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Abstract. The world of project management (PM) is diverse and extensive, as is
the resulting tool selection on the market. Despite the wide variety of tools avail-
able, many PM activities are carried out using self-developed spreadsheets that
have been tailored to meet the needs of the project. The authors have evaluated
experiences from several completed projects and recognizes the need for a sys-
tematic model based on a formalised and tool-independent table structure. The
goal of this work is to use a powerful Petri net (PN) model for mapping and sim-
ulation, taking advantage of the model’s benefits. Thus, an effective and flexible
methodology for PM can be realised. In order to use the concept of PN for this
purpose, appropriated extensions and necessary interpretations from the area of
high-level timed Petri nets must be used. Moreover, PM has to be brought to the
same description level as PN. The concept of this proposed method is to enter all
data, initial plan inputs and intermediate status updates into a defined table struc-
ture. A PN is then automatically generated in the background or updated to re-
flect the current status of the project. Simulations should be performed on the PN
models, and their results should be put back into the table. The advantages of the
PN concept can thus be fully exploited and become useful for a project manager,
even if he or she does not have any PN knowledge. This article presents an over-
view of the proposed formalised methodology, its suitability to PM, and its bene-
fits. The method itself can be applied to a wide range of projects. Focus is placed
on how to transfer certain areas of PM into the introduced PN constructs and in-
terfaces. Examples are used to illustrate how to transform PM activities and their
related information into the selected PNs.
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1 Introduction

Projects are deeply rooted in history. From an activity without extensive methods, in-
struments or specifications, a structured approach has grown over the past years. This
approach is called project management (PM). The use of PM methods has reached a
high degree of coverage, as evidenced by the wide variety of tools and utilities avail-
able on the market. Project modelling, a sub-task of PM, is a cornerstone for the suc-
cessful implementation of a project.



The authors practical experiences are consistent with previous study results, which
claim that spreadsheets are not only frequently used as a substitute for a PM tool but
are also often used as an accompanying documentation and reporting tool in addition
to customised or industry solutions. The reasons for spreadsheet use can be diverse.
[1, 2]

The intention is not to replace conventional tools, but to support and formalize the
use of spreadsheets, and to extend it by a number of simulation and evaluation possib-
ilities. Using spreadsheets facility is generally done without a systematic method, and
a new project often requires extensive revisions. Particularly in the case of agile pro-
ject methods, which are increasingly being used in a wide range of project forms as
well as resource planning activities, the complexity and unwieldiness of these tables
increases dramatically.

This article briefly introduces the basic idea and structure of the PM-Petri-net (PN)
model, including a differentiation from existing approaches in the literature. Based on
selected areas from the PM, this PM-PN method is presented as an example and to
clarify the principles of this method. The method’s functionality is illustrated by an
excerpt from a Petri net created with a selected tool.

2 The Project Management Petri Net Model

The type of project examined in this paper takes place in a dynamic environment that
is subject to a wide range of uncertainties, especially with regard to resources and
time. Revisions to the plan are constantly required but are often reduced to significant
deviations, resulting in potential sources of error and quality losses in the PM. An-
other problem is the poor adaptability of agile methods and their resulting changes.
[3]

2.1 Classification

In order to meet the requirements of today's agile PM, there exists a need for new
methods of PM. This requires paying adequate attention to the dynamic and complex
nature of today's projects. In addition to formal mathematical structure, PNs provide a
broad, customisable, and extended range of functions well-suited to PM. Furthermore,
they can be implemented alongside the project and scaled as the scope of the project
changes. Fundamental adjustments and shifts in planning or resource allocation can
be time-consuming, even without considering the limits of the selected tool’s adaptab-
ility. Expanding a table, on the other hand, is easy, as is the basic idea of the use of
modular structured constructs. [4, 5]

Therefore, the first step in creating a new method for PM is to systematise the use
of tables.  In  the present  contribution, previously defined table structures  are used,
which are described in Section 4.2. The second step involves transforming the tables
into PNs. For this step it is prerequisite to write down the project planning and actual
project accompanying statuses for the inverse transformation of simulation results to
forecast further courses of the project. The basic concept that is applied will be de-
scribed in Section 4.
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2.2 Concept

