
Simple Continual Learning Strategies for Safer Classifers

Ashish Gaurav1

Vahdat Abdelzad2

Sachin Vernekar1

Krzysztof Czarnecki2

1Department of Computer Science
2Department of Electrical and Computer Engineering

University of Waterloo

Jaeyoung Lee2

Sean Sedwards2

Abstract

Continual learning is often confounded by “catastrophic for-
getting” that prevents neural networks from learning tasks se-
quentially. In the case of real world classification systems that
are safety-validated prior to deployment, it is essential to en-
sure that validated knowledge is retained. In this work, we
propose methods that build on existing unconstrained con-
tinual learning solutions, which increase the model variance
to better retain more of the existing knowledge (and hence
safety). We demonstrate the improved performance of our
methods against popular continual learning approaches, us-
ing variants of standard image classification datasets.

1 Introduction

Machine learning using neural networks has achieved con-
siderable success in applications such as image recogni-
tion, game-playing, content recommendation and health-
care (LeCun, Bengio, and Hinton 2015). Most of these ap-
plications require large amounts of training data and care-
ful selection of architecture and parameters. Importantly,
the learned systems often have to adapt to changing real-
world requirements, and therefore require re-training. Under
these circumstances, it is usually desired to retain perfor-
mance on previous tasks while learning to perform well on
new tasks. This is what constitutes continual learning (Mc-
Closkey 1989).

Any strategy used for continual learning has to balance
plasticity (the ability to learn new tasks) and stability (the
ability to remember previous tasks). This is the well dis-
cussed stability-plasticity dilemma (Parisi et al. 2019). This
dilemma can be explained in terms of the bias-variance
tradeoff, another well known concept in statistical learn-
ing (Geman, Bienenstock, and Doursat 1992). In this con-
text, (model) variance characterizes the span of solutions
that can be realized with a neural network. Adding bias re-
duces the variance of the model and can produce a better
solution than the unbiased case (Gigerenzer and Brighton
2009). With no bias, the continual learning model is plas-
tic (has high variance); with strong bias, the model is stiff
with respect to learning new tasks (has low variance). In this
work we propose ways of increasing the variance, without
the model becoming too plastic.

Figure 1: The nature of solutions obtained with L2 vs L1

constraints on Sim-EMNIST with 2 tasks, 5 seeds and differ-
ent strengths (λ ∈ [1, 104]). L1 solutions have higher vari-
ance and preserve the previous behavior more strongly than
traditional L2 strategies. See Section 3.1.

We summarize the existing continual learning approaches
into three broad categories:

Architectural approaches (Yoon et al. 2018; Li et al.
2019) incrementally grow the network to learn the new task
through the added capacity, that is, the untrained weight pa-
rameters. While adding new parameters increases the com-
plexity of the model, these approaches either freeze some
parameters or force the network’s output to stay the same,
which reduces the model variance.

Regularization approaches (Kirkpatrick et al. 2016;
Zenke, Poole, and Ganguli 2017; Wiewel and Yang 2019;
Chaudhry et al. 2018) assume a fixed network architecture
and regularize changes to crucial weights, so that the net-
work can learn to perform well on the new task by changing
less significant weights. The regularized setup has an overall
loss that can be broken down into a loss term for the current
tasks, and a regularization term to stay close to previously
found configurations. The regularization term restricts the

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

span of solutions the model can achieve.

Memory approaches (Lopez-Paz 2017; Nguyen et al.
2018) store examples from each task being learned and then
learn a new task while simultaneously maximizing perfor-
mance on each of the stored memories. Seeing more data
per update or constraining the update to move in a direction
that does not degrade performance on the stored memories
reduces the variance of the model.

