
A conceptual vision toward the management of
Machine Learning models?

Daniel N. R. da Silva1, Adolfo Simões1, Carlos Cardoso1, Douglas E. M. de
Oliveira1, João N. Rittmeyer1, Klaus Wehmuth1, Hermano Lustosa1, Rafael S.
Pereira1, Yania Souto1, Luciana E. G. Vignoli2, Rebecca Salles2, Heleno de S.
C. Jr4, Artur Ziviani1, Eduardo Ogasawara2, Flavia C. Delicato3, Paulo de F.
Pires3, Hardy Leonardo da C. P. Pinto5, Luciano Maia5, and Fabio Porto1

1 National Laboratory for Scientific Computing (LNCC), Brazil
2 Federal Center for Technological Education of Rio de Janeiro (CEFET-RJ), Brazil

3 Federal University of Rio de Janeiro (UFRJ), Brazil
4 Federal Fluminense University (UFF), Brazil

5 CENPES/Petrobrás, Brazil
{dramos,ziviani,fporto}@lncc.br

Abstract. To turn big data into actionable knowledge, the adoption of
machine learning (ML) methods has proven to be one of the de facto ap-
proaches. When elaborating an appropriate ML model for a given task,
one typically builds many models and generates several data artifacts.
Given the amount of information associated with the developed models
performance, their appropriate selection is often difficult. Therefore, ap-
propriately comparing a set of competitive ML models and choosing one
according to an arbitrary set of user metrics require systematic solutions.
In particular, ML model management is a promising research direction
for a more systematic and comprehensive approach for machine learn-
ing model selection. Therefore, in this paper, we introduce a conceptual
model for ML development. Based on this conceptualization, we intro-
duce our vision toward a knowledge-based model management system
oriented to model selection.

Keywords: Machine Learning · Model Management · Knowledge Bases

1 Introduction

The increasing production and availability of large and diverse data, the recent
advancements in machine learning research, and the cheapening of digital pro-
cessing costs are together promoting the emergence of a new paradigm in our
society: humankind increasingly ground its decisions on data. This new paradigm
impacts many, not to say all, society activities, including scientific development,
corporate world decisions, and government policies [7]. Scientists more and more
? The authors thank the partial support of the Brazilian funding agen-
cies: CAPES, CNPq, FAPERJ, and FAPESP, as well as the project no.
5850.0108913.18.9/4600567373 funded by Petrobras.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

16 Silva et al.

elaborate hypothesis and make scientific discoveries using data analysis tech-
niques [2, 21]. Likewise, enterprises are progressively adopting business intelli-
gence strategies and data leveraged technologies in their decision-making pro-
cesses [5]. To improve their productive capacity, industries monitor and analyze
data retrieved by sensors placed all around their manufacturing plants. Finally,
foreseeing assets for public policymaking, government agencies have increased
funding on data science research and development.

The employment of machine learning (ML) techniques is at the core of sev-
eral applications, but still lacks systematic solutions. Data analytics has been
successfully employed in data classification, data clustering, and rare events dis-
covery [16]. However, the development of ML is still mainly ad-hoc, characterized
by a trial-and-error nature. Since there is no unique ML algorithm that works
best for every dataset [23], it is necessary to test and manage different ML al-
gorithms configurations and models to meet one’s criteria.

The development and maintenance of ML models yields many interrelated
artifacts, e.g., models, algorithm configurations, intermediate and transformed
datasets, annotations, and scripts. As applications complexity increases, it be-
comes harder to manage the produced artifacts volume without a systematic
approach. For example, to choose a set of appropriate models for their appli-
cation, users have to understand and trace back the steps taken during model
development. They gather data and information on preprocessing, feature engi-
neering, algorithm parametrization as well as compare the performance of devel-
oped models according to a set of metrics. The integration of this information
to more easily develop better models makes the management of ML models
essential.

Machine learning model management encompasses the systematic process
of managing relevant artifacts—e.g., models and datasets— produced during
the development, deployment, and monitoring of ML models [15]. Due to the
relevance of this task, the machine learning and data management communities
have recently raised joint efforts to build systems and tackle challenges on model
management [11, 19, 20, 24]. Nevertheless, how the management of ML models
can leverage their selection according to the application domain features remains
an open question.