The PM and the PN concept originate from quite different worlds. To model PM, its
complex tasks have to be abstracted. To model PNs, a decomposition of the entire
model into subsystems, including the interactions of their components, has to take
place. A merge of these two concepts can only be affected if a common level of de-
tailing and abstraction can be found. First of all, the requirements for mapping PM to
a PN must be identified and a suitable common abstraction level must be defined.
This level of abstraction will serve as the basis to define dimensions for the smallest
described objects and their components. [7]

The objects of modelling are called the project objects with their operations and re-
lationships to each other. To ensure a formal and consistent presentation, it is also ne-
cessary to classify objects’ properties and derive their requirements. On this basis, a
formal table structure and thus a method for the transfer and adaptation of PM can be
defined. Since the proposed PM-PN model is a dynamic consideration, the cycle of
this formal modelling must also be presented as it will represent the basic idea of the
developed method.

In the presented approach, the so-called constructs are identified on the basis of
project objects. These constructs map the requirements in the context of PM and com-
municate via interfaces and can be used in a modular and arbitrary manner. The start-
ing situation is a mixed classic and agile PM approach. For the modular assembly of
the identified constructs, the consideration of the predecessor-successor handling is
decisive. Constructs have been defined to satisfy the needs, which is expressed in par-
allelism and several predecessor-successor relationships, as well as constructs with
simple relationship requirements. This stated, these constructs can be combined for
the classic and agile approach. For example, the mapping of sprints (more in Section
4.1), a technical term from agile PM, requires that they are not processed in parallel
but sequentially.

 

A n f o r d e r u n g
F u n k t io n  1 T a s k  1

T a s k  2

S p r in t 1 F o r t s c h r it t
T a s k  1 8 0 %

T a s k S p r in t S t a rt E n d e D a u e
r  in  h

F o r t s c h r it
t  D e s ig n

F o r t s c h r i tt  
E n t ic k l u n g

T a s k  1 1 1 . 1 1 5 .1 5 9 0 % 4 0 %
T a s k  2 2 3 . 1 8 .1

T i e it a r b e i te r h
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B 1

a s P l a n Is t
T a s k  1 5 8

S p r in t  1 8 6 5 0

it a r b e it e r K 1 K 2
A 4 0 6 7
B 4 0 4 2

Fig. 1. The cycle from data entry to PN to benefit from new capabilities

In order to close the cycle (demonstrated in figure 1) of data entry, which includes
modelling by the use of PN and its simulation or forecasting possibilities, the results
need to be written back to the table. Among other things, as an example, the correct
runtime of a finished sprint and their assigned tasks can be checked. If all precondi-
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tions to complete a sprint are met, the marking is written back to the table by the PN
and can be compared with the plan values.

2.3 Description of the Used Petri Net Model

The behaviour of the PN used in this work is defined such that a place is an event or a
certain state in the environment of an activity and the transition of this activity (activ-
ity transition) itself are associated with a state transition. Where applies:

A transition fires if all pre- and post-conditions are met. This depends on the selec-
ted interpretation and extension of the PN and will be described later. The firing abil-
ity  regarding  the  post-conditions  is  generally  given.  This  is  a  consequence  of  the
structure of the transformed PNs. When the preconditions are set and the transition
fires, the assigned activity is started and delayed in accordance with the selected time
model. The change of the marking of the pre-conditions takes place with the start of
an activity, and the change of the marking of the post-conditions takes place with the
end of that activity.

Post-conditions  of  transitions  can  also  be  prerequisites  for  further  transitions.
Transitions without an activity execution can also occur, for example to control the
starting of tasks. As identified in various research [8, 9], variants of PNs are extended
by additional concepts. In the context of this article, the extensions with high-level
timed PNs, especially coloured PNs with structured tokens based on the predicate/
transition-PNs will be used, as well elements of hierarchical place subnets with timed
and timeless transitions. 

