1.2, 1.44, 1.73) = 1.44.

Then, we define the Tendency as

Tendencyf ,± =
Scoref ,±∑

t wt
. (4)

When consider the example we explained above, Tendency1,+ =
Score1,+/

∑
t wt = 2.93/4.37 = 0.67, and similarly, Tendency1,− =

0.33. We infer the direction in which the user wants to move by

judging whether the Tendency surpasses the upper threshold,UT .
For example, if Tendency1,+ > UT , we assume the user wants to

increase the value of Feature 1. Additionally, the features ignored by
the user can be known by judgingwhether theTendency of a feature
for both up and down is lower than the lower threshold, LT . For
example, if Tendency2,+ < LT at the same time Tendency2,− < LT ,
Feature 2 is ignored by the user.

3.2.3 Combinations of Directions. After inferring the direction

toward which the user wants to move and the features ignored by

her/him, we generate the combination of the directions favored and

ignored by the user. Initially, we set the number of hints to display

and the number of directions to consider. Then, we calculate the

sum of Tendencies for the combinations of directions that a user

moves toward. For example, consider a case where there are three

directions users tend to move toward, (Feature 1, +, Tendency = 0.6),
(Feature 2, -, Tendency = 0.7 ), (Feature 3, +, Tendency = 0.55). When

we take two directions into account, we obtain three combinations

of directions and the sum of Tendencies, i.e., (Feature 1, +, and
Feature 2, -), (Feature 1, +, and Feature 3, +), and (Feature 2, - and
Feature 3, +). For example, in terms of the sum of Tendency, the
top-1 in the combinations is (Feature 1, +, and Feature 2, -). The sum
of Tendency of this combination is 1.3. Now, we obtain the list of

combinations of directions.

If there are any features ignored by the user, we add the direction

related to the ignored features to the list. For example, when Feature
4 is ignored, (Feature 4, +) and (Feature 4, -) are added to the list.

Therefore, the top-1 in the list of combinations is (Feature 1, +,
Feature 2, -, and Feature 4, +) or (Feature 1, +, Feature 2, -, and Feature
4, -). The plus or minus of Feature 4 is decided on the basis of how

many items will be changed by the hint. If the number of items that
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Algorithm 1: Calculate Candidate Vector
input :d : Combination of directions, I : Vertices,

SI : Shown items, P : User preference
output :Candidate vector

1 GenerateCandidateVector(d, I , SI )
2 MaxItem ← i most matching d in SI ;

3 foreach j in I do
4 if j more matching d thanMaxItem then
5 Add j to CandidateItem

6 Di f ← 0;

7 foreach k in CandidateItem do
8 V ← Top-1 Vector for k ;

9 NR ← top-N ranking on the basis of V ;

10 l ← No. of different items in NR from SI ;

11 if Di f < l then
12 CandidateVectors = �;

13 Add V to CandidateVectors;

14 Di f ← l

15 else if Di f = l then
16 Add V to CandidateVectors

17 if No. of CandidateVectors > 1 then
18 foreach V in CandidateVectors do
19 C ← cos sim of V and P ;

20 if C = Max cos sim of V and P then
21 Candidate Vector ← V

22 return Candidate Vector

appear in the new recommendation list when the combination with

Feature 4, + is more than that with Feature 4, -, the combination

with Feature 4, + is applied.

3.2.4 Calculation of Candidate Vector. On the basis of the listed

combinations of directions, we calculate the candidate vector to

generate hints by using algorithm 1. First, the values of features in

all vertices (I ) are compared with the values of displayed items (SI )
to judge whether there are items that have higher (or lower) values

suited to the listed combinations of directions. Each item in SI is
represented as i . If there are vertices that match the combination

of directions (d), they are added to the list of candidate items. For

example, when the combination of directions toward which the

user wants to move is (Feature 1, +, and Feature 2, -), if there are
vertices whose values of Feature 1 is higher than the highest value

for Feature 1 in the displayed items, and at the same time, if the

values of Feature 2 of the vertices are lower than the lowest value

for Feature 2 in the displayed items, the vertices are added to the

list of candidate items.

