
Coping with Inconsistent Models of Requirements
Juha Tiihonen1 and Mikko Raatikainen1 and Lalli Myllyaho1

and Clara Marie Lüders2 and Tomi Männistö1

Abstract. Issue trackers are widely applied for requirements engi-
neering and product management. They typically provide good sup-
port for the management of individual requirements. However, holis-
tic support for managing the consistency of a set of requirements
such as a release is largely missing. The quality of issue data may be
insufficient for global analyses supporting decision making. We aim
to develop tools that support product management and requirement
engineering also in cases where the body of requirements, e.g. for
a software release, is inconsistent. Software releases can be seen as
configurations of compatible, connected requirements. Our approach
described in this paper can identify inconsistent elements in bod-
ies of requirements and perform diagnoses using techniques from
Knowledge Based Configuration. The research methodology follows
the principles of Design Science: we built a prototype implementa-
tion for the approach and tested it with relevant use cases. The Qt
Company has large sets of real requirement data in their Jira issue
tracker. We characterize that data and use it for empirical perfor-
mance testing. The approach can support product management and
requirements engineering in contexts where large, inconsistent bod-
ies of requirements are typical. Empirical evaluation shows that the
approach scales to usage in large projects, but future work for im-
proving performance is still required. Value in real use is highly plau-
sible but demonstration requires tighter integration with a developed
visualization tool, which would enable testing with real users.

1 Introduction

Over the years Issue trackers have become important tools to man-
age data related to products. The trackers are especially popular in
large-scale, globally distributed open source projects [4, 5], such as
Bugzilla for Linux, Github tracker for Spring Boot, and Jira for Qt.
A tracker can contain thousands of bugs and other issues reported by
different stakeholders. These issues typically become requirements
for a future release of a product. These requirements are often re-
lated to each other—it is not uncommon to have the same require-
ment more than once thus being related as similar or duplicate; or one
requirement requires another requirement. However, trackers primar-
ily provide support for individual requirements over their life cycle.
Even though dependencies can sometimes be expressed for each in-
dividual requirement, more advanced understanding or analysis over
all issues and their dependencies in a system is not well supported:
Developers do not conveniently see related requirements; a require-
ment engineer cannot deal with requirements as an interconnected
entity; and a product manager does not see what requirements and

1 University of Helsinki, Finland, email: {juha.tiihonen, mikko.raatikainen,
tomi.mannisto, lalli.myllyaho}@helsinki.fi

2 University of Hamburg, Germany, email:lueders@informatik.uni-
hamburg.de

issues are related to the requirements planned for the next releases.
To aggravate the problem, the data in a tracker is heterogeneous and
often inconsistent. Thus, trackers are not optimal for the concerns of
product management or requirements engineering that need to deal
with different requirement options, alternatives, and constraints, as
well as their dependency consequences when deciding what to do or
not to do. This lack of support exists despite dependencies are found
to be one of the key concerns that need to be taken into account in
requirements prioritization [7, 1, 17] and release planning [16, 2].

Our objective is to help holistic management of requirements
while issue trackers are utilized. The specific focus is on the ap-
plication of technologies common in the field of Knowledge Based
Configuration (KBC) to support the stakeholders who are required to
deal with dependent requirements and issues in a tracker in their daily
work. We support decision making such as configuration of release
plans instead of automating it as needs are not known well enough
and criteria are hard to formalize. We describe the technical approach
of a system that aims to provide such support. The system is based on
generating a requirement model that closely resembles a traditional
configuration model. We also provide data which in practice shows
that the approach fits in the context and scales even to large projects.

We aim to address the following research questions: What are the
major requirements of the system? What are the characteristics of
real requirements data? How does the performance of computation
scale up? The applied research methodology follows Design Science
in the sense that the aim is to innovate a novel approach and bring it
into a specific new environment so that the results have value in the
environment [10, 19]. The context of research has been the Horizon
2020 project OpenReq3. Our primary case has been the Qt Company
(see Section 3) with a large database of issues.

Previous work: Dependencies in Requirements In the field of re-
quirements engineering research, both industrial studies [11, 18], and
release planning [16] and requirements prioritization [17] methods
emphasize importance of dependencies but lack details for the se-
mantics of dependencies. However, taxonomies have been proposed
for requirements dependencies [13, 3, 6, 20]. These include structural
dependencies, such as refines or similar; constraining dependencies,
such as require or conflict; and value-based dependencies, such as
increases value or increases costs. Although the taxonomies share
similarities with each other, the taxonomies vary in terms of size and
clarity of dependency semantics. Only a few taxonomies have been
studied empirically so that saturated evidence for an established or
general taxonomy has not emerged.

This paper is structured as follows. Section 2 introduces our ap-
proach for holistically supporting requirement management and de-
scribes the system we developed. Section 3 describes the real indus-

3 https://openreq.eu/

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

trial context applied for evaluation. Performance testing in Section 4
covers both the approach and results. These results are analysed in
Section 5. Discussion forms Section 6. Finally, Section 7 concludes.

2 Approach & System
Software releases or a set of requirements can be seen as configura-
tions of mutually compatible requirements. Consistency check and
diagnosis techniques that are commonplace in KBC can be applied
in the context of software release planning.