These  ‘structured  tokens’,  as  already  defined  for  another  use  case  [10],  allow
tokens to carry various kinds of information, such as machine conditions, properties
of resources, or project related information and documents. The firing rule defined in
the previous use case [10] allows suitable structured multiplicities of arcs to direct op-
eration on the structures of tokens and logical links that control the execution of activ-
ities depending on the existence and content of the tokens. Structured tokens describe
the existence and current data structure of events and states in the environment of the
activity.

Fundamental investigations on the subject of the present contribution are also pos-
sible with the coloured PN tool Chromos [10] (for example, transformation and simu-
lation),  by representing all possible occurring assignments of the structured tokens
with a set of logical colours. This tool was used for the presented results. For real ap-
plications, this method is not practical due to the number of coloured tokens needed
and the number of assignments. It will then be necessary to have a special tailored PN
tool. However, Chromos will be used to demonstrate the simulation and composition
of these constructs, according to the chosen principle that inputs and results are rep-
resented in the defined table structure. The graphical user interface had a subordinate
meaning.

A construct  in  the  sense  already  used,  represents  a  hierarchically  subordinated
place subnet in the used PN. A ‘place subnet’ in this context is a subnet in which arcs
from the surrounding construct only end in places, and arcs to the surrounding net-
work only begin at places. Restrictions on the inner structure of the subnet generally
do not exist, but this is dependent on the construct. This allows a consistent linkage of
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constructs across the places defined as an interface through the mechanism of over-
laying places.

3 Application of Petri Nets in the Field of Project Management

In the literature, PN approaches have often been used to tackle PM problems. They all
share a similar origin. The focus has always been on the classic methods of project
management. In this analysis, the trend of agile project management methods is in-
cluded. Previous research has often listed following problems in the field of project
management: growing scopes, uncertainties, requirements, and complexity. The im-
portance of planning, monitoring, controlling, and real-time analysis in parallel to the
project activities is growing. This creates the need for dynamic project planning and
in particular for a dynamic creation of the project schedule and resource control. One
research [11] took a look at conventional management tools like program evaluation
and review technique (PERT) and critical path method (CPM), or even improved tools
such as  decision CPM (DCPM), graphical evaluation and review technique (GERT)
and  venture  evaluation  and  review  technique  (VERT)  and  determined,  that  these
methods cannot satisfactorily meet all requirements with regard to: “non-autoomatic
rescheduling of activities,  non-suitability to resolve conflicts arising from resource
priorities, incapability of representing resource interdependencies, no provision of in-
formation to analyse reasons for the tardy progress of activities, and no help in the
studies of partial allocation, mutual exclusivity and substitution of resources.”[11] 
The classic tools for PM no longer meet these increased demands, and there exists a
need for a realistic method to model project. It has always been mentioned that the
properties of PNs are useful for realistic and dynamic modelling (e. g. dynamic mod-
elling, concurrent, non-deterministic, or formal-mathematical). Research on PM ap-
proaches that are based on PN concepts have existed since the 1980s. Until the year
2000, the aim to optimise the project time by optimising the use of resources or to op-
timise the progress management itself was a selected topic. A project going through
several states and along this states attempts have often been made to supplement the
historical methods using PNs, or in rare cases, to integrate them as a substitute for in-
dividual task areas. [12, 13]

In recent years, resource optimisation and resource management have been a fre-
quent and diverse area of research. An attempt has been made to model, simulate, and
optimise the resource allocation and the critical path with PNs. For example, the PN
extensions such as the time Petri net (TPN), stochastic Petri net (SPN) and coloured
Petri net (CPN) have been chosen as a remedy as formed by the transformation from
another methodology, such as the PERT, the CPM, the work breakdown structure
(WBS), and the business process model and notation (BPMN). Alternative paths and
simulation have often been revisited as a PM enrichment. [12, 14, 15]

One work [13] was devoted to the suitability of PNs for use in the area of PM. Sev-
eral authors [3] has studied a comprehensive framework for modelling, scheduling,
and simulating projects with (1) a newly developed PN extension, (2) PN patterns,
and (3) a graph search algorithm. As a starting point, he has transferred a BPMN to a
PN in order to gain analysis and insights for the re-planning of the project. No formal
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approach was found to transfer PM into a table structure in order to use it for a PN
and to provide a modular system. What is the aim of the approach presented here. [4]

4 Models, Transformations and Simulations

When modelling projects  with PN concepts,  the  adaptation  of  state  elements  and
events must be transferred from the PN to the PM. For this purpose, the term project
object is introduced, and a closer look will be done in connection to discrete models.