Our work focuses on regularization approaches for con-
tinual learning. We note that performance in previous work
is often judged with respect to average validation accuracy
across tasks. While good average validation accuracy is the
most common metric to judge forgetting, our principal con-
cern is safety. In safety-critical systems, it may not be ac-
ceptable to maintain an average validation accuracy at the
cost of trading previously certified decisions for possibly
correct decisions that have not been checked. Likewise, the
calibration of a system may require that all classifier pre-
dictions, good or bad, remain the same. Therefore, in the
present work, we consider exactly what has been forgotten
and what has been learned.

In what follows, we propose continual learning meth-
ods that emphasize retaining previously learned tasks. In
Section 3, we propose setting an upper bound on the ab-
solute amount of forgetting that can occur over a certain
dataset, and show that this produces a weaker bias than
in KL-approaches, elastic weight consolidation (EWC) and
synaptic intelligence (SI). In Section 4.1, we propose using
the per-parameter importance computed through this upper
bound to perform regularized continual learning. In Sec-
tion 4.2, we modify the learning procedure to ensure that
the upper bound on forgetting never exceeds a pre-specified
amount. In Section 4.3, we extend the existing EWC algo-
rithm to achieve a similar trend of network preservation. Fi-
nally, in Section 5, we evaluate and discuss the proposed
techniques on variants of MNIST, EMNIST and CIFAR100
datasets. We observe that different strengths of biases may
be useful for different datasets, due to the nature of the solu-
tions achieved by the different variants.

2 Background

Notation We denote by |x| a vector with the same dimen-
sions as x, such that each element in |x| is the absolute of
the corresponding element in x. By x ·y we denote the inner
product of x and y. |x|2 denotes the element-wise square of
vector x, that is, |x|2 := x ⊙ x (Hadamard product). ‖x‖1
and ‖x‖2 denote the standard L1 and L2 norms (scalars) of
vector x. For a matrix M, the operation diag(M) produces
a vector that consists of the leading diagonal of M . For a
scalar x, sign(x) represents the signum function, which pro-
duces 1 if x > 0, 0 if x = 0 and −1 otherwise. We denote
by 1 : i the sequence of indices 1, 2, . . . , i. The vector of
weights θ after training tasks 1 : i is denoted θ

∗
1:i. The j-th

element of θ∗
1:i is denoted θ∗1:i,j .

2.1 Classification

The objective of classification is to maximize performance
(validation accuracy) for a given dataset D. This can be

achieved by using a ReLU feedforward neural network (final
layer is followed by softmax instead of ReLU) with weights
θ as the method of function approximation. More concretely,
given an input x, such a network outputs a set of positive
numbers≤ 1 that approximate how likely x belongs to class
m:

{Pθ(y = m|x)}Mm=1 (1)

M is the number of classes and the softmax function ensures
that the values sum to 1. For notational simplicity, we denote
Pθ(y = m|x) as Pm

θ
(·|x). If the ground truth for x is y = g,

where (1 ≤ g ≤ M), then we use the shorthand Pθ(·|x) :=
P

g
θ
(·|x) for the predicted likelihood of label g.
In this work we use the cross entropy loss, or the negative

log likelihood loss, L(θ), defined over an example (x, y) as:

L(θ) = − logPθ(·|x) (2)

Gradient descent based optimizers that train deep feed-
forward networks to minimize an objective use the nega-
tive gradient of such a loss over a batch of examples, i.e.,
−Ex[∇θL(θ)], to compute the change in weights per opti-
mization step.

2.2 Continual Learning

Let there be n datasets D1,D2, . . . ,Dn such that dataset Di

has Ki examples:

Di = (Xi,Yi) = ({x
(k)
i }

Ki

k=1, {y
(k)
i }

Ki

k=1) (3)

For any task i, the weights achieved at the end of task i
(θ∗

1:i) should also retain performances on tasks 1, 2, . . . , i−
1. Therefore, notionally, θ∗

1:i should minimize the cross en-
tropy loss over datasets D1:i := D1,D2, . . . ,Di.

The continual learning objective can be naively achieved
by training on examples from all relevant datasets (joint
training). Joint training quickly becomes expensive as the
number of tasks grow, but typically has the best performance
across all tasks (Li and Hoiem 2017).