2.1 Context: Characteristics of issue tracker data
The characteristics of requirements in a tracker have a profound ef-
fect on a practical approach. The requirements are manually reported
by different people—the granularity, level of detail, and quality dif-
fer. These differences would remain even if all issues had been man-
ually reviewed, as e.g. in the case of Qt’s triage process that can even
send an issue back for further information or clarification. Even the
typology or purpose of issues, such as epics for feature requests and
bugs for deficiencies, is not always adhered to. Duplicated or similar
issues are not uncommon: A bug or feature request can be reported
by several persons, each possibly providing some unique character-
istics or details that need to be preserved. The semantics of depen-
dencies between requirements is not always completely clear and the
dependencies are not applied consistently by different people. The
relationships are not even necessarily marked at all. As a result, the
data in a tracker is in practice doomed to be inconsistent and incom-
plete. Therefore inference on the whole database is difficult or even
meaningless. Correcting the whole database is practically hopeless or
at least impractical. Therefore, we believe it is more fruitful to pro-
vide requirement engineering with tools that can help to cope with
the less-than-perfect data.

2.2 Conceptualization of the problem
If the whole tracker database is likely to remain inconsistent, could
we restrict the focus to some relevant subsets? Our approach is based
on this idea. We support analyzing a requirement and its neighbour-
hood. A requirement is taken to the point of focus. We follow any
relationships (described below) of that issue to neighbour issues. A
transitive closure of issues within desired depth is calculated as a
graph. Depth is the minimal distance between two issues. The tran-
sitive closure is used as the context for analyses. Another natural
context of analysis is a release. An issue can be assigned to a specific
release such as 4.12.1. The combined neighbourhoods of the issues
of a release can be taken as the context of analysis4. Consequently,
for a given context of analyses, a requirement model is dynamically
generated. The requirement model is then mapped (through several
layers) into a formal model that supports inference. We combine in-
ference with procedural analysis of inconsistencies, which readily
enumerates local sources of inconsistencies even when the require-
ment model is inconsistent.

We follow (and extend) the OpenReq datamodel5 [15]. Hence, any
issue is considered as a Requirement that is characterized, among
others, by priority (integer, smaller number is higher) and effort (in-
teger, e.g., in hours), status such as ’planned’ or ’complete’ as well
as requirement text. A requirement can be assigned to a Release. A
Release is characterized by startDate, releaseDate, capacity (e.g., in

4 release-based analysis is in early stages of development
5 https://github.com/OpenReqEU/openreq-ontology

hours) and version string. The version strings conform to the com-
mon notation: E.g., ’4’, ’4.1’ and ’4.1.12’ are version strings. They
can be amended with prefixes and suffixes, e.g. ABC-4.12.1RC1 rep-
resents Release Candidate 1 of the version 4.12.1 of product ABC6.

Dependencies are binary relationships between two requirements.
The types of dependencies with clear semantics are summarized in
Table 1. In the table, relra and priora specify the assigned release
and priority of requirement ra, respectively. Assignment to release
0 means that the requirement is not assigned to any release. Many
of the dependencies are similar to those identified in [9]. The depen-
dency duplicates(ra, rb) is managed in pre-processing by collecting
all dependencies of rb to ra.

The compositional structure of requirements is expressed as de-
composition dependencies. This part-of hierarchy of requirements
seems to be typically 4 levels of depth at maximum. For instance,
Epics can have user stories, and user stories can have task.

2.3 Solution Functionality

The current main functionalities for requirement engineering are
consistency checks and diagnosis services as well as computation of
transitive closure. The user interface for and visualization of depen-
dencies by OpenReq Issue Link Map7[12] is vital for practical usage
but not the focus here.

Transitive closure service computes a transitive closure of a Re-
quirement in focus of analysis by following all links in breath-first
manner up to the specified depth in terms of the number of depen-
dencies followed. By adjusting the desired depth, different contexts
of analysis can be formed. For releases, the current implementation
calls the service for each requirement of the release and combines
the results.

Consistency check analyzes a defined contexts of analysis formed
by a set of requirements and their dependencies, priorities, and re-
leases. The following aspects are checked: Each binary dependency
must satisfy the semantics of the dependency as defined in Table 1.
Here, the assigned release and the priority of each requirement is
taken into account. If effort consumption is specified, the sum of ef-
forts of requirements assigned to a release must be less or equal than
the capacity of the release. The analysis reports aspects such as in-
consistent relationships and resource consumption per release. Both
human-friendly messages and machine-friendly JSON data fields are
included in the response.

Diagnosis can be optionally performed in conjunction of a consis-
tency check. Diagnosis attempts to provide a ’repair’ by removing re-
quirements or dependencies. Requirement removal is justified espe-
cially when capacity consumption is excessive. It is also possible that
assignments or dependencies have been performed in a faulty man-
ner. Therefore, a diagnosis (1) Can consider requirements as faulty;
(2) Can consider relationships as faulty; and (3) Can consider both
requirements and relationships as faulty.

If all the elements proposed by a diagnosis (relationships, depen-
dencies) are removed (requirement is unassigned, represented by as-
signing it to release 0), a consistent release plan is achieved. Diag-
nosis can also fail. For example, removing only relationships cannot
fix excessive resource consumption. Diagnosis is based on the FAST-
DIAG algorithm [8].