Based on this approach, the table structure is presented as an example in this sec-
tion with the goal of clarifying the proposed concept. The following subsection begins
by defining the idea behind the modular constructs. Afterwards the automatic genera-
tion on the variance of planned and actual data shall be considered as an example.

4.1 Common Level of Abstraction

The project objects are defined as activities, goals, resources (all kinds of resources
including machines, employees, organisational units, and capabilities), time, and rela-
tionships. The project objects are related to one another. The activities either serve as
an input, consumption, or output to other project objects. Activities are understood as
processes that in turn can be combined to form activity chains. Each project object is
characterised by its properties and their function behaviour as well as the operations
involved in the interaction of their relationships with one another.

In the present case of the complex objects and their relationships as well as their
defined interface to communicate with one another, a division into several compon-
ents is recommended. The term ‘construct’ is introduced for this purpose, which is a
cluster of PN elements (referred to in section 2.3 as a subnet). The formation of the
constructs is based on the introduced project objects’ time, resources, and activities
and their predecessor-successor dependencies.  The basic principle of a construct is
based on object-oriented programming in order to generate the required PN with class
descriptions.  Each construct  must provide an interface.  This interface allows other
constructs to access predefined data of the individual components or to retrieve res-
ults. [6]

With agile project planning methods, such as the framework of Scrum [16], the
foundation relies on flexibility and continuous adaptation to feedback instead of de-
tailed project planning. In the context of this article, a general explanation of agile
project planning will be foregone and only the sprint will be discussed. 

!Simple concatenation - two interfaces are available per sprint: Place Start Sprint and place Sprint Ended
!Legend: Project (P), Sprint (S), Task Initiation (TI)

Start 
P 

Start 
Sn

Start 
Sn

Task

Sn 
EndedTI End Sn

Start 
Sm

Task

Sm
EndedTI End Sm

Start 
Sm

Fig. 2. Concatenation of sprint constructs [6]
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In figure 2 you find an example to concatenate the interfaces for the sprint con-
struct. Sprints are defined as time-boxed periods, where all identified requirements are
managed using a type of to-do list and are implemented incrementally. In other words,
a sprint is a structuring of several individual tasks that are realised within a defined
period of time. These tasks can run in parallel within their allocated sprints.

4.2 Table Structure

A great challenge in creating a PM-PN model lies in the selection and recovery of the
required  data.  [17]  From experience,  spreadsheets  maintained for  this purpose are
laden with formulas and complexity, which often leads to the inclusion of information
that is not easily accessible or recognisable. As an example, a changed sprint compos-
ition has to be maintained in several tables and often also leads to structural changes
for individual tables. The formalisation of the tables, which refers to the mechanism
for filling in the tables and the data entry, simplifies the process of accommodating a
changed sprint composition. Each piece of information has a clearly defined location
in the table and is therefore limited to specific table areas. This structure is beneficial
for making changes, since the changes are taken into account by the PN whenever ac-
cessing elements. As a result, only the information contained in the table is transferred
to the PN. An optimised table form is used in which the table size is reduced and lim-
ited to purely data entry.

 The representation of the project and its monitoring, analysis, and simulation does
not take place through underlying formulas or logic. Instead it will be done through
the use of PN constructs, PN elements, and their interactions. 