2.3 Regularization Approaches

Regularized approaches to continual learning assume a fixed
capacity of the network and jointly optimize two objectives
per task through a combined loss L(θ) as follows:

L(θ) := Li(θ) + λG1:i−1(θ,θ
∗
1:i−1) (4)

θ
∗
1:i = min

θ

L(θ) (5)

G is the regularization loss.
To incorporate the knowledge for an example (x, y), the

optimization step computes a gradient update:

∆θ ∝ −∇θL(θ) (6)

Note that many optimization methods use additional
strategies to converge faster to a solution, like momen-
tum (Sutskever et al. 2013), adaptive gradients (Duchi,
Hazan, and Singer 2011) and moment estimation (Kingma
and Ba 2014). However, on their own they do not offer any
particular advantage for continual learning. Hence, for sim-
plicity, we just discuss the first order gradient update on the

regularized continual learning objective, that is −∇θL(θ).
This gradient update is sufficiently informative to provide
useful insights about how these methods preserve existing
knowledge.

With the regularized loss, the gradient update
breaks down into two components: −∇θ{Li(θ)} and
−∇θ{λG1:i−1(θ,θ

∗
1:i−1)}. The former can be interpreted

as the plasticity update, which tries to optimize the current
task’s objective, while the latter can be interpreted as the
stability update, which tries to maintain existing knowledge.

Plasticity Update Throughout this work, we use the
cross-entropy loss (2) to compute the plasticity update. The
cross-entropy objective is a suitable plasticity update, since
it produces exponentially strong updates as Pθ(·|x)→ 0.

Stability Update Most regularization methods in the
literature use a second order Taylor approximation on
the following KL divergence as the regularization loss
G1:i−1(θ,θ

∗
1:i−1):

KL
[
p(θ|D1:i−1) || p(θ|D̃1:i−1)

]

≈
1

2
|∆θ|2 · diag(F) (7)

Here, F ≡ F (θ∗
1:i−1,D1:i−1) refers to the the empiri-

cal Fisher information matrix, evaluated at θ∗
1:i−1, and p(·)

refers to the weight distributions, the maximum likelihood
estimate of which is found by the optimizer. While learn-
ingDi, from a Bayesian perspective, p(θ|D1:i−1) represents

the prior weight distribution and p(θ|D̃1:i−1) represents the
posterior weight distribution after seeing some more data
from Di. We refer the reader to (Kirkpatrick et al. 2016;
Huszár 2018) for a better understanding of this approximate
formulation.

All methods that use this approximation will construct a
stability update that resembles the form−a·(θ−θ∗). We can
easily see this for the case of two popular approaches, EWC
and SI. EWC (Kirkpatrick et al. 2016) constructs a regular-
ization loss G1:i−1(θ) by multiplying each (θj − θ∗1:i−1,j)

2

by the corresponding diagonal term Fjj in the Fisher infor-
mation matrix. The squared displacement of the weight θj
from the previous weight θ∗1:i−1,j is scaled by the Fisher im-
portance of the weight. The stability update therefore has the
form:

−∇θ{λG1:i−1(θ,θ
∗
1:i−1)} = −λ

∑

j

Fjj(θj − θ∗1:i−1,j)

This update can be understood as an elastic constraint
(much like a spring) which forces θj to be close to θ1:i−1,j .
The strength of this stability update for θj depends on λ,
the Fisher information term Fjj for θj and the magnitude of
(θj−θ

∗
1:i−1,j). The direction of this update is always towards

θ∗1:i−1,j . SI (Zenke, Poole, and Ganguli 2017) uses a similar
form as EWC, but calculates the per parameter importance
Ωi

j in a different way. Specifically, Ωi
j is defined by how

much θj has previously affected the change in total loss, and

how much it (θj) has been modified, rather than relying on
Fisher importance. Note that the form of the stability update
remains similar to EWC:

−∇θ{λG1:i−1(θ,θ
∗
1:i−1)} = −2c

∑

j

Ωi
j(θj − θ∗1:i−1,j)

This is still the elastic constraint, except that the per-
parameter importance is Ωi

j , rather than the Fisher impor-
tance. There are other approaches that use a similar form of
update but use a different strategy to compute the constant of
regularization, for example, EWC++ (Chaudhry et al. 2018).