In model selection, ML management systems have to take into account diverse
ML models, user constraints on data domains, and model performance metrics.
In particular, for a given domain D = (X ,Y) and a target unknown function
f : X → Y, ML management systems should consider (a) a set H = {h1, ..., hk}
of predictive models for f respectively trained on datasets Dhi

(D; (b) a set
C = {c1, ..., cm} of users performance criteria which are functions of ML model
performance metrics; and (c) a set of data regions Q = {q1, ..., qn}, qi (X ,
where each region possibly contains x ∈ X absent of all H training sets. These
systems should also deal with situations where no model in H meets the criteria
set on a specified region. In this case, the system should automatically employ
techniques as model ensembling and automated machine learning to extend H
with performative models on the specified region.

A conceptual vision toward the management of Machine Learning models 17

In this paper, we present a conceptual framework for the design of Gypscie6,
an ML model management system oriented to model selection. In particular,
our contribution is twofold: (a) we describe the main actors and relationships in
ML development in a conceptual model that contributes to elicit challenges and
research opportunities involved in the management task; and (b) we present our
vision toward Gypscie, which includes features for ML data/knowledge integra-
tion as well as machine learning lifecycle and model management.

The paper goes as follows. In Section 2, we present a user scenario that
motivates the design of Gypscie. In Section 3, we briefly review systems related
to the emerging area of management in machine learning. In Section 4, we present
our conceptual model for the machine learning lifecycle. In Section 5, we present
Gypscie intended features. Finally, in Section 6, we make our final remarks and
point out future research directions.

2 Motivating Scenario

In this section, we present a scenario that illustrates the relevance for ML man-
agement functionalities supporting users in finding a model that best fits her
predictive criteria.

Let us consider the meteorology domain, where a myriad of ML and physics
models may be used for temperature prediction, as one can attest by visiting
the MASTER website.7 We also consider a data scientist — Bob — user of
the MASTER website, aiming at improving the quality of the predictions. A
common approach, given such a variety of available models, would be to adopt
an ensemble approach. The latter combines a selection of diverse and potentially
simpler models to compute a new one, leveraging the predictive capability of
each individual component. In Souto et al. [18], an ensemble approach, using a
Deep Neural Network, combines the predictions of independent models registered
in MASTER, to produce more accurate temperature predictions in the region
of the state of São Paulo, see Figure 1. The ensemble model predictions are
compared against registered observations of the same area to produce a color
map indicating the error level at each spatial position, where closer to yellow
represents a higher predictive error.

One may observe, in Figure 1, that despite combining models with different
prediction capabilities, the resulting predictions still highlight a distribution of
error level through the covered spatial region.

Now, let us add a second user, Anna, to this scenario, interested in planting
coffee during the raining season and looking for days with temperatures between
18°C to 20°C, in the north-west region of the São Paulo state. It is unlucky that
the region observes a prediction error level produced by the new model that is
beyond acceptable limits.

Anna could envisage a few alternatives. For example, she could ask Bob to
search for new training data covering that particular area of interest and use it
6 The name Gypscie is a combination of the words Gypsy and Science.
7 http://www.master.iag.usp.br/lab/

18 Silva et al.

Fig. 1. Distribution of error level of temperature predictions produced by an ensemble
ML model in a region of the state of São Paulo. Closer to yellow indicates higher
predictive error [17].

to retrain a model component, recomputing the ensemble model. An alternative,
in the absence of new training data, could be to look for an existing model, not
previously selected to make up the ensemble due to higher global Root Mean
Square Error (RMSE), but that would offer a smaller local error at the region
Anna intends to guide the coffee plantation.

As one may capture from this scenario, obtaining an optimal prediction is
a daunting task. Firstly, it depends on selecting the model that best predicts
the target variable for a given query. Secondly, as one single model may not be
appointed, the choice may fall in combining the predictions of different models.
Finally, in a dynamic environment such as meteorology, changes in the feature
space may induce changes to the target variable, a phenomenon known as Con-
cept drift [22]. In this context, it may be required to retrain some of the models
with the identification of new training data sets and the selection of the models
to be retrained. These are very complex tasks that become impossible to be
managed in the absence of a systematic approach.