The aim is to standardize the data and allow models to be created automatically. A
prerequisite for this is that all data, deadlines and correlations must be included in the
table. The structure of the table must be synchronized with the program for PN trans-
fer. There are several possible approaches and structure options. In the model presen-
ted, a meaningful normalisation and no double data storage is aimed. The tables to
guide the project planning are divided into several tables. The data of the duration,
date format, quantity and the formation of IDs have to be defined and rules have to be
set. The content-related link is realised by a uniform identifier (ID). The ID is subject
to a scheme that allows information to be accessed when using structured tokens. For
example, when considering the reusable resource ‘employee’, each activity (or partial
information of the ID structure) is stored in the structured token and memorised by
the construct of reusable resources for later tasks. This information out of the struc-
tured token could be used to determine whether the resource, that is, the employee,
has already gained experience related to this kind of task. Another example, concern-
ing defining rules for data entry, is the determination that the duration of the task must
always be consistent with the time model. This constraint is enforced by allowing
only multiple units of the chosen time format. [6] Table 1 represents only a section of
the aspects highlighted before.

The method used to record the assignment of tasks to the respective sprints and to
collect start and finish dates is demonstrated in the table above. The data acquisition
must correspond to the requirement of a modularly expandable table format. This is
necessary to automatically generate the PN and its underlying constructs, which also
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requires a standardised format for the data acquisition. All required data has to be re-
corded in the pre-formatted tables.

Table 1. Excerpt from a sample spreadsheet for maintaining the data of sprints

ID Process P ID Sp Dura-
tion D

Start D End D Duration
Dev

Start 
Dev

End 
Dev

S _I_01 Excel as I - 1 6 22.01 26.01 13 29.01 02.02

R_F_01 R Filter Function S _I_01 1 14 22.01 26.01 29 29.01 02.02

R_D_01 R Layout S _I_01 1 8 29.01 02.02 16 05.03 09.03

S_I_02
Connection to the
S 

- 2 16 23.02 02.03 15 04.03 15.03

TF_I_02 Data transfer TF
S_I_01, 
R_D_01

1 15 15.02 10.03 28 11.03 16.03

Legend: Design (D), Development (Dev), Target Figure (TF), Interface (I), Predecessor (P), Report (R),
Sprint (Sp), System (S)

4.3 Execution Using the Example of the Petri Net Construct Sprint

The sprint  construct  takes all  requirements  into account (such as the mandate that
sprints do not run in parallel) and contains tasks that needs to be processed. Figure 3
pictures these requirements in the PN for the first sprint of a project with n tasks as-
signed. In the illustrated, simplified example, all tasks run in parallel, which is not al-
ways the case. The interface to the time construct has been omitted for improved clar-
ity, but it will be included in the exemplary illustration (Figure 4) of a single task. 

The first sprint construct can start as soon as the project is started and there is a
token at the place Start Project that marks the beginning of the sprint processing. For
the coordination of the individual tasks, a  Coordinator place is used to initiate each
task. To do this, it is necessary for the coordinator to be provided with the number of
separate tasks assigned to the sprint. A corresponding number of tokens are required
in this place. This number of tokens will be provided to the coordinator by firing the
transition Start Sprint and the corresponding multiplicity of the arc. The coordinator’s
only aim is to initiate all tasks. The order and interdependencies of the tasks are real-
ised by the transition Start Task (see Fig. 4) and their relation to other tasks with the
use of a test arc to the interfaces of the predecessor task (see Fig. 3). The test arc is
necessary to enable multiple successors for a task. All transitions can fire to initiate
the processing of their respective tasks. Again, to initiate correctly, each task must
provide an interface to process this signal. This interface is realised for each task by
the place Initiate Task#No. and is highlighted in light grey in Figure 3. Since the trans-
itions for initiating the task are not inhibited by any pre- or post-conditions, the capa-
city of the Initiate Task places are set to 1 and the firing rule is based on maximum
firing. This prevents that no task can start more than once and no other task is preven-
ted from starting. To prevent this condition from being violated by other components
of the developed PN model, the initialisation transitions cannot be part of the sprint’s
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interface.  After the coordinator has initiated the individual tasks, the processing of
these tasks can begin in parallel or sequentially in accordance with the developed con-
struct. The completion of a sprint must also be considered. The light grey places rep-
resent the interfaces for processing a task and can be found in Figure 4 as an interface
per task. [6]

!Task do not have to run in parallel " use of a test arc to the interfaces of the predecessor task
!Legend: Coordinator (C), Infinite Set (n), Project (P), Sprint (S), Task (T), Task Initiation (TI)

Start 
P 

Start 
S

C

Task 
Tx

Initiate 
Tx

Tx 
Initiated

FinishedTx

S EndedEnd S

n

Task 
Tz

Initiate 
Tz

Tz
Initiated

FinishedTz

...