We note that while the elastic constraint and its variants
constitute a good stability bias for continual learning, they
may be stronger than is needed. Specifically, they minimize
the KL divergence between the posterior and prior but do
not directly consider the amount of forgetting, which affects
the preservation of (validated) knowledge.

In what follows, we propose using a weaker stability bias
which preserves previous knowledge more strongly.

3 Change in Classifier Prediction

In this section, we quantify the amount of forgetting as a net-
work learns new data. This quantification provides a generic
strategy to define the per-parameter importance in the sta-
bility update. More concretely, we provide an approximate
upper bound on the absolute amount of forgetting over a
dataset.

3.1 Absolute Amount of Forgetting

After learning a task i, the weights of the network are θ
∗
1:i.

For simplicity, let θ∗
1:i ≡ θ

∗ and that afterwards, at any point
in the sequential training process, the weights are at θ∗+∆θ.
Assuming ∆θ is small, we can apply a first order Taylor ap-
proximation of the individual predicted likelihood Pm

θ∗+∆θ

in the neighborhood of θ = θ
∗:

Pm
θ∗+∆θ ≈ Pm

θ∗ +∆θ · (∇θP
m
θ)|θ=θ∗ (8)

The individual predicted likelihood Pm
θ

on an example
x ∈ Di changes by the magnitude

|∆Pm
θ∗ | = |Pm

θ∗+∆θ(·|x)− Pm
θ∗(·|x)|. (9)

On average, the magnitude change in the individual pre-
dicted likelihood Pm

θ
over the dataset Di is given by the

expectation

E(x,y)∼Di

[∣∣∣Pm
θ∗+∆θ(·|x)− Pm

θ∗(·|x)
∣∣∣
]

≤ |∆θ| ·E(x,y)∼Di

[∣∣∣∇θP
m
θ (·|x)

∣∣
θ=θ∗

∣∣∣
]

(10)

≡
∑

j

Cm
j ‖θj − θ∗1:i,j‖1 ≡ um(Di,θ

∗
1:i,θ). (11)

At every task i, we can minimize um(Di′ ,θ
∗
1:i′ ,θ) di-

rectly for each of the previous datasets i′, and this minimiza-
tion should mitigate catastrophic forgetting (Cm

j is parame-
ter importance for θj) for the network’s outputs for label m

(1 ≤ m ≤ M). This constitutes our minimization criterion.
We extend the notation to use um when computing this up-
per bound on Pm, and u when computing it for the ground
truth.

A Weaker Constraint If this absolute amount of forget-
ting is a part of the stability update, then the stability update
corresponds to a weaker constraint:

−∇θ{λG1:i(θ,θ
∗
1:i−1)} = −∇θ{λu

m(Di−1,θ
∗
1:i−1,θ)}

≡ −∇θ

{
λ
∑

j

Cm
j ‖θj − θ∗1:i−1,j‖1

}

(12)

= −λ
∑

j

Cm
j sign(θj − θ∗1:i−1,j)

(13)

Unlike the elastic constraint, the strength of this stabil-
ity update for θj depends on λ and on Cm

j , but not on the

magnitude of (θj − θ∗1:i−1,j); the direction of this update is
always towards θ∗1:i−1,j . This is therefore a weaker stability
bias.