Next, for each candidate item, the top-1 vector for the item is

selected and the top-N item list is calculated on the basis of the

top-1 vectors. At the same time, the number of different items in the

top-N list that is generated on the basis of the top-1 vector from the

currently displayed top-N list is calculated. Then, the top-1 vector

that generates the top-N list in which the number of different items

from the currently displayed items is the biggest is chosen as the

candidate vector. If there remain multiple candidate vectors at this

time, we select the one candidate vector that has the biggest cosine

similarity (cos sim) with the current user preference (P ).

3.2.5 Generating Hints. Finally, we display hints for users with

natural language. Although multiple hints can be displayed, the

number of hints should be limited to avoid information overload.

When multiple hints are displayed, the hints generated based on

top-N combinations in terms of the sum of Tendency are displayed.

To display hints in the form of natural language, we generate hint

vectors (HV) from the chosen candidate vectors (CV) as

HV =
CV
| |CV| |

∗ | |P| |, (5)

where the user preference is denoted as P. Each hint vector is the

unit vector of the candidate vector multiplied by the norm of the

current user preference. This calculation is executed because the

norm of candidate vectors is not fixed at this time and Tendency is

calculated on the basis of the difference between current preference

and the hint vector, so the norm of the vector and the preference

should be aligned.

Then, natural language hints are generated in two different forms.

The first one is hints without ignored features. In this form, we

focus on making the user preference move to the hint vector. For

the hint, we display a natural language hint and offer a ‘Jump in

this direction’ button to make the current preference jump to the

hint vector as shown in Figure 4. This means that, when the user

clicks the ‘Jump in this direction’ button, displayed user preference

changes to the values of the selected hint vector and the displayed

list of items changes at the same time. Additionally, we display the

information on features that are not included in the combinations

of directions if the difference of values for the feature between the

current user preference and the hint vector is large enough. For

example, when the chosen combination is (Feature 1, + and Feature
2, -), seven items will be newly shown with the selected hint vector,

and at the same time, the difference of Feature 3 between current

user preference and the hint vector is large enough, the hint is

shown as “7 items with higher values of Feature 1 and with lower
values of Feature 2. (You need to decrease the preference for Feature
3.)” The second form is hints with ignored features. In this form,

while we generate the same natural language hint as the first one,

the user can move toward the suggested direction with the same

value by clicking the ‘Jump in this direction’ button, as users can

move with the normal operation. By “normal operation,” we mean

the operation with the up or down button in the interface displayed

regardless of the existence of hints. This is because the hint vectors

considering the ignored features can change the user preference

in radically different directions from the direction in which the

user wants to move, and so the movement toward the hint vectors

should be gradual.

4 EXPERIMENT
To conduct the offline experiment with our method, we have to

define the simulation environment. In this section, we explain the

dataset we use, the settings of the parameters, the policy of the sim-

ulated user behaviors, and the metrics to evaluate the performance.
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4.1 Dataset
To conduct the offline experiment, we use the data gathered from

our MAUT-based interactive recommender system to let users find

their favorite areas to relocate to. There are two reasons why this

application domain is chosen. First is that there is a trade-off rela-

tion between convenience and safety in this domain. This trade-off

is needed because it makes users search for their appropriate prefer-

ence between conflicting characteristics. Otherwise, users will just

make the preference for each attribute maximum or minimum. Sec-

ond is that users interact with recommender systemsmore seriously

when making important decisions related to their own lives.

When using our recommender system, users input their demo-

graphic characteristics to the system and are recommended areas

that match them. After that, users can adjust their preferences and

approach their final preferences. The recommender system recom-

mends blocks in a city (areas from one street to the next street) as

items that are characterized by six features:

i). Transportation: the number of trains arriving at the station

in the area.

ii). Shopping: the scale of the shopping facilities.

iii). School proximity: the time it takes to walk to the nearest

elementary school.

iv). Neighborhood activity: the attendance ratio to events of

neighborhood associations.

v). Hospital: the number of hospitals.

vi). Safety: crime rate.