6 We apply the Maven Comparable Versions:
https://maven.apache.org/ref/3.6.0/maven-
artifact/apidocs/org/apache/maven/artifact/versioning/ComparableVersion.html

7 https://api.openreq.eu/openreq-issue-link-map

Table 1. Semantics of Dependencies

Dependency Closest type in [9] Semantics Description
excludes(ra, rb) atmostone(relra, relrb) relra = 0 ∨ relrb = 0 at most one out of {ra, rb} has to be assigned to a release
incompatible(ra, rb) different(relra, relrb) relra 6= relrb ∨ relra = 0 ∨

relrb = 0
{ra, rb} have to be implemented in different releases

requires(ra, rb) weakprecedence(relrb, relra) relra = 0 ∨ (relrb ≤ relra ∧
relrb > 0)

rb must be implemented before ra or in the same release,
or ra is not in any release

implies(ra, rb) strongprecedence(relrb, relra) relra = 0 ∨ (relrb < relra ∧
relrb > 0)

rb must be implemented before ra or ra is not in any
release

decomposition(ra, rb) (none) relra = 0∨(relra > 0∧relrb >
0 ∧ (relrb ≤ relra ∨ priorb >
priora)

Whole ra is not complete without part rb: rb must be
implemented at the same release or before ra or rb has
a lower priority so it can be assigned to a later release. A
better name would be haspart(ra, rb)

For example, assume that Release 1 of capacity 3 (hours) has as-
signed requirements REQ1 (effort:2h) and REQ2 (2h). Release 2 of
capacity 4 has REQ3 (3h) and there is a dependency excludes(REQ1,
REQ2). Analysis and diagnosis results would include, among others,
(white space modified):

{"response": [{
"AnalysisVersion": "analysis",
"AnalysisVersion_msg": "Analysis and consistency check",
"Consistent": false,
"Consistent_msg": "Release plan contains errors",
"RelationshipsInconsistent": [{

"From": "REQ1", "To": "REQ2", "Type": "excludes"}],
"RelationshipsInconsistent_msg":
"Relationships that are not respected (inconsistent): rel_REQ1_excludes_REQ2",
"Releases": [{ ** Release 0 omitted||() ...

"Release": 1, "Release_msg": "Release 1",
"RequirementsAssigned": [

"REQ2",
"REQ1"],

"RequirementsAssigned_msg": "Requirements of release: REQ2, REQ1",
"AvailableCapacity": 3, "CapacityUsed": 4, "CapacityBalance": -1,
"CapacityUsageCombined_msg": "Capacity: available 3h, used 4h, remaining -1h"},

...
{"AnalysisVersion": "reqdiag",
"AnalysisVersion_msg": "Requirements diagnosis",
"Consistent": true,
"Consistent_msg": "Release plan is correct",
"Diagnosis": {

"DiagnosisRequirements": [
"REQ1"],

"DiagnosisRelationships": []},
"Diagnosis_msg":
"Diagnosis: remove these requirements (REQ1) AND these relationships ((none))",
...
{"Release": 1,

"Release_msg": "Release 1",
"RequirementsAssigned": ["REQ2"],
"RequirementsAssigned_msg": "Requirements of release: REQ2",
"AvailableCapacity": 3, "CapacityUsed": 2, "CapacityBalance": 1,
"CapacityUsageCombined_msg": "Capacity: available 3h, used 2h, remaining 1h"},

...

The Diagnosis of Requirements would suggest removing REQ1.
Updated capacity calculations and resulting release assignments are
reported. Diagnosis of only relationships cannot succeed, because of
the excess capacity.

2.4 Solution Architecture and Implementation
We have implemented the approach as a service-based system con-
sisting of independent services8, which in practice operate in a chore-
ographic manner combining the pipe-and-filter and layered architec-
tural styles (Fig. 2). The services collaborate through message-based
interfaces following REST principles.

The basic services realize the concepts described above by two
services: KeljuCaaS and Mulperi. KeljuCaaS is a Configurator-as-a-
Service, whose responsibility is to provide analyses for models that
it receives from Mulperi. Currently, KeljuCaas provides functionality
described in Section 2.3 based on information described in Section
2.2. For consistency check, KeljuCaas has a procedural component
that checks the model for inconsistencies and reports them. These in-
consistencies may result from dependencies between requirements
including their assignments to releases, priority violations, or re-
quirement efforts exceeding the capacity of the release. For diagno-
sis, KeljuCaas converts the release plan into a Constraint Satisfaction

8 EPL licensed https://github.com/OpenReqEU

Figure 1. The architecture of the system.

Problem and uses the Choco Solver [14] and FastDiag [8]. The ad-
ditional functionality of KeljuCaas is to form and maintain a graph
containing all received requirements for caching purpose for large
data sets. The graph can then be searched for related requirements in
a transitive closure of a single requirement for the specified depth that
is used for visualization and analysis. Mulperi service operates as a
pipe-and-filter facade component to transform data and format data
to KeljuCaaS and provides its answers back to the caller. For exam-
ple, in a case of a small data, Mulperi can directly send data to Kelju-
CaaS, whereas in a case of large data such as in Qt’s Jira, Mulperi
differentiates functionality to send data to KeljuCaaS to construct the
graph and any requested consistency check first queries this graph for
a transitive closure for desired depth that is then sent for consistency
check. The reason for separating the functionality of Mulperi from
KeljuCaaS is to keep inference in a more generic service.

The integration services provide integration with existing require-
ments management systems, specifically with Qt’s Jira. The key fa-
cade and orchestrator service is called Milla. Milla imports Qt’s Jira
issues as JSON from the Jira’s REST interface and converts them into
Java objects. These objects are sent from Milla to Mallikas database
for caching storage as well as to Mulperi for processing. Milla is also
able to fetch new or modified issues from Jira to keep data up to date.
Mallikas is a simple database for storing Qt’s Jira issues as objects.
It uses the H2 database engine and Java Persistence API to cache the
data. This improves performance and avoids constant access to Jira.