To understand the nature of the solutions obtained by this
weaker update, we consider a simple two task example (Sim-
EMNIST, but for two tasks). Using the method described in
Section 4.1, we plot the task 1 and task 2 accuracies on the
x and y axes and obtain a figure as shown in Figure 1. We
observe that as the strength of λ increases, more of the task
1 accuracy is preserved, but at some point the performance
on task 2 decreases. Of the two variants, the L1 constraint
obtains sparse solutions, which are almost always more re-
strictive on forgetting task 1. This is by design, since the goal
is to minimize forgetting on previous task(s) more strongly,
as explained later. The vertical dotted line corresponds to
the maximum accuracy achieved at the end of training task
1. The dashed diagonal line represents the line across which
the best equivalent overall accuracy will lie (x + y = c for
some constant c).

The point at which the performance on task 2 decreases
corresponds to the optimum of the stability-plasticity curve.
To understand this curve, in Figure 2 we plot the final aver-
age validation accuracy for this two task example across a
wide range of λ. As can be observed, for both the L1 and L2

versions of absolute expected amount of forgetting, there are
different values of λ at which the approach achieves (joint)
best stability and plasticity. This is achieved with lower val-
ues of λ for the L1 variant than for the L2 variant.

Analogy with Regression Models The regularized con-
tinual learning objective has a similar shape to the objective
in biased regression models. Regression models typically
minimize an ordinary least-squares objective OLS(θ) but
suffer from a high variance problem. The most popular ways
to reduce this variance is through LASSO and ridge meth-
ods, which introduce a bias onto the estimate of regression
weights θ through a regularization term. LASSO adds an L1

Figure 2: The effect of λ on the final average validation accu-
racy for DM-L1 (Case III), DM-L2 (Case III) and EWC, for
Sim-EMNIST, two tasks, 10 seeds. The different approaches
achieve the optimum joint stability and plasticity at different
strengths of λ.

term ‖θ‖1 as the regularization term, while ridge adds an L2

term ‖θ‖22 as the regularization term. The effect of these bi-
ases is that the solution satisfies ‖θ‖1 ≤ t or ‖θ‖22 ≤ t, for
some small t, with LASSO producing a sparse solution, that
is, a solution with fewer non-zero weights. From a Bayesian
standpoint, this is because LASSO shrinkage is equivalent
to a Laplace prior, while ridge shrinkage is equivalent to a
Gaussian prior. Since a Laplace prior is more peaky towards
its mean, the solution is more likely to be the mean (and near
the mean) than with a Gaussian prior.

Similarly, regularized continual learning minimizes the
loss for the most recent task Li(θ), while ensuring that
G1:i−1(θ,θ

∗
1:i−1) ≤ t. When using the approximate KL-

divergence for G, it yields the Bayesian interpretation (as ex-
plained in EWC) that the KL-divergence between the prior
p(θ|D1:i−1) and the posterior p(θ|D1:i) should be≤ t while
simultaneously minimizing the cross-entropy loss. When us-
ing the absolute amount of the forgetting, it can be under-
stood as trying to keep the absolute amount of forgetting
from previous datasets within a certain t. With the L1 ver-
sion of the constraint, more θj are likely to not change than
in the L2 version.

Equivalence with KL Approaches If the classification
behavior corresponding to the ground truth label is desired
to be preserved, the minimization criterion has a similar
form to KL approaches, which use a loss based on the KL-
approximation stated in (7). More concretely, the squared L2

version of our upper bound is smaller than the second-order
approximate KL divergence (with the diagonal of the em-
pirical Fisher). This means that when using the expectation
term instead of the Fisher, the stability updates are smaller in
magnitude, and thus, less strong. This interpretation of per-
parameter updates achieves a slightly higher model variance,

which is aligned with our goal. The proof is as follows:

E(x,y)∼Di

[(
Pθ∗+∆θ(·|x)− Pθ∗(·|x)

)2]

(≈) ≤ |∆θ|2 ·E(x,y)∼Di

[∣∣∇θPθ(·|x)|θ=θ∗

∣∣2
]

≤ |∆θ|2 ·E(x,y)∼Di

[∣∣∇θ logPθ(·|x)|θ=θ∗

∣∣2
]