TIStart 
S

Task 
Ty

Initiate 
Ty

Ty 
Initiated

FinishedTy...

Fig. 3. Setup sprint construct [6]

Resource allocation takes place in the construct of the tasks rather than the sprint.
The use of structured tokens is illustrated for a task construct in Figure 4 as an ex-
ample.

Due to different processing times, start dates, or operational delays (employee as-
signment, vacation, et cetera),  individual tasks are terminated at different times. A
sprint is only considered to be complete when all of its subtasks have been completed.
As a result,  the individual tasks for  completing a sprint  must be brought together
again. The implementation of these requirements in the illustrated PN is demonstrated
in the right half of Figure 3. It becomes clear that the interface of a task must include
an inquiry regarding its status (completed/not finished). This is solved in the pictured
PN by the inclusion of the place  Finished for each task. The merging of individual
tasks is realised by a transition Sprint Ended. As soon as there is a token for each task
in its  Finished place, the  Sprint Ended  transition fires and the sprint is ended. This
merging by means of an additional transition is necessary because only one token is
needed for further processing after a sprint.  The transition  End Sprint reduces  the
number of tokens to one, regardless of the number of assigned tasks. The place End
Sprint indicates whether the sprint has ended. [6]

4.4 Execution Using the Example of the Petri Net Construct Task

The goal of a sprint in agile PM is to complete functional intermediates. To accom-
plish this goal, several tasks are performed in a sprint. In the selected mixed project
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method, the tasks are self-contained and all requirements from the parallel running re-
quirement analysis have already been identified. No dependencies among the tasks
themselves should occur in theory. However, this can never be ruled out in practice
and therefore  it  is  assumed that  there  are  also predecessor-successor  relationships
between the tasks set up in a sprint, as opposed to the sprint model in Figure 3. The
execution of tasks can take place in parallel within a sprint. As shown in Figure 4,
each task is divided into a resource allocation, time allocation, and the actual pro-
cessing of the task. Figure 4 shows a section of an extended scope as realised with the
tool. Independent of this, there may be a need to process tasks sequentially, even in
the case of unrelated tasks. For example, this sequential processing is necessary if the
same team is always responsible for the implementation of the tasks during the sprint.
Furthermore,  a task is always divided into design and development phases.  In the
design phase, the requirements are transformed into a technical concept, which will
then be implemented during the development phase.

The general structure of these two phases is identical and occurs strictly consecut-
ively, likewise the requirements sets are identical. For simplicity, this wider subdivi-
sion is omitted and only the design phase is considered. In Section 4.5 the same con-
struct is presented with respect to the correct determination of the initial marking of
black token. The figure 4 represents the construct of the task, its interfaces with the
sprint (green) and all required interfaces with other constructs (light grey), as well as
timed (grey) and timeless transitions (red). It is demonstrated, how the interaction of
the resource allocation can occur in a strongly simplified way. In general, after each
step  in  the  model,  the  resource  allocation is  provided with the help of  structured
token. There will be always a communication between the outstanding resource re-
quirements and an already completed resource provision. With the construct presented
here, a task can have any number of resources of any kind (data, things, people) as-
signed to the provided interface. 
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!Two Interfaces are available per task to the sprint: Place Initiate Task and place Finished
!(#Number) Steps to calculate the correct initial mark in chapter 4.5
!Legend: Black Token (BT), Coloured Token (CT), Duration (D), End Date (ED), Project (P), Resource Allocation (RA), 

Start Date (SD), Structured Token (StT), Task (T), Time Model (TM)