The user interface is provided with OpenReq Issue Link Map9

(Fig. 2). The user interface shows a 2D diagram of dependencies
from the desired issue by selected depths. An issue can be searched or
clicked on the diagram. On the right, tabs separate basic information,

9 The demo version is available through https://openreq.eu/tools-data/

Figure 2. A screen capture of OpenReq issue link map.

dependency detection, and the results of consistency check.

3 Evaluation Context: The Qt Company & Jira
We demonstrate practical application of our approach in realistic set-
tings and evaluate performance using Jira of the Qt Company. The Qt
Company is a public company having around 300 employees and the
headquarters in Finland. Its product, Qt10 is a software development
kit that contains a software framework and its supporting tools. The
software framework is targeted especially for cross-platform mobile
applications, graphical user interfaces, and embedded application de-
velopment. A well-known application example using Qt is the Linux
KDE desktop environment but most of today’s touch screen and em-
bedded systems with a screen use Qt.

3.1 Jira’s Data Model at the Qt Company
All requirements and bugs of Qt are managed in the Qt’s Jira11 issue
tracker that has been in use for over 15 years. Jira12 is a widely used
issue tracker that provides many issue types and a lot of function-
ality, especially for individual issue management. All product plan-
ning at Qt is performed using Jira, despite attempts to integrate with
roadmapping tools. Qt has configured Jira for its needs. In the fol-
lowing, we describe the Jira data as applied at Qt.

Jira is organized into projects consisting of issues. The issues are
divided into different issue types as shown at the top row of Table 2.
A bug refers basically to any deficiency found from the existing soft-
ware. However, the difference between a deficiency and a new feature
is not always clear. A bug report can request also new features. Epic,
user story, task and suggestion each refer to new development ideas
or features. Change requests are used infrequently without clear pur-
pose in most projects. A task actually differentiates between a task,

10 https://www.qt.io/
11 https://bugreports.qt.io
12 https://www.atlassian.com/software/jira

Table 2. The number of different issues types in Qt’s Jira.

Project total bug epic user
story

task sugg-
estion

change
request

QTPLAYGROUND 15 11 0 0 0 4 0
QTWB 23 16 0 1 3 3 0
QTSOLBUG 193 122 0 0 8 63 0
QTSYSADM 261 16 0 0 242 2 0
QTJIRA 280 162 0 2 39 77 0
QSR 399 123 6 34 229 7 0
QDS 558 265 12 26 195 60 0
QTVSADDINBUG 629 514 0 21 14 80 0
QTWEBSITE 676 519 5 0 21 121 0
AUTOSUITE 871 330 67 159 298 17 0
PYSIDE 890 754 0 39 41 56 0
QTCOMPONENTS 1144 617 9 186 293 39 0
QTIFW 1266 931 2 12 119 202 0
QBS 1397 955 6 4 226 206 0
QTMOBILITY 1926 1538 0 0 93 149 146
QTQAINFRA 2635 915 29 120 1444 127 0
QT3DS 3292 1685 52 165 1227 163 0
QTCREATORBUG 21217 16975 3 76 1163 2979 21
QTBUG 74287 58583 223 623 6182 8636 40
Total 111959 85031 414 1468 11837 12991 207

sub-task, and technical task but there are no clear guidelines of use
and the usage is not consistent. Thus, we do not differentiate between
different task types.

The issue types define common properties as name-value pairs,
customizable by issue type. The property values can be text, such as
for a title and description; an enumerated value from a closed set,
such as for priority; an enumerated value from an editable and ex-
tending set, such as for release numbers or users; or a date. Each
issue can have comments. The change history of the issue is logged.
The relevant properties in this context are priority and fix version. Pri-
ority has predefined values from P0 to P6. P0 ’blocker’ is the highest
priority and P6 is the lowest priority. A fix version refers to the re-
lease in which the issue has been or will be completed and adheres
to maven convention described above.

Jira has six different directed dependency types knows as links:
duplicate, require, replace, results, tests, relates (cf. the top row of
Table 3). Only ’requires’ and ’duplicate’ have a clear semantics. The
other dependency types are used non-uniformly.

In addition, Jira has decomposition (parent-child) relationship.
Issues in Epic is used to add any other type of issues than epic
as child to an epic. Sub-task relations are used to add tasks as child
to other issues than tasks. However, the semantics is the same for all
decomposition relationships even though the name differs. As the re-
sult, issues can have an up to three level compositional hierarchy.

The resulting rules regarding the dependencies are the following:
All child issues, which have the same or higher priority, must not be
assigned to a later release; any required issue must not have a later
release or lower priority; and all links from a duplicated issue are
inherited by the duplicate issue

3.2 Data Quantity and Characteristics
The data in Qt’s Jira is divided into public and private parts. The
private part includes a couple of thousand issues of confidential cus-
tomer projects and Qt’s strategic product management issues. We fo-
cus here only to the public part because it is significant enough as it
contains most (roughly 98%) of the issues, and describes most tech-
nical details.

Qt Jira is divided into 19 projects (Table 2). ’QTBUG’ is the main

Table 3. The number of different dependency types in total and internal pointing to an issue in the same project.