=
∑

j

Fjj(θj − θ∗j)
2

3.2 Extension to Different Use Cases

The formulation of the upper bound in terms of the out-
put label allows for its adaptation to different use cases.
Specifically, real world systems have different motivations
for continual learning, which are dependent on the require-
ment specification. For example, in an outlier detection sys-
tem, it may be desired to preserve the reject class more
strongly than the rest of the classes, since retaining knowl-
edge about the outlier examples is of the highest priority.
Therefore, more generally, depending on the requirement, it
may be desired to preserve the network behavior expressed
by all or some of the output neurons. We identify four such
use cases, which we illustrate in Figure 3 and describe be-
low:

Case I We can preserve the entire set of predicted likeli-
hoods from θ

∗ to θ
∗ +∆θ, which penalizes changes to any

individual predicted likelihood. This is the most restrictive
version of the criterion and can be achieved by regularizing
a sum over 1 ≤ m ≤M of the individual changes:

uI(Di,θ
∗
1:i,θ) :=

∑

1≤m≤M

um(Di,θ
∗
1:i,θ) (14)

Case II We can preserve the change in predicted likelihood
for the confident label(s) at θ∗, which typically corresponds
to the highest individual probability in {Pm

θ∗(·|x)}Mm=1. This
may be desired in tasks related to safety-critical systems,
where a network has been safety-calibrated at deployment
and now needs to add some more knowledge without vi-
olating previously satisfied safety calibrations. To achieve
this, we can first compute an expectation over |(∆Pm

θ∗)Pm
θ∗ |

rather than the formulation in (9):

E(x,y)∼Di

[∣∣∣(∇θP
m
θ |θ=θ∗)Pm

θ∗

∣∣∣
]
≡ ūm(Di,θ

∗
1:i,θ) (15)

Since the network’s outputs represent the confidence of
the x being a certain label, highly confident Pm

θ∗ ends up
contributing more to the expectation. Then, a sum over 1 ≤
m ≤M of the confidence weighted upper bound ūm can be
used:

uII(Di,θ
∗
1:i,θ) :=

∑

1≤m≤M

ūm(Di,θ
∗
1:i,θ) (16)

Case III We can preserve the absolute change in pre-
dicted likelihood for the ground truth by directly regulariz-
ing uIII(Di,θ

∗
1:i,θ) := u(Di,θ

∗
1:i,θ). This corresponds to

x

P
1

P
2

P
M

...

θ
x

P
1

P
2

P
M

...

θ

x

P
1

P

P
M

θ

..
..

x

P
1

P

P
M

θ

..
..

Case I Case II

Case III Case IV

Figure 3: Use cases I-IV. The intensity of the output neurons
denote their contribution. Case I preserves all the outputs.
Case II preserves the outputs in proportion to their confi-
dence. Case III preserves only the ground truth output. Case
IV preserves the ground truth in proportion to its confidence.

the typical motivation, which is to maintain a stable average
validation accuracy.

Case IV We can partially preserve the change in predicted
likelihood for the ground truth, that is, penalize the change
P
θ∗(·|x) = 1 → P

θ∗+∆θ
(·|x) = 0, but allow the change

P
θ∗(·|x) = 0 → P

θ∗+∆θ
(·|x) = 1 for the ground truth

predicted likelihood. This applies the penalty only when a
correctly classified x at θ∗ (high confidence on the ground
truth) becomes incorrectly classified (lower confidence on
the ground truth) at θ∗ +∆θ. Using previously defined no-
tation, this yields:

uIV(Di,θ
∗
1:i,θ) := ū(Di,θ

∗
1:i,θ) (17)

4 Strategies and Applications

With a bound on absolute forgetting, we have a quantifi-
cation of the degree of preserved knowledge, and hence a
quantification of the degree of preserved validated knowl-
edge. In this section, we provide a few strategies to directly
minimize this quantification.