We normalize these features as 0 for the minimum number and 1

for the maximum number when calculating users’ utility for each

area. The number of 0 is set to show that there are not any positive

or negative values related to the feature. With our system, 163

blocks can be recommended, and 83 blocks are vertices. Therefore,

we generated 83 top-1 hint vectors. While the system was open

publicly on the Internet, we use the data of users who came into our

office to use the system because the motivation to use the system

should be aligned. The users are interested in relocating to the same

or similar cities that the system recommends. They are asked to

look at the recommended areas and mark the ones they think they

might like to move to as favorite areas. We used the data from 49

users who marked at least one favorite area. Users who could not

find any favorite areas or who did not use the system seriously are

not included in the data. We evaluated the seriousness of users with

a 5-scale questionnaire of impressions about the system after using

it. If a user checked the same point for all questions or the answers

were not coherent, we excluded the user from the data set.

4.2 Parameter Settings
We set the parameters for our experiment as follows. First, the

number of features (f in Equation 1) is six. Therefore, we conduct

our experiment in the six-dimensional feature space. We consider

the situation where the top-10 ranking of recommended items is

shown to users. This is the same number used in our collection

of the data set. Next, we set the value for the weight (w) when

calculating the Score and Tendency of the favored direction as 1.2

(= w = w1 in Equation 3 and 4). We set the upper threshold UT
to judge the direction a user wants to move toward as 0.5 and the

lower threshold LT to judge the ignored features as 0.3. Then, we set

the number of displayed hints to 1. In our experiment, this means

that when the hints are displayed, users always choose the hint

at the top of the list. Additionally, when we generate the favored

direction, we take three features into account. This is because we

want to display hints with natural language, and more than three

hints would be too many to take in at a glance.

4.3 Simulation Method
To conduct the offline experiment, we need a policy for the simula-

tion. The offline simulation of interactive recommendation methods

is considered difficult because the reactions of real users cannot

be known. While simulation methods are investigated for critique-

based recommender systems [14], there are not any detailed in-

vestigations of simulation methods for MAUT-based interactive

recommender systems. In our experiment, we assume that the final

preference of each user (i.e., the preference when s/he quits the

system) is the settled one. Therefore, in our scenario, the users’

preferences move toward the final preference
2
. When the prefer-

ence comes near enough to the final preference, the movement of

preference stops. As real users can, simulated users can change

their preferences for multiple features at a time with a fixed length.

Generate hints.

Is the direction in which 
the user preference move 
similar to that in the last 

movement?

Apply simulation 
mode.

Can hints be 
generated?

Preference changes in 
the same way as the 

real user’s.

YES 

NO

Have any hints 
generated so far?

YES 

NO

YES

Change preference in 
the offered direction.

NO

Figure 6: The flow of our simulation.

The detailed flow of our simulation is as follows. We summa-

rize the flow in Figure 6. In our scenario, there are three ways of

movement. The first is the movement that is the same as a real

user’s movement. When hints have not been displayed yet, the

movements of preference follow the log data of real users’ move-

ment. The second is movement when the hints are displayed. The

simulated users always click the ‘jump in this direction’ of the hints

at the top of the displayed hints button whenever the hints are

displayed in our scenario. If the number of items that are different

from previous recommended items is less than four, we start to

2
We use the deterministic approach, not stochastic approaches mainly because we

do not know how often users keep directions suggested by hints and how the final

preferences changes with the existence of hints.
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generate hints. If we generate the hints to recommend items that

match a user’s preference successfully, we make the preference of

the user jump to the hint vector. If there is a hint vector based on

the ignored features, the user preference moves toward the hint vec-

tor generated on the basis of the ignored feature regardless of the

existence of the hint vectors generated on the basis of the favored

directions.

As the third type of movement, we set the simulation mode. If the

user’s Tendency changes radically resulting from the jump to hint

vectors, it is not appropriate to continue to generate hints. There-

fore, if the sign of favored direction for the same feature becomes

opposite to the previous tendency resulting from the application

of hint, we stop generating hint vectors and start to apply the sim-

ulation mode. In this simulation mode, the preference is made to

move straight toward the final preference. We calculate the distance

between the current preference and the final preference, and if the

distance is more than that the user can move at one time, we make

the preference move toward the final preference. If the distance

from the current value and the final value is more than the distance

a user can move at one time, we select the top-3 feature whose

values are distant from those of final preferences more than the

distance that a user can move at one time, and after that, make the

preference moves toward the final preference at one time. In the

simulation mode, hints can be generated.