Total Internal

Project to
ta

l

pa
rt

du
pl

ic
at

e

re
qu

ir
e

re
pl

ac
e

re
su

lts

te
st

s

re
la

te
s

to
ta

l

pa
rt

du
pl

ic
at

e

re
qu

ir
e

re
pl

ac
e

re
su

lts

te
st

s

re
la

te
s

QTPLAYGROUND 0 0 0 0 0 0 0 0 0 (0%) 0 0 0 0 0 0 0
QTWB 9 1 6 0 0 0 0 1 2 (22%) 0 2 0 0 0 0 0
QTSOLBUG 13 0 0 2 6 0 0 4 7 (53%) 0 0 1 6 0 0 0
QTSYSADM 11 0 0 0 2 6 0 2 9 (81%) 0 0 0 1 6 0 2
QTJIRA 17 0 1 2 8 0 0 6 12 (70%) 0 0 0 7 0 0 5
QSR 364 306 1 48 0 2 0 7 333 (91%) 284 1 41 0 1 0 6
QDS 265 191 2 45 0 5 0 22 205 (77%) 172 1 19 0 1 0 12
QTVSADDINBUG 77 2 26 21 7 4 2 15 73 (94%) 1 26 21 7 2 2 14
QTWEBSITE 21 8 0 2 0 0 0 8 16 (76%) 8 0 1 0 0 0 7
AUTOSUITE 326 255 4 36 2 9 0 20 259 (79%) 203 3 27 1 6 0 19
PYSIDE 147 14 28 26 2 12 0 65 127 (86%) 13 25 23 1 10 0 55
QTCOMPONENTS 311 169 0 66 10 35 0 31 265 (85%) 169 0 29 10 32 0 25
QTIFW 248 51 34 33 60 9 0 53 140 (56%) 41 30 6 29 4 0 30
QBS 290 57 17 67 36 13 0 96 237 (81%) 50 12 50 28 10 0 87
QTMOBILITY 299 169 0 29 26 33 0 42 268 (89%) 169 0 17 19 26 0 37
QTQAINFRA 1221 566 37 384 23 51 1 152 712 (58%) 421 23 152 19 19 0 78
QT3DS 1816 1170 11 231 6 173 0 225 1705 (93%) 1170 7 189 6 159 0 174
QTCREATORBUG 4056 592 530 343 1198 221 8 1141 2975 (73%) 366 478 172 956 131 4 868
QTBUG 15366 3567 1858 3371 1280 1063 11 4152 13767 (89%) 3390 1826 2880 1009 913 6 3743
Total 24857 7118 2555 4706 2666 1636 22 6042 21112 (84%) 6457 2434 3628 2099 1320 12 5162

Figure 3. The number of dependent issues at different depths.

project covering the Qt framework itself and ’QTCREATORBUG’
is the IDE for the framework. These two projects are the largest but
also the most relevant ones. The other projects are much smaller and
some of them are even inactive. The number of different issue types
and dependencies are shown in Tables 2 and 3, respectively. It is also
noteworthy that while most dependencies are internal to a project it
is not uncommon to have dependencies between projects.

The dependencies form a set of graphs between the issues through
their relationships transitively. Figure 3 illustrates the sizes of such
graphs in small depths. In the data, there is one graph that contains
6755 issues as its nodes and the greatest depth in this graph is 52 de-
pendencies (edges). The remaining graphs are significantly smaller,
the next largest ones containing 376, 164, 118, 114, and 91 issues,
and depths of 29, 21, 5 and 8 dependencies, respectively. As Figure 3
illustrates, the number of issues can grow relatively quickly when
depth grows. There are also small graphs: 9431 and 5488 issues par-

ticipate in a graph with only one and two other issues that can include
private issues. 84497 (75%) of issues are orphans meaning that they
do not have any explicit dependency to another issue.

QTBUG has the most rigorous release cycle that we describe as
follows. In total, there are 164 releases, out of which 26 are empty
releases without any issues. We did not investigate the reasons for
empty releases but it is possible that issues have been moved to some
other release and release is not done. The average and median num-
ber of issues in a non-empty release is 194 and 122, respectively.
Three releases have a large number of issues: 5.0.0/2142, 4.8.0/882,
and 4.7.0/1571. Since 5.0.0. released December 2012, Qt5 has al-
ready 111 releases. Qt 6.0.0 is planned for the November 2020.

4 Performance Evaluation

4.1 Approach for performance testing

We tested end-to-end performance of our system with consistency
checks and diagnosis, because they concern main functionality and
are potentially computationally heavy.

Performance tests for an individual issue used each issue of a
project in turn as a starting point root issue. The transitive closure
of different depths (1, 2, ...) was calculated for the root issue form-
ing a test set. The test were carried out to all issues at all existing
depths. As the depth increased, the number of existing graphs at that
depth decreased resulting in carrying out test to different sub-graphs
of a small number of large graphs. Issues without dependencies were
filtered out. Consistency check and, depending on the test, diagnosis
were performed for the test set with a timeout. To limit execution
time required by testing, testing of the root item with even greater
depths was not performed after the first time-out was encountered.

The test were ran as Unix-like shell scripts for the system running
in the localhost. The system exhibits overhead caused by the service
architecture. In order to estimate the overhead of architecture and
testing for the response times, we carried out consistency check for
a set of 1000 issues that do not have any dependencies. The time
required for the consistency check should be minimal. The response

Figure 4. Time for consistency check using 3s timeout. Max at
depth 1 is probably an error. Figure 5. Consistency check results in percentages by depth using 3s

time-out. The yellow line shows the count of the executed test at each depth.

times were: average 128ms, minimum 103ms, maximum 216, and
standard deviation 9ms.