4.1 Regularizing the Amount of Forgetting

The upper bound(s) on the amount of forgetting can be di-
rectly used in the stability update. With the formulation now
being understood in terms of the amount of forgetting, we
need to ensure that the sum of absolute amounts of forget-
ting is ≤ t from all previous datasets. We can encode this
objective by choosing a G1:i−1(θ) in (4) as follows:

G1:i−1(θ) :=
∑

1≤i′≤i−1

g(Di′ ,θ
∗
1:i′ ,θ) ≡

∑

1≤i′≤i−1

gi′

Here, g can be either uI, uII, uIII, uIV for each of the pre-
vious datasets, depending on the requirement. After finish-
ing the training for a particular dataset Di, g(·) can be com-

puted and added to G1:i−1(θ) to produce G1:i(θ). With this
definition, the objective can optimized as expressed in (5).

To evaluate which version of the stability bias (L1 or L2)
is appropriate for knowledge preservation, we conduct ex-
periments with the L1, L2 and the elastic-net variants of
the objective. The L1 and L2 variants are described in Sec-
tion 3.1, and the elastic-net variant is a weighted combina-
tion of these two variants (Zou and Hastie 2005); we use an
equally weighted combination, which we refer to as E0.5.
We refer to the family of these methods as direct minimiza-
tion (DM) strategies.

4.2 Finer Control over Forgetting

Minimization through the Lagrange method of multipli-
ers produces a minimum for Li(θ), such that the absolute
amount of forgetting over datasets D1:i−1 is bounded by
some t, that is G1:i−1(θ) ≤ t. Without any additional as-
sumptions on the solution, the value of t is determined by
the minimization procedure. However, it is possible to alter
the minimization procedure to achieve more control over the
amount of forgetting t, and hence the degree of preservation.
While this introduces a stronger bias and thereby reduces the
variance of the model, it also gives us a hyperparameter to
find the precise t at which the solution is optimal for a cer-
tain stability bias.

Specifically, let us assume that we do not want G1:i−1(θ)
to exceed some c. We can attach a scalar identity term I to
the cross-entropy objective as follows:

Li(θ) · I(G1:i−1(θ) ≤ c) + λG1:i−1(θ) (18)

As long as G1:i−1(θ) ≤ c, this training objective is equiv-
alent to the description in (4) and (5). When G1:i−1(θ) > c,
the training objective directly minimizes G1:i−1(θ) until
G1:i−1(θ) ≤ c. This forces the optimizer to re-focus on find-
ing a solution that first satisfies G1:i−1(θ) ≤ c, and thereby
forces the optimization to not exceed a certain c (stability is
enforced). A stricter objective can be obtained by individu-
ally considering the different g within G:

Li(θ) · I(g1(θ) ≤ c1, · · · , gi−1(θ) ≤ ci−1) + λG1:i−1(θ)
(19)

In our experiments, we use this stricter objective, main-
taining a forgetting threshold (ci) per task i. We initialize

ci ← c(1) and then incrementally increase this forgetting

threshold as we see more tasks, that is, ci ← ci + c(2) per
new task seen. Through the hyperparameter search, we can
obtain a minimum c which produces the best solution for a
given stability bias.

4.3 Fisher Freezing

With any regularization strategy, all the weights are al-
ways updated, even if the changes to some weights are very
small. This can perturb sensitive weights, such as early layer
weights (Raghu et al. 2017). Even if this perturbation is only
small, small perturbations can add up over multiple tasks and
eventually affect the classifier likelihood irreversibly.

The upper bound of change in classifier likelihood for
a dataset Di is dependent on two terms (see (10)), |∆θ|

Figure 4: Fisher freezing on EWC applied to Sim-EMNIST;
average of 5 seeds with λ = 1. As we freeze more weights,
task 1 accuracy increases, while task 2 accuracy decreases.
The trend of solutions is similar to that obtained using L1.

and the expectation of the absolute gradients. To minimize
the change in classifier likelihood, we may opt to mini-
mize |∆θ| more conventionally, by freezing the most im-
portant weights. This reduces the magnitude of |∆θ| and
therefore results in a smaller change in classifier predic-
tions. Other strategies in the literature have tried similar ap-
proaches (Serra et al. 2018). Note that this method directly
enforces sparsity in |∆θ|.