4.4 Evaluation Metrics
We evaluate the performance of our method with several metrics.

First, we identify the percentage of users provided with hints. In

our method, a user needs to move her/his preference in the same

direction to some extent to be provided with hints. Naturally, there

are some users who do not have any specific direction they tend

to move in. Therefore, by dividing users into those who are given

hints and those who are not, we investigate the possibility of the

provision of hints. We count a user as one who is shown hints

if s/he is given hints at least just once. Then, we investigate the

performance of our method only for the users provided with hints.

Next, for the users provided with hints, we use a dependent

sample t-test to compare the number of interactions needed to

move close to the final preference and the number of favorite items

shown for each user. The number of interactions is evaluated to

confirm the behaviors of the simulated users is not far from that of

original users. With our method and simulation policy, it is possible

for user preferences to approach final preferences in a different way

from the original one. By evaluating the number of interactions,

we can analyze the effects of our method on the simulated user

behavior. Additionally, the number of favorite items is investigated

to evaluate to what extent users become unable to see their favorite

items with the existence of hints. When our method is applied, the

user preference sometimes changes radically and skip the items that

are marked as favorite items originally. Therefore, by investigating

the favorite items, we can evaluate whether or not users overlook

their favorite items in our simulated environment.

Finally, we investigate the diversity and novelty of the recom-

mended items. Our research question is whether users can see

more diverse items when there are hints generated on the ba-

sis of our method. Therefore, the diversity and the novelty are

Table 1: The number of interactions and of shown favorite
items.

Original With Hint

N M SD M SD t df p

Interactions 20 14.9 2.36 11.9 2.01 -.428 19 .67

Favorites 20 3.67 28.5 3.47 9.10 -1.87 19 .067

our main results. As the metric to evaluate the diversity and nov-

elty achieved with our method, we apply temporal diversity [12],

which is the diversity in the sequence of recommendation lists

our method produces over time. While there are several ways of

evaluating diversity [3], we utilize this method because our inten-

tion is to recommend items for users sequentially in the course

of interactions. In this method, we calculate diversity between

two recommendation lists, L1 and L2, whose lengths are N when

L2\L1 = {x ∈ L2 |x < L1}, with following equation:

diversity(L1,L2,N ) =
|L2\L1 |

N
. (6)

This equation can only calculate the diversity between two lists.

Therefore, we calculate novelty to compare new recommendations

to the set of all items that have been recommended (At ) on the

basis of [12] as follows:

novelty(L1,N ) =
|L1\At |

N
. (7)

If both the diversity and novelty increase significantly with the

existence of the hints, it is clarified that our method has positive ef-

fects on the recommendation. We calculate the average of diversity
and novelty for the number of users’ interaction (i.e. how many

times a user renewed the displayed recommendations) asMD and

MN respectively.

5 RESULTS
In this section, we report our results. We initially explain the ratio of

simulated users who are provided with hints. After that, the number

of interactions and shown favorite items are analyzed. Finally, the

diversity and the novelty of the recommendation is described.

5.1 Percentage of Users Provided with Hints
First, we show the number of users who are provided with hints.

Data from 49 users are used. A total of 20 users (40.8%) are provided

with hints generated on the basis of users’ favored direction, and

only one user (2.0%) is provided with hints generated on the basis

of ignored features. This latter user is included in the users who

are shown hints based on the favored directions.

5.2 The Number of Interactions and Displayed
Favorite Items

We check the results of the number of interactions and of shown

favorite items to analyze the effects of our method to the user

behaviors. The results are summarized in Table 1. The number

of users analyzed (N ) is 20 because we only consider the users

provided with hints. Between the original data and the simulated

data (with the existence of hints), while the number of interactions
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does not decrease significantly (p = 0.67), the number of favorite

items shown to users decreases with the existence of hints, the

p-value is more than but close to 0.05 (p = 0.067).

MD (Mean of temporal diversity)
p < 0.001

MN (Mean of temporal novelty)
p < 0.001

0.0

0.1

0.2

0.3

0.4
Existence of hints

Without hints
With hints

Figure 7: Comparison ofMD and that ofMN . The error bars
shows standard errors.