BT
#(SD

 P –
ED

 T) x TM
+1

Fig. 4. Excerpt of the task construct and interaction of resource allocation

The interface to the time construct ensures that the task can start no earlier than the
specified start  date.  It  is  important  that  three types of  time information (duration,
earliest start, and latest end) are taken into account. This enables the possibility of a
later start because of the review of deadline for completion, including the specified
duration. If this is not the case, the overrunning time will be measured. Likewise, no
steady processing is mandatory, and the progress is recorded separately. [6]

4.5 Calculation of the Correct Starting Initial Marking

There are three kinds of data: planned data, actuals and forecast. The combination of
these type of data can lead to different PN models and simulation capabilities.  A spe-
cial characteristic of the planned-actual data PN model is the correct determination of
the initial marking. This procedure will be clarified using a sample of one place. The
order of the calculation of marking is coordinated such that the results build on each
other. One special feature is that arc expressions for mapping the time constraints are
not influenced by the actual data. This method ensures that the calculation of the over-
draft duration remains unchanged in relation to the planned data and that overdrafts
will continue to be calculated correctly.

The calculation of the initial marking takes place for all constructs as soon as the
selected time is past the start of the project, assuming that all actual data are available
at this time. The place  Initiate Task in Figure 3 is only relevant during the design
phase. During the development phase, this step is no longer required as it is part of the
task itself and directly follows the already initiated task from the design phase. 
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The calculation for the Initiate Task place is defined such that as soon as the start
date of the task is equal to or greater than the current date and the progress is 0%
(meaning the task has not yet started), a black token will be located at this place. If
these conditions do not apply, the place will be initiated without a token. Table 2 ex-
plains the calculation for the other places and their black tokens at a high level. The
number (x) in the first column refers to the places in figure 3. If the conditions in the
table are not met, the marking is zero for black tokens. Depending on the input of the
formalized table structure, the marking will be automatically produced.

Figure 4 also exemplifies the use of test, inhibitor arcs test and inhibitor arcs with
weight. An access to the interface of the time construct may only be done in general
with a test arc to ensure that the number of tokens in this place remains unchanged.
The transition Overrun is no longer capable of firing once the task is completed. This
is realised by an inhibitor arc to the place Finished. Within the scope of this article,
the explanation will be limited to this simplified example. Finally, a highly simplified
example for the usage of a structured token is presented. In the experimentally imple-
mented PN using Peneca Chromos, the structured token was taken into account in the
allocation of resources for the automatic generation. The structured token records the
information that all resources (especially supplies) could be linked with the informa-
tion that a work step has been processed.

Table 1. Conditions and calculations of an initial mark of black tokens for a task.

Place Condition Effect on Token
(1) Start Date = current date & progress = 0 1 Black Token

(2) Task is not initiated & progress ≠ 100 % (Duration * Progress) Black Token 

(3) Task is not initiated & progress ≠ 100 %
(Duration - #(Number of Tokens in the Place Pro-
gress)) Black Token 

(4)
Task done 100% 
Next phase not yet started

1 Coloured Token
1 Black Token

(5)
Actual End Date is set before or at the 
planed End Date & Progress = 100%

1 Black Token

(6) Exceeding the planed end date 1 Black Token

(7) Exceeding the planed end date (Actual-End Date)-(Plan-End Date) Black Token

4.6 Automatic Generation and Definition of the Petri Net Based on the 
Common Denominator of the Table

This section is intended to exemplify the problem of automatic generation based on
deviation from planned and actual data. For the sake of simplicity, automatic re-plan-
ning is explicitly dispensed with, but the possibility of a reconfiguration by the project
planner is preserved. Figure 5 illustrates the approach of the experimental tool support
presented for the automatic generation of a PN. The raw data of the concrete project
are recorded in tables in Excel format. Based on the independent table format, a pro-
gram (here developed in C #) is used to extract the data for the modelling tool Peneca
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Chromos. This includes producing the required .cne file format, which is used to gen-
erate the PN. [6, 18] During the execution of a project, deviations from planning data
can occur at any time. The plan-actual model (Figure 6) was considered, which is
based both on planning and current data. The delineation of planning and actual data
was taken into account in the developed table format.