Specifically, we compute the Fisher information matrix
F (θ∗

1:i) and choose the top p-percentile parameters θp ⊆
θ. For these parameters, we ensure that the optimizer does
not update their values. To assess the effects of this kind
of freezing separately from the aforementioned L1 criterion,
we freeze weights on EWC. In our experiments, we refer to
this method as EWC-p.

As an example, we plot the task 1 vs task 2 accuracy in
Figure 4 for EWC with freezing. The nature of solutions
with increasing p is similar to that depicted in Figure 1. An
increase in p therefore reduces the plasticity of the model,
which is expected. This shows that a higher span of solutions
(higher variance) can be achieved directly through EWC, by
introducing this hyperparameter p.

5 Experiments

We evaluate our proposed methods and compare their per-
formance with other popular KL based approaches in con-
tinual learning. We evaluate the following strategies:

Baseline Trained with just the likelihood loss, that is, no
regularization (no stability bias).

EWC Accumulated Fisher information matrices and com-
bined quadratic losses, as described in (Kirkpatrick et al.
2016; Huszár 2018; Kirkpatrick et al. 2018). We imple-
mented this method from scratch, following the descrip-
tion in the related papers. Note that EWC was previously
compared to the unweighted L2 regularization

∑
j(θj −

θ∗1:i−1,j)
2. This is different to the L2 variant described in

this work, which has a per-parameter importance.

SI Synaptic Intelligence strategy as described in (Zenke,
Poole, and Ganguli 2017), using the original code released
by the authors.

DM-I, II, III, IV Proposed in Section 4.1, a strategy that
directly regularizes the amount of forgetting, for L1, L2 and
the elastic-net variant.

DM-I, II, III, IV with fine control Proposed in Section 4.2,
similar to the previous strategy but with additional hyperpa-
rameters that allow finer control over forgetting; evaluated
for L1, L2 and the elastic-net variant.

EWC-p Freezing strategy described in Section 4.3; imple-
mented on EWC.

5.1 Training Methodology

Training for each strategy is performed on feedforward
ReLU networks with 2 hidden layers (h = 128, η =
0.0001), for 20 epochs. For hyperparameter search, we eval-
uate all methods on a single random seed, then choose a pa-
rameter that has the highest average validation accuracy. The
final results (mean and standard deviation) are averaged over
5 seeds, using the best parameter. Table 1 shows the perfor-
mance (final average validation accuracy) of the proposed
methods.

We use the Adam optimizer for our exper-
iments. Constants searched for EWC include
λ ∈ {1, 101, 102, 103, 104}. For DM-I, II, III, IV
(with and without finer control), we searched for
λ ∈ {1, 101, 102, 103, 104}, c(1) ∈ {0.025, 0.05, · · · 0.10}
and c(2) ∈ {0.0, 0.025, 0.05, · · · 0.10}. For the CIFAR100
datasets, we searched for λ ∈ {1, 101, 102, · · · 107}. For
EWC-p, we searched for p ∈ {0.1, 0.2, 0.3, · · · 0.9}.
For SI, we searched for c ∈ {0.01, 0.1, 0.5, 1, 2} and
ζ ∈ {0.001, 0.01, 0.1, 1}.

For the CIFAR100 experiments we use the embeddings
from a pretrained Resnet-v1 model which achieves ≈ 70%
accuracy on the 100-class classification.

5.2 Datasets

We evaluate on the following datasets:

Permuted MNIST 5 task version, where every task is a
10-class classification on the MNIST dataset with permuted
pixels; used in (Kirkpatrick et al. 2016; Zenke, Poole, and
Ganguli