3 Related works

The development of ML models comprises many stages from the problem speci-
fication up to the model deployment. Throughout these stages, machine learning
users resort to a series of software tools related to the management of machine
learning models. We divide them into five non-exclusive categories according
to their main functionality: (a) data management systems in machine learning;
(b) model development systems; (c) systems for the management of ML model
lifecycle (d) systems for the management of ML models; and (e) model serving
systems. Hereafter, we briefly review some of these systems and point out how
they are relevant and complementary to a management system like Gypscie.

A conceptual vision toward the management of Machine Learning models 19

Data management in machine learning Many challenges arise in the man-
agement of data produced during ML lifecycle, e.g., data understanding, vali-
dation, cleaning, and preparation [14]. A promising research direction to tackle
these challenges is the development of solutions for dataset versioning and prove-
nance such as OrpheusDB and Datahub. OrpheusDB [8] is a relational database
system with versioning capabilities aiming at two characteristics inherent to ML
data, namely, data change and provenance. Datahub [3] is a platform for data
analysis built on top of a dataset versioning system. The platform enables its
users to load, store, query, collaboratively analyze, interactively visualize, inter-
face with external applications, and share datasets.

Machine learning model development The machine learning community
has arguably focused on the development of systems, frameworks, and libraries
for model production (e.g., Scikit-Learn, TensorFlow, and MLib). Scikit-Learn [12]
is one of the most used open-source ML libraries. It covers many supervised and
unsupervised learning methods, including algorithms for classification, regres-
sion, clustering, and dimensionality reduction. Tensorflow [1] is a multiplatform
framework for deep learning development. Besides the artificial neural networks
development API, the framework also provides visualization (TensorBoard) and
debugging (TFDBG) tools. Finally, MLib [10] is a machine learning library built
on top of Apache Spark. The library encompasses ML methods for classification,
regression, clustering, recommendation, and hyperparameter tuning tasks.

Machine learning lifecycle management In model diagnostics tasks, ML
users consider a large artifacts set produced during the model lifecycle, e.g., al-
gorithm configurations, input/output data, and experiment files such as data
scientists annotations [15]. These artifacts management is a burden to the users.
Therefore, ML and data management communities have recently developed sys-
tems for the management of models lifecycle, for example, Mlflow, ModelDB,
and Mistique.

MLflow [24] is an open-source platform that provides a set of features for
instrumentation, reproducibility, and ML model deployment. The platform has
three components—Tracking, Project, and Model—which ML users respectively
use to track models data, package ML projects, and store ML models. Mod-
elDB [19] is a system to track, store and index modeling artifacts (e.g., hyperpa-
rameters associated with trained models, quality metrics, and input data). The
system has three components: (a) library wrappers for code instrumentation and
logging of models data; (b) an interface to model storage; and (c) an exploratory
visual interface for model diagnostics. Mistique [20] is a model diagnostics sys-
tem aiming at the retrieval, storage, and querying of large model intermediates
(e.g., input data and hidden representations yielded by a neural network). The
system implements a series of techniques (e.g., discretization, summarization,
and compression) to tackle the trade-off between storing and recomputing inter-
mediates.

20 Silva et al.

Machine learning model management In a narrower definition, the man-
agement of ML models aims at providing more specific features, e.g., the efficient
storage and retrieval of ML models, and model operations such as selection, com-
position, and comparison. ModelHub [11] is a system that partially implements
these features for neural networks management. The system comprises three
components: (a) a neural network version control system; (b) a domain-specific
language to the adjustment of network parameters and hyperparameters; and
(c) a system for deep learning models hosting and sharing.

Machine learning model serving ML projects increasingly require real-time,
accurate, and robust predictions under heterogeneous and massive production
workloads. However, few systems aim at model deployment and monitoring tasks
which are essential for serving an ML model to production. In this context,
Clipper [6] is a low latency prediction serving system. The system encapsulates
frameworks and models heterogeneity using containerization technology. It also
implements a set of techniques to improve prediction accuracy and latency by
model composition and selection.

To comprehensively perform model selection, Gypscie ought to retrieve model
artifacts scattered throughout the whole ML lifecycle, from input data prepro-
cessing to model serving. Firstly, the input data transformation process sig-
nificantly determines the performance of ML models [14]. Therefore, Gypscie
is going to employ techniques and systems for data management, versioning,
and provenance. Also, Gypscie has to take into account the model development
process. The nature of a model (i.e., its properties and relationships) and its
generative process underlie the model selection task. The management of ML
lifecycle is also fundamental to Gypscie goals. In model selection, Gypscie ought
to consider data and metadata associated with the lifecycle of relevant mod-
els. Finally, model serving is complementary to Gypscie. Gypscie is going to
use model serving systems to abstract away insignificant production details and
consequently more easily select and compare deployed models.

Gypscie aims at a particular research problem: model selection, for complex
data domains, based on the comprehensive comparison of ML models. This re-
search problem fundamentally differs from systems on categories (a), (b), (c),
and (e). Also, in model management (e), to the best of our knowledge, no system
has the same goal.

4 Conceptualization

Gypscie should cover the set of entities and relationships usual to ML literature
and practice. Thus, we have organized this set into a conceptual model for ML
model lifecycle, shown in Figure 2.
9 We drew this diagram in Dia Diagram Editor (http://dia-installer.de/) using Martin
Style Cardinality. We have also omitted entities attributes to make the diagram
clearer and more general.

A conceptual vision toward the management of Machine Learning models 21

Project User
(0, m) (1, n)

has

1

(1,n)

launches

Task

Flow

(0,m) (1, n)
participates-in

DataScientist

Stakeholder

Learner

1

(0,m)

instantiates

FittedModel

CheckPointModelProductionModel

FinalModel

Hyperparameters

LearnerFamily

1

(0,m)

has

Tool

1

(0,m)

implements

PreProcessing Training

Production

DataTransformation

(0,m)

(1,n)

containsSequence

ValidationTechnique
1

(0,n)

is-employed-in

1 (1,n)
outputs

(0,m) (1,n)
inputs

1 1
outputs

DatasetView

(1,m) (0,n)
is-input-for

(0,m) 1
is-output-from

DatasetColumnView

(0,1)

(1,m)

yields

(1,m)

1

is-in

(0,m) (0,m)
yields

(0,m) 1
descends-from

(1,m) (1,n)
arranges

(0,m) (0,1)
employs

(0,1) (0,m)

derives

1

(0,m)

is-in-charge-of

Fig. 2. Extended Entitity-Relationship diagram depicting ML lifecycle. Relationships
should be read from up to bottom, from left to right.9

The most comprehensive entity in our conceptual model is the Project. Projects
encompass the intent to solve problems using ML techniques. For example, in
one project, data scientists can develop ML models for predicting temperature
levels in the Northwest region of São Paulo during the first week of May. To
capture Data Science project modularity, we divide projects into a collection of
Tasks corresponding to minimally independent sub-problems.

In ML practice, project roles (e.g., data analyst, scientist, engineer, and so
on) do not observe consistent definitions. Therefore, we assume two sets of people
involved in an ML project: (i) Stakeholders, individuals not involved in technical
project tasks (e.g., team managers and domain experts); and (ii) DataScientists,
individuals who technically carry out the project tasks.

Tasks establish the methodology to (partially) solve (sub)problems. Accord-
ing to the nature of the target problem, we classify tasks as PreProcessing,
Training, or Production. The conjunction of these task types captures machine
learning lifecycle. In particular, in a pre-processing task, data scientists carry
out a sequence of DataTransformations—e.g., data validation, cleaning, and
preparation—to emphasize important input data features. On the other hand,
in a training task, data scientists build, evaluate, and validate machine learning
models. In a production task, data scientists turn models into pieces of deploy-

22 Silva et al.

able and maintainable software. Finally, to explicitly capture the model and data
dependency between Tasks, users restort to Flows, e.g., the input dataset of a
training task b is the output of a preprocessing task a.

The model concept is often used ambiguously in machine learning practice.
Thus, we divide this concept into three main entities, LearnerFamily, Learner,
and FittedModel. Specifically, LearnerFamilies stand for ML algorithms in a
broad sense, e.g., neural networks and decision trees, including their induc-
tive biases. On the other hand, by instantiating a LearnerFamily, Learners are
ML methods capable of fitting data. A learner includes the functional form,
hyper-parameters, and parametric space definition (for parametric models) nec-
essary for the elaboration of an ML model. FittedModels are functions pro-
duced by fitting a Learner to some dataset. The Fitted Model specializations in-
clude FinalModel, ProductionModel, and CheckPointModel. While a FinalModel
is the best model according to some validation strategy (ValidationTechnique), a
CheckPointModel is a model saved during training based on some secondary user
criteria. ProductionModels are deployable and maintainable ML models. Finally,
every learner and model is developed in an ML Tool, e.g., scikit-learn [12].

In machine learning, a Dataset usually goes through a series of DataTransfor-
mations, e.g., data imputation and feature extraction. Moreover, not all dataset
information may be relevant to one’s task; e.g., she may be interested only in
particular columns and rows of a tabular dataset. In this regard, DatasetViews
are tabular partitions of data derived from datasets or other dataset views. We
associate descriptive statistics with each column of a dataset view.

Dataset views are input and output to preprocessing, training, and produc-
tion tasks. In particular, we establish the following constraints on is-input-for
and is-output-for relationships: (i) training tasks input only one dataset view
and output zero or more dataset views; (ii) production tasks input and output
one or more dataset views; and (iii) preprocessing tasks input and output one
more dataset views.

5 Gypscie Features

Gypscie aims at the constrained selection and comparison of competitive models,
i.e., selecting and comparing models for the same phenomenon depending on
their performance at specific data domain regions. This application requires a
comprehensive understanding of the available models, which in turn depends
on artifacts scattered throughout their lifecycle. To consider the whole machine
learning lifecycle, Gypscie is intended to have four components: knowledge base,
model lifecycle management, model management, and interfaces.

5.1 Knowledge Base

The knowledge base component comprises two subcomponents: knowledge base
management (KBM) and data management (DM), described below.

A conceptual vision toward the management of Machine Learning models 23

Data integration and knowledge reasoning features inherent to knowledge
bases are relevant assets for model management. First, in model management,
one can use a knowledge base (graph) to integrate the myriad of heterogeneous
ML artifacts; from models encoded in different tools to datasets from diversified
domains. Precisely, the KBM component is in charge of integrating the infor-
mation spread across miscellaneous artifacts into a semantic representation that
encodes, through their relationships and properties, essential knowledge on mod-
els generative process and nature. Secondly, reasoning and inference on knowl-
edge bases can promote model selection tasks; for example, the KBM reasoner
is intended to suggest the inclusion of relevant models in selection.

The DM component covers the data lifecycle in machine learning applica-
tions. This component includes (a) data storage and retrieval; (b) data prove-
nance and versioning; and (c) data preprocessing. Machine learning data may
have a prohibitively large volume. Also, ML applications may require very low
latency in evaluating prediction workloads. Thus, efficient data storage and re-
trieval are features Gypscie ought to provide. Furthermore, change underlies
ML data in many aspects. For example, the data distribution may change along
time, affecting production models performance. Consequently, Gypscie features
is going to include dataset provenance and versioning. Finally, Gypscie is also
going to take into consideration data preprocessing, a fundamental task for the
appropriate performance of ML models [14,15].

5.2 Model lifecycle management

This component comprises the whole lifecycle of ML models. Even though Gyp-
scie is not a platform for model development, it ought to be aware of model
production aspects, including model interoperability as well as data, metadata,
and parametrization employed and produced during model training/production.

Due to the lack of interoperability between ML platforms, even comparing
models from the same class, but produced in different systems, can be a bur-
densome task. For example, the very same neural network architecture, if not
cautiously implemented, may yield inconsistent prediction results throughout
different deep learning frameworks. To establish a ground for model comparison,
Gypscie should resort to some promising model exchange formats as ONNX
and PFA. The Open Neural Network Exchange Format (ONNX)10 is an ini-
tiative that allows users to easily share models across different deep learning
frameworks. In ONNX, models are described by computational dataflow graphs
and tensor operators (e.g., matrix multiplication and convolution). The Portable
Format for Analytics (PFA) [13] is also an ML model interchange format. Using
PFA, users describe learners and models in JSON documents employing a set of
control structures, provided library functions, and user-defined functions.

Additionally, this component includes the processes of instrumentation and
monitoring of ML models lifecycle. We intend this component to build up on
lifecycle management systems as MLflow [24], ModelDB [19], and Clipper [6].

10 https://onnx.ai/

24 Silva et al.

During model training, users are going to log into Gypscie’s knowledge base many
artifacts including a collection of metrics on model performance (e.g., accuracy,
precision, recall) as well as the hyperparameter configurations and datasets used
to train and produce models. In production, users are going to log data and
metadata associated with prediction workloads into Gypscie.

5.3 Model management

In this component, we include Gypscie’s target functions. Consider that a given
collection of competitive models (e.g., for weather forecasting in the same coun-
try region) with different performance characteristics are available on the system.
From this collection, a given user wants to compare and select the best model
based on some criteria. In the above motivation scenario, we envision Gypscie
target functions: model quantification and qualification, selection, and composi-
tion.

Model quantification and qualification In Gypscie, users are going to em-
ploy quantification and qualification functions to retrieve model information for
selection tasks. In particular, quantification functions retrieve extrinsic model
properties, i.e., measuring information such as training and production predic-
tive performances. On the other hand, qualification functions retrieve intrinsic
model properties, i.e., information that defines model nature and structure such
as its target (e.g., classification or regression) and its family (e.g., neural net-
works or boosted trees).

The retrieved information is combined to express arbitrary selection metrics.
These metrics may assess models predictive performance (e.g., classification ac-
curacy, mean absolute error), computational performance (e.g., prediction time,
memory consumption), soft attributes (e.g., explainability power), comparability
properties (e.g., scale, spatiotemporality), and so on.

Model Selection Gypscie is intended to select models according to users ar-
bitrary criteria. These criteria establish thresholds on model assessment and
restrict the model selection according to data regions of users interest. For ex-
ample, the selection criteria may impose to the system (a) to only select models
whose classification precision and interpretability degree are greater than the
user established thresholds, and (b) to perform the computation of precision
and interpretability on a specific data region.

To make it more concrete, suppose a user is interested in ranking and se-
lecting the most accurate models for rain forecasting in Nice, a Southern France
town. In this case, Gypscie should only consider models which are predictors
for France weather. Those predictors are evaluated by Gypscie according to the
user performance criteria expressed in a combination of quantification and qual-
ification functions. Now, suppose the same criteria establish a constraint (e.g.,
the predictive performance above some threshold) which the available models
in Gypscie do not meet. In this case, to better capture Nice’s weather, Gypscie
would have to produce a new model.

A conceptual vision toward the management of Machine Learning models 25

Automated model production during selection may include data augmenta-
tion, data distribution estimation, model ensembling, and automated machine
learning techniques. For instance, to create ensembles for domain regions where
the available models’ predictive performance is insufficient, the system may learn
new and more specialized models.

5.4 Interfaces

Gypscie’s external interfaces are intended to (a) meet different user interests
and expertise levels, and (b) provide the appropriate isolation between the ex-
pression and accomplishment of a technical task. Therefore, Gypscie is going to
provide two interface types, a high-level one based on declarative machine learn-
ing (DML) [4] and a more coupled-to-programming one based on APIs usage.
Users interested in high-level specifications of ML algorithms and tasks details
would use the DML interface. On the other hand, to instrument and log mod-
els into the system, users would interact with APIs which are more coupled to
model lifecycle routines such as logging training metadata into Gypscie’s KB.

Finally, in the lack of ML expertise, users may resort to AutoML. AutoML
aims at reducing human interference in ML production. For example, one can
employ AutoML techniques in hyperparameter tuning and production of more
accurate models [9]. In Gypscie, the employment of AutoML is going to help
users more easily producing models for complex domains where the available
models have low performance.

6 Conclusions and Future Work

In this paper, we described our vision toward the management of machine learn-
ing models. We discussed the challenges in managing this class of models, in
particular, their dependence on a set of heterogeneous data artifacts produced
throughout their lifecycle. We also introduced a conceptualization for ML model
lifecycle which is paramount to Gypscie, our vision toward ML model manage-
ment. We outlined Gypscie envisioned features and their relevance to model
management, especially, to promote model selection tasks.

In future work, we will refine Gypscie architecture and more deeply investi-
gate machine learning model selection. First, extending our conceptual model,
we will concisely define Gypscie entities attributes, metadata, relationships, and
behaviors. Secondly, we will investigate the definition of an abstract framework
for model comparison, selection, and composition applications. Also, we will in-
vestigate how the usage of AutoML, ensemble learning, and knowledge reasoning
(based on machine learning) can leverage the performance of those applications.

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous sys-
tems (2015), software available from tensorflow.org

26 Silva et al.

2. Angermueller, C., Pärnamaa, T., Parts, L., Stegle, O.: Deep learning for compu-
tational biology. Molecular Systems Biology 12(7) (2016)

3. Bhardwaj, A., Deshpande, A., Elmore, A.J., Karger, D., Madden, S.,
Parameswaran, A., Subramanyam, H., Wu, E., Zhang, R.: Collaborative data an-
alytics with datahub. Proc. VLDB Endow. 8(12), 1916–1919 (Aug 2015)

4. Boehm, M., Evfimievski, A.V., Pansare, N., Reinwald, B.: Declarative ma-
chine learning-a classification of basic properties and types. arXiv preprint
arXiv:1605.05826 (2016)

5. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: From
big data to big impact. MIS quarterly 36(4) (2012)

6. Crankshaw, D., Wang, X., Zhou, G., Franklin, M.J., Gonzalez, J.E., Stoica, I.:
Clipper: A low-latency online prediction serving system. In: 14th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 17). pp. 613–627.
USENIX Association, Boston, MA (2017)

7. Hey, T., Tansley, S., Tole, C. (eds.): The Forth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research (2009)

8. Huang, S., Xu, L., Liu, J., Elmore, A.J., Parameswaran, A.: Orpheusdb: bolt-on
versioning for relational databases. Proceedings of the VLDB Endowment 10(10),
1130–1141 (2017)

9. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automatic Machine Learn-
ing: Methods, Systems, Challenges. Springer (2018), in press, available at
http://automl.org/book.

10. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman,
J., Tsai, D., Amde, M., Owen, S., et al.: Mllib: Machine learning in apache spark.
The Journal of Machine Learning Research 17(1), 1235–1241 (2016)

11. Miao, H., Li, A., Davis, L.S., Deshpande, A.: Towards unified data and lifecycle
management for deep learning. In: 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017. pp. 571–582
(2017)

12. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

13. Pivarski, J., Bennett, C., Grossman, R.L.: Deploying analytics with the portable
format for analytics (pfa). In: Proceedings of the 22Nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. pp. 579–588. KDD
’16, ACM, New York, NY, USA (2016)

14. Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data lifecycle challenges in
production machine learning: A survey. SIGMOD Rec. 47(2), 17–28 (Dec 2018)

15. Schelter, S., Biessmann, F., Januschowski, T., Salinas, D., Seufert, S., Szarvas, G.:
On challenges in machine learning model management. IEEE Data Engineering
Bulletin, Special Issue on Machine Learning Life-cycle Management 41(4) (De-
cember 2018)

16. Shalev-Shwatrz, S., Ben-David, S.: Understanding Machine Learning From Theory
to Algorithms. Cambridge University Press (2017)

17. Souto, Y.M.: A Spatio-Temporal Approach for Ensemble Learning using CON-
VLSTM Networks. Ph.D. thesis, National Laboratory of Scientific Computing,
Petrópolis, Rio de Janeiro, Brazil (6 2018), in Portuguese

18. Souto, Y.M., Porto, F., de Carvalho Moura, A.M., Bezerra, E.: A spatiotemporal
ensemble approach to rainfall forecasting. In: 2018 International Joint Conference
on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018. pp. 1–8
(2018)

A conceptual vision toward the management of Machine Learning models 27

19. Vartak, M., Subramanyam, H., Lee, W.E., Viswanathan, S., Husnoo, S., Madden,
S., Zaharia, M.: Modeldb: a system for machine learning model management. In:
Proceedings of the Workshop on Human-In-the-Loop Data Analytics. p. 14. ACM
(2016)

20. Vartak, M., da Trindade, J.M.F., Madden, S., Zaharia, M.: Mistique: A system to
store and query model intermediates for model diagnosis. In: SIGMOD Conference
(2018)

21. Venderley, J., Khemani, V., Kim, E.A.: Machine learning out-of-equilibrium phases
of matter. Phys. Rev. Lett. 120, 257204 (Jun 2018)

22. Widmer, G., Kubat, M.: Effective learning in dynamic environments by explicit
context tracking. In: Proceedings of the European Conference on Machine Learn-
ing. pp. 227–243. ECML ’93, Springer-Verlag, London, UK, UK (1993)

23. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural
Comput. 8(7), 1341–1390 (Oct 1996)

24. Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S.A., Konwinski, A.,
Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M., et al.: Accelerating the ma-
chine learning lifecycle with mlflow. Data Engineering p. 39 (2018)

	A conceptual vision toward the management of Machine Learning models