5.3 Diversity and Novelty
Finally, we compare the average of the mean of the temporal di-

versity for the times of interactions (MD) and that of the temporal

novelty (MN ) per user. In Figure 7, we show the average ofMD and

ofMN for the number of data (users) with bar graphs. We obtain

the results that both MD and MN increase significantly with the

existence of hints from when there are not any hints. The repre-

sentative values are as follows: For MD, M = 0.245, SD = 0.190

when there are not any hints, andM = 0.425, SD = 0.100 with the

existence of hints. With the t-test of MD, t = 7.07, d f = 19, and

p = 1.00 ∗ 10−06. For MN , M = 0.120, SD = 0.098 when there are

not any hints, and M = 0.242, SD = 0.096 with the existence of

hints. With the t-test ofMD, t = 6.52,d f = 19, and p = 3.03∗10−06.

These results implicate that the generation of hints results in the

effective recommendation of new items that a user has not seen

before in our experiment.

6 DISCUSSION AND FUTUREWORK
We discuss the results and their implications in this section. Related

to the ratio of users provided with hints, more than half of the

simulated users are not provided with the hints. This implies that

more than half the users do not have a definite tendency of move-

ment. One possible explanation for this is that users search items

at the same time as they change their preference, so sometimes

there is not a strong tendency in the behavior. On the other hand,

this means that it is possible that we can not provide hints more

than half of the users when we conduct an online study. This impli-

cates that we need to set some devices to make users have specific

tendencies as fast as possible with intelligent user interfaces.

With the change in the number of interactions, it is indicated

that our method does not have any positive or negative effects

on the simulated users. While it is possible that the number of

interaction decreases because the user preferences can jump to

other values radically with our method, there is no significant

effect on the number of interaction with our simulation policy. For

the number of shown favorite items, when our method is applied,

users sometimes can not find items that they originally marked as

favorite items. Skipping the favorite items can generate the missing

of opportunities for both users and the item providers, so it is

necessary to display skipped items in some ways. However, this

may occur the problem of information overload and devices to

overcome this problem is needed. Finally, the results of the average

of temporal diversity and of temporal novelty indicate that our

method can display more items for each user. This means that, as

the answer to our research question, our method can provide more

diverse range items for users than when there are not any hints.

However, we cannot confirm these implications are valid when

we conduct an online experiment due to the limitations of our sim-

ulation policy. In our experiment, we adopt a simulation policy

that assumes the final preference of each user that collected in the

situation where there are not any hints does not change regardless

of the existence of hints. However, in reality, the final preference

of the same users can change when there are hints because differ-

ent items are recommended to users and the cognitive load will

change as a result of this additional information. It is possible that

these differences will lead to negative effects, such as users exit the

system earlier or difficulties in identifying a clear tendency of user

movement. There may also be other effects from the hints, such as

favorite items changing or the final preference changing.

Therefore, as future work, we need to conduct an online user

experiment by designing real user interfaces. In order to minimize

the negative effects, we should design the parameters for the hints

on the basis of user observations while, in our simulation, we set

parameters without user observations using real user interfaces.

Additionally, effective user interfaces have to be developed. In addi-

tion to the assumed effect of the existence of hints described above,

we will investigate whether displayed hints are actually chosen

by users. In the experiment reported in this paper, we assumed

that users always utilize the hints whenever they are displayed.

However, in a real situation, users might ignore the hints for several

reasons, e.g., if the calculated tendency does not show the user’s

preferred directions or if the hints are not highlighted enough. At

the same time, the impact of hints on the user experience of the

recommender systems should be investigated in the online experi-

ment.

7 CONCLUSION
In this paper, to achieve transparent interactive recommender sys-

tems, we offered an algorithm to generate natural language hints

to let users know the appropriate way of movement that matches

users’ preferences. We used MAUT as one of the simplest methods

to relate user preference to the item features and clarified the diffi-

culties in operating MAUT-based interactive recommender systems.

With an offline experiment, it is found that our algorithm achieves

more diverse recommendations to the users. This will leads to the

more transparent interactive recommender systems in that users

can understand the detailed algorithmic behaviors of the systems.

As future work, we will conduct online experiments to evaluate the

performance of our algorithm in the real interactive environment.
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