The tests were carried out using a 64bit Windows 10 laptop hav-
ing Intel Core i5-7200 CPU @2.5GHz and 16GB RAM. The tests
were executed typically over the night but the computer was also oc-
casionally used at the same time for office tasks such as text editing
especially when execution had not yet completed. The tests used the
data retrieved from Qt Jira in May 2019.

4.2 Consistency Check of an Individual Issue

The first performance test measures consistency checks without diag-
nosis as described in Section 4.1 for QTCREATORBUG using 3ms
timeout. The largest graph in QTCREATORBUG has the maximum
depth of 4813 and this graph contains 6755 issues out of which 466
are in QTCREATORBUG. We carried out 18950 consistency checks
tests successfully while 7789 tests caused timeout—or would have
been scheduled for the same issue at a greater depth than the first
timeout. After level 36, which contained 300 tests, all tests caused
timeout and tests at the greater depth are omitted from below.

Figure 4 exhibits the time required for the consistency check and
Figure 5 the respective results of the consistency check. The lines
take into account timeouts: For example, 75% percentile line ends
at the depth 19 when over 25% tests results cause timeout because
the percentile cannot be calculated anymore. The first timeouts took
place at depth 14 for two items that had 4350 and 4253 issues in
their graphs. In fact, the smallest graph that contained a timeout was
3816 issues. Until depth of 5, over 60% of test sets are consistent but
adding depth quickly decreases the share of consistent test sets.

As a comparison, the same test script was ran for all Jira data using
another laptop running Cubbli Linux (Ubuntu variant of University
of Helsinki) having Intel Core i5-8250U CPU @1.60GHz and 16 GB
RAM. These test were carried out during a weekend when the com-
puter was otherwise idle. The tests took about 25 hours. These tests
used another snapshot of all data in Jira, which was about half year
old data downloaded for development and testing purposes. For ex-
ample, the largest graph of maximum depth 47 in this data consisted
of only 3146 issues. That is, some of the graphs were apparently
combined later by new dependencies. 171498 tests were executed.
No timeout occurred and the longest execution time was 2652ms.

13 The form of the graph is such that using any QTCREATORBUG node as
starting points does not create the maximal depth of 52, i.e., the nodes are
not at the ’outer front’ of the graph.

4.3 Diagnosis and Consistency Check of an
Individual Issue

The second test performed consistency checks with diagnosis as de-
scribed in Section 4.1 for QTCREATORBUG. All three diagnoses
are invoked in the case of an inconsistent test set. As the diagnosis is
carried out only for inconsistent issue graphs, we excluded consistent
graphs. The results of the execution time with respect to the num-
ber of dependencies are much worse than without diagnoses. The
3000ms time-out is quite tight, because the system performs three
separate diagnoses, leaving, on the average, slightly less than one
second for each. The results (Fig. 6) show that the timeouts start al-
ready from depth 3. While at depth 7 only 17% resulted in timeout,
the following depths timeout became frequent (depth 8/65%, 9/81%,
and 10/89%), and at level 18 all resulted in a timeout. Inspecting the
graph sizes, two smallest graphs causing a timeout were only 26 and
75 issues. This may have been caused by computer overloading for
other use. Starting from the third smallest graph resulting a time-
out at the size of 129 issues, timeouts become frequent and the 30th
smallest graph causing a timeout has only 149 issues.

4.4 Consistency Check of a Release
Performance tests for a release follow the above scenario of individ-
ual tests except that a release consists of a set of issues rather than
a single issue. Therefore, a root can consist of several issues. In the
current implementation, a graph of each single issue of a release was
fetched. All graphs were sent to consistency checker. For any larger
release consisting of several issues, significant overhead was caused

Figure 6. Consistency check and diagnosis of project QTCREATORBUG:
Number of inconsistent and time-out results per depth.

Figure 7. Consistency check results for QTBUG’s releases using 10s
timeout and the smallest number of issues in the timeouting release.

by generating all the graphs and repeating same data over and over.
Here, we applied 10s timeouts. Consistency checks were performed
for all non-empty releases of QTBUG. The five largest releases con-
taining over 700 issues caused an error at the REST interface of the
service due to the number of parameters given as root. Fig. 7 illus-
trates the results. The first timeout occurred at depth 3 with a release
containing 610 requirements. It is omitted from Fig. 7 for readability.

5 Analysis of performance results

The performance tests were carried out using the Jira data of the
Qt Company that we consider as a large empirically valid data set.
Although more complex synthetic data could be constructed, the Jira
data forms a more realistic and solid base for performance testing for
fast enough response times.

The dependencies form graphs of issues as transitive closures that
vary in their depths and sizes. We used the depth from a selected issue
as a variable to vary the sizes of graphs. A user cannot initially know
the size of the graph at the context of analysis. Thus, means to limit
the size are required, and limiting the depth is a natural approach. The
majority of issues remain orphans. It is noteworthy that there is only
one very large graph of over 6000 issues, a few graphs of hundreds of
issues, and several graphs of tens of issues. The releases merge these
graphs whenever they include issues from different graphs.

For all issues of Qt, the performance is adequate for performing
consistency analysis of the neighborhood of an issue interactively,
practically even with any depth. The timeouts started to appear for
graphs of around 4000 issues and the depth of 14. Diagnosis is more
computationally heavy but it performs quite well until depth 7 which
is adequate taking into account that small (3 s) timeout was applied,
three diagnoses were performed and the number of issue is in average
close to 200 already at depth 5.

Consistency checks for releases work sufficiently well until depth
6 in most of the cases. When the context of analysis is a release,
the performance results are probably significantly too pessimistic:
This new feature has no direct support for calculating the transitive
closure. Instead, individual transitive closures of the issues of the
release are calculated and finally combined. This leaves significant
potential for optimizing.

We applied mainly a three second time-out in performance testing
to shorten test duration with large data sets. In our view, analysis and
diagnosis of a whole release justifies, also from user point of view, a
much longer time-out value in the worst case scenarios.

6 Discussion

Validity of this work is exposed to some threats. First, the tests were
performed with all project data available. Therefore transitive clo-
sures span several projects. This has a side effect on the reliability
of the results: Because versions are not comparable across projects,
cross-project dependencies may be consistent or inconsistent in a
faulty manner. Therefore, we decided against reporting the number of
erroneous dependencies. Because versions are not comparable across
projects, many dependencies would be considered as not satisfied al-
though they are satisfied, and vice versa.

Second, it is noteworthy to observe that the results for the num-
ber of dependencies greater than 100 are done for the different sub-
graphs of the few large graphs. Some of these sub-graphs are very
similar as the test are done for all possible sub-graphs. In particular,
our test scripts analyzed numerous sub-graphs of the largest graph
with 6755 dependencies as a different issue of the graph was se-
lected as the root issue. A preliminary inspection did not indicate
that this large graph or its sub-graphs would otherwise differ from
other graphs but this would deserve a more thorough analysis.

Third, we did not control the test environment rigorously. Espe-
cially other software running at the same time probably affected the
results. Even the computer was a normal office laptop rather than a
proper server computer.

Despite the above mentioned non-trivial threats to construct valid-
ity, our view is that the big picture of results is still valid, although
some details might be incorrect. In other words, our view is that the
approach performs well enough for practical use at Qt. We believe
that this can be generalized to other contexts too.

Future work is required to more realistically gain benefits from
the approach and the system developed.

The visualization tool should be extended so that it can highlight
inconsistent dependencies and also show diagnosis results graphi-
cally. In our view, these extensions will make showing diagnosis
results to stakeholders much more intuitive than current textual de-
scriptions. Empirical studies on the benefits of the approach are best
performed with this support at hand.

In addition to individual issues and releases of different depths,
other context of analysis can be relevant. For example, small projects
can potentially be relevant contexts of analysis, such as QT3DS that
has around 3300 requirements and is under active development. Sim-
ilarly, a specific component or domain, such as Bluetooth or all net-
working, could form a context of analysis or a be used as a filtering
factor similarly as depth.

The visualization tool currently can visualize the neighbourhood
of a requirement up to 5 levels of depth. When all 5 levels exist, the
graph has on the average 170 dependencies. This would suggest that
5 levels is enough. However, the minimum is 5 issues and the 10%
percentile has only 21 issues. The ability to constrain the scope of
the graph is important because too large graphs may not be useful
for stakeholders and smaller contexts of analysis are easy for con-
sistency checks and perform well also with diagnosis. Instead of a
fixed depth limit, it might be practical to be give as parameters any
desired depth and an upper bound on the number of issues to retrieve
for visualization and analysis.

As the issue tracker data is manually constructed by different
stakeholders, not all dependencies are marked. We are studying the
detection of dependencies via natural language processing. The chal-
lenges with Qt’s Jira data in many approaches is that they can pro-
pose too many dependencies, they are computationally heavy and the
semantics of only duplication dependency is easy to detect. In consis-

tency check, proposed dependencies should probably not be treated
as equal to existing ones unless manually accepted by a user.

We currently consider the whole database of issues but do not take
into account many of the issue properties. For example, status, res-
olution, creation date, and modification date could be taken into ac-
count as filters. For example, inconsistent dependencies among com-
pleted, very old issues may be irrelevant, even if they are broken.

Besides Jira, a tight integration to other trackers could be added by
developing similar integration services. However, it is already possi-
ble to communicate through a JSON-based REST interface.

We focused primarily on the technical approach and its perfor-
mance. The user point of view was considered only in terms of the
relevant size of issue graphs. While users should be studied in more
depth, also the technical proposals deserves user studies. Currently
the system calculates and provides all three different diagnoses. If
the user is interested in only one of them, a significant increase of
performance would be achieved simply by performing only the de-
sired diagnosis. Besides repairing a release plan by removing incon-
sistent requirements or relationships, future work could consider re-
assigning requirements to other releases. However, such decisions
are at the heart of product management decisions. There are often
aspects in decision making of product management that are not easy
to formalize. It may often be more important to get understanding
about the problem than get less-than-solid proposals of repair.

7 Conclusions
This work is a contribution in the area of KBC: we assist in pro-
ducing consistent, connected configurations of requirements, apply
techniques of KBC to a relatively new domain, and apply our ap-
proach to a large set of real industrial data providing evidence that
the approach is viable. We identified major requirements and de-
veloped an approach that can support product management, require-
ments engineering and developers in practically important use cases
in contexts where large, inconsistent bodies of requirements are typ-
ical. Empirical evaluation shows that the approach scales to usage in
large projects, but future work for improving performance in some
use cases is still required.

