
Unconstrained Monotonic Neural Networks

Antoine Wehenkel1 and Gilles Louppe1

1: Department of Electrical Engineering and Computer Science, University of Liège

Abstract. Monotonic neural networks have recently been proposed as

a way to define invertible transformations. These transformations can

be combined into powerful autoregressive flows that have been shown

to be universal approximators of continuous probability distributions.

Architectures that ensure monotonicity typically enforce constraints on

weights and activation functions, which enables invertibility but leads to

a cap on the expressiveness of the resulting transformations. In this work,

we propose the Unconstrained Monotonic Neural Network (UMNN) ar-

chitecture based on the insight that a function is monotonic as long as

its derivative is strictly positive. In particular, this latter condition can

be enforced with a free-form neural network whose only constraint is

the positiveness of its output. We evaluate our new invertible building

block within a new autoregressive flow (UMNN-MAF) and demonstrate

its e↵ectiveness on density estimation experiments. We also illustrate the

ability of UMNNs to improve variational inference.

Keywords: Density Estimator · Normalizing Flow · Invertible Networks

· Unsupervised Learning

Motivation and contributions Monotonic neural networks have been known
as powerful tools to build monotone models of a response variable with respect
to individual explanatory variables [1, 2, 5]. Recently, strictly monotonic neural
networks have also been proposed as a way to define invertible transformations.
These transformations can be combined into e↵ective autoregressive flows that
can be shown to be universal approximators of continuous probability distri-
butions. Architectures that ensure monotonicity, such as Neural Autoregressive
Flows [4] and Block Neural Autoregressive Flows [3], typically enforce constraints
on weight and activation functions, which enables invertibility but leads to a cap
on the expressiveness of the resulting transformations. This does not necessarily
impede universal approximation but typically requires either complex condi-
tioners or a composition of multiple flows. We summarize our contributions as
follows: 1) We introduce the Unconstrained Monotonic Neural Network (UMNN)
architecture, a new reversible scalar transformation defined via a free-form neu-
ral network. 2) We combine UMNN transformations into an autoregressive flow
(UMNN-MAF) and we demonstrate competitive or state-of-the-art results on

Copyright c�2019 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

2 A. Wehenkel and G. Louppe

benchmarks for normalizing flows. 3) We empirically illustrate the scalability
of our approach by applying UMNN on high dimensional density estimation
problems.

Unconstrained monotonic neural networks We show how to parameterize
a strictly monotonic scalar function F (x;) : R ! R without imposing strong
constraints on the expressiveness of the hypothesis class. In UMNNs, we achieve
this by only imposing the derivative f(x;) = @F (x;)

@x to remain of constant
sign or, without loss of generality, to be strictly positive. As a result, we can
parameterize the bijective mapping F (x;) via its strictly positive derivative
f(·;) : R ! R+ as F (x;) =

R x
0 f(t;) dt +F (0;), where F (0;) = � 2 R

is a scalar. We make f arbitrarily complex using an unconstrained neural network
whose output is forced to be strictly positive. denotes the parameters of this
neural network. In the full version of the paper, we show how the forward and
backward passes for the integral can be e�ciently implemented.

UMNN autoregressive transformations (UMNN-MAF) Normalizing flows
are often expressed as a composition of autoregressive transformations g, i.e.,
such that g(x;✓) can be rewritten as a vector of d scalar functions, g(x;✓) =⇥
g1(x1;✓) . . . gi(x1:i;✓) . . . gd(x1:d;✓)

⇤
, where x1:i =

⇥
x1 . . . xi

⇤T
is the vector

including the i first elements of the full vector x. The Jacobian of this function is
lower triangular, which makes the computation of its determinant O(d). Enforc-
ing the bijectivity of each component gi is then su�cient to make g bijective as
well. In this work, we combine UMNNs with an embedding of the conditioning
variables to build invertible autoregressive functions gi. Specifically, we define

gi(x1:i;✓) =

Z xi

0
f i(t,hi(x1:i�1;�

i); i) dt +�i(hi(x1:i�1;�
i)),

where hi(·;�i) : Ri�1
! Rq is a q-dimensional neural embedding of the condi-

tioning variables x1:i�1 and �(·)i : Ri�1
! R. Figure 1 summarizes the complete

architecture and Figure 2 presents density estimation performed on multi-modal
and discontinuous 2D distributions.

Unconstrained Monotonic Neural Networks 3

Fig. 1: (a) A normalizing flow made of repeated UMNN-
MAF transformations g with identical architectures. (b) A
UMNN-MAF which transforms a vector x 2 R3. (c) The
UMNN network used to map x3 to z3 conditioned on the
embedding h3(x1:2).

Fig. 2: Top: Samples from the em-
pirical distribution p(x). Middle:
Learned density p(x; ✓). Bottom:
Samples by numerical inversion.

References

1. Archer, N.P., Wang, S.: Application of the back propagation neural network algo-

rithm with monotonicity constraints for two-group classification problems. Decision

Sciences 24(1), 60–75 (1993)

2. Daniels, H., Velikova, M.: Monotone and partially monotone neural networks. IEEE

Transactions on Neural Networks 21(6), 906–917 (2010)

3. De Cao, N., Titov, I., Aziz, W.: Block neural autoregressive flow. arXiv preprint

arXiv:1904.04676 (2019)

4. Huang, C.W., Krueger, D., Lacoste, A., Courville, A.: Neural autoregressive flows.

In: International Conference on Machine Learning. pp. 2083–2092 (2018)

5. Sill, J.: Monotonic networks. In: Advances in neural information processing systems.

pp. 661–667 (1998)

	1 Introduction
	2 Unconstrained monotonic neural networks
	3 UMNN autoregressive models
	3.1 Normalizing flows
	3.2 Autoregressive transformations
	3.3 UMNN autoregressive transformations (UMNN-MAF)

	4 Related work
	5 Experiments
	5.1 2D toy problems
	5.2 Density estimation
	5.3 Variational auto-encoders

	6 Discussion and summary
	A Experimental setup
	A.1 Density estimation and toy problems hyperparameters
	A.2 Variational auto-encoders

	B Clenshaw-Curtis module
	C Generated images from MNIST