Tables in the
target .csv

format

Transfer from
.csv to .cne

Generate PN-
Model from

.cne file

Analysis/
Evaluatio

Fig. 5. Overview of automatic generation [6]

At the beginning of the program, the paths are added to the project  scheduling
tables and lists are created to store the data. Based on the current date provided for the
start of the project, the parsing of the planning data is carried out using the tables.
After the actual data have been taken into account until the key date, the planning data
are taken into account without further logic for the sake of simplicity. For the plan-ac-
tual model, the calculation of the correct initial marking is a decisive step that must be
carried out for all respective constructs.

The designed constructs cover a project setup, with two main framework concepts
- the traditional and the agile. There is basically no connection between them and thus
an independent parallelism and execution is possible. The advantages of modular con-
cepts are of great importance here. Basically, the interactions defined through inter-
face are the key. The defined table structure can take up tasks with dependencies and
their status record, as well as ensure an independent assignment of tasks to imple-
mentation blocks (sprints).

All important information must be taken from the tables per construct. Take the ex-
ample of a sprint, information must be obtained on how many tasks the coordinator
has to initiate, which influences the number of arcs. As soon as the network was gen-
erated by the data in the tables, the necessary initial markings are set. As a result,
achievable markings can be assigned to the table structure and reproducibility is en-
sured. Each possible marking can be retraceable to the table. In order to do this, the
table has to be extended with forecast columns. The network with all intermediate
markings can thus be saved in the table. As an example, the required runtime of the
sprints and their assigned tasks can be write back to the table. How the individual
steps must be programmed depends on the choice of the underlying tool.
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data

Set current Date
Fore-
cast?

Calculate
forecast

Yes

No

Yes

Fig. 6. Rough program overview for creating the plan-actual model [6]

5 Summary and Conclusion

Experience and analysis of PM has led to the systematic model presented in this pa-
per, which also takes into account the agile PM method. An easy-to-handle and ex-
tensible table structure as part of the systematic model was only described in principle
and assumed as a given input. This table structure enables a user to apply the pro-
posed model for PM without PN knowledge. The paper discusses a method to simu-
late and analyse project stages and enhance current methods using PN. It is a powerful
method in terms of modelling capability and can present advanced features to analyse
and can be easily transformed. The advantages are exemplary results from the formal
table structure, PN is based on a powerful and easily understandable formalism, all
possible system states (dynamic) can be represented, or a regeneration and reschedul-
ing of activities at the time of failures and resource restrictions can be enabled. 

PN constructs can be generated from the defined table structure, which includes the
mapping of various predecessor-successor relationships and illustration of different
dynamics.  The resulting PN includes  structures,  simulation capabilities,  and initial
and intermediate markers and can support the PM by allowing the results to be fed
back and used for project decisions. This also comes with the advantage that changes
in the project planning and implementation do not need to be realised in all related
tables. Instead, changes can always be taken into account by simulation to predict
their impact, starting at the initial state to a defined point due to current intermediate
states of the PN. A dynamic and regular comparison of project status and even fore-
casts can be done quickly. This comparison is made possible by a variety of proposed
PN models, where in this article the focus was limited to the planned-actual data PN
model with attention given to tasks and their processing in a sprint. The calculation of
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the correct intermediate state as a new initial marking is of great importance for the
PN models and has been briefly exemplified. Currently selected areas of the men-
tioned cycle has been experimentally implemented with Peneca Chromos. In this case,
the automatic generation and the modularity of the PN constructs to be generated
were taken into account,  as well as the implementation of a simplified concept of
structured  tokens  and  were  realised  for  a  selected,  limited  project  example.  The
method could only briefly be explained in the paper. Further on more detailed con-
structs has to be developed, and an investigation and definition of constructs and their
interfaces needs to be a part of it. Future work could include a verification of the en-
tire range of PN extensions from different areas (workflow, stochastics, fuzzy logic,
etc.) for possible integration, or case studies for independent practical analysis. An in-
teresting extension would be for simulations and prognoses in the field of resource al-
location with a defined set off criteria and the help of fuzzy logic in case of conflicts,
or a differentiation of overdrafts and their reasons. 
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