The approach builds on considering a body of requirements as a
configuration of requirements that should be consistent, but it often
is not. Via neighbourhoods of different depth from a requirement or
a release, we support different sizes of contexts of analysis. Contexts
of a reasonable size facilitate solving identified problems.

With the support developed, developers can conveniently visualize
related requirements and their dependencies; a requirement engineer
can identify problematic dependencies and attempt to remedy them;
and a product manager can more easily manage the consistency of
a release. The performance of the tool is adequate for these tasks,
except that the diagnosis of a whole release needs further work and
modifications to the REST interface that cannot currently accommo-
date releases of 700 issues of more.

Value in real use is highly plausible but demonstration requires
tighter integration with a developed visualization tool, which would
enable experiments with real users. Our work can be seen as (con-
tinuation of) extending Knowledge Based Configuration to require-
ments engineering and product management.

ACKNOWLEDGEMENTS
This work is a part of OpenReq project that is funded by the Eu-
ropean Union’s Horizon 2020 Research and Innovation programme

under grant agreement No 732463. We thank Elina Kettunen, Miia
Rämö and Tomi Laurinen for their contributions to implementation.

REFERENCES
[1] Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Naz’ri

Mahrin, ‘A systematic literature review of software requirements prior-
itization research’, Information and Software Technology, 56(6), 568–
585, (2014).

[2] David Ameller, Carles Farré, Xavier Franch, and Guillem Rufian, ‘A
survey on software release planning models’, in 17th International
Conference Product-Focused Software Process Improvement (PRO-
FES), pp. 48–65, (2016).

[3] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och
Dag, ‘An industrial survey of requirements interdependencies in soft-
ware product release planning’, in Proceedings Fifth IEEE Interna-
tional Symposium on Requirements Engineering, pp. 84–91, (2001).

[4] John Wilmar Castro Llanos and Silvia Teresita Acuña Castillo, ‘Differ-
ences between traditional and open source development activities’, in
Product-Focused Software Process Improvement, pp. 131–144, (2012).

[5] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, and Aditya
Ghose, ‘Predicting the delay of issues with due dates in software
projects’, Empirical Software Engineering, 22(3), 1223–1263, (Jun
2017).

[6] Åsa G. Dahlstedt and Anne Persson, Engineering and Managing Soft-
ware Requirements, chapter Requirements Interdependencies: State of
the Art and Future Challenges, 95–116, Springer, 2005.

[7] Maya Daneva and Andrea Herrmann, ‘Requirements prioritization
based on benefit and cost prediction: A method classification frame-
work’, in 34th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), pp. 240–247, (2008).

[8] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 26(01), 53–62, (2011).

[9] Alexander Felfernig, Johannes Spöcklberger, Ralph Samer, Martin
Stettinger, Müslüm Atas, Juha Tiihonen, and Mikko Raatikainen, ‘Con-
figuring release plans’, in Proceedings of the 20th Configuration Work-
shop, Graz, Austria, September 27-28, 2018., pp. 9–14, (2018).

[10] S. Gregor, ‘The nature of theory in information systems’, MIS Quar-
terly, 30(3), 611–642, (2006).

[11] Laura Lehtola, Marjo Kauppinen, and Sari Kujala, ‘Requirements pri-
oritization challenges in practice’, in 5th International Conference
Product Focused Software Process Improvement: (PROFES), pp. 497–
508, (2004).

[12] Clara Marie Lüders, Mikko Raatikainen, Joaquim Motger, and Walid
Maalej, ‘Openreq issue link map: A tool to visualize issue links in jira’,
in IEEE Requirements Engineering Conference, (2019 (submitted)).

[13] Klaus Pohl, Process-centered requirements engineering, John Wiley &
Sons, Inc., 1996.

[14] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca, Choco
Documentation, TASC, INRIA Rennes, LINA CNRS UMR 6241,
COSLING S.A.S. www.choco-solver.org, 2016.

[15] Carme Quer, Xavier Franch, Cristina Palomares, Andreas Falkner,
Alexander Felfernig, Davide Fucci, Walid Maalej, Jennifer Nerlich,
Mikko Raatikainen, Gottfried Schenner, Martin Stettinger, and Juha Ti-
ihonen, ‘Reconciling practice and rigour in ontology-based heteroge-
neous information systems construction’, in The Practice of Enterprise
Modeling, pp. 205–220, (2018).

[16] Mikael Svahnberg, Tony Gorschek, Robert Feldt, Richard Torkar,
Saad Bin Saleem, and Muhammad Usman Shafique, ‘A systematic re-
view on strategic release planning models’, Information and Software
Technology, 52(3), 237 – 248, (2010).

[17] R. Thakurta, ‘Understanding requirement prioritization artifacts: a sys-
tematic mapping study’, Requirements Engineering, 22(4), 491–526,
(2017).

[18] A. Vogelsang and S. Fuhrmann, ‘Why feature dependencies challenge
the requirements engineering of automotive systems: An empirical
study’, in 21st IEEE International Requirements Engineering Confer-
ence (RE), pp. 267–272, (2013).

[19] Roel J Wieringa, Design Science Methodology for Information Systems
and Software Engineering, Springer, 2014.

[20] H. Zhang, J. Li, L. Zhu, R. Jeffery, Y. Liu, Q. Wang, and M. Li, ‘Inves-
tigating dependencies in software requirements for change propagation
analysis’, Information and Software Technology, 56(1), 40–53, (2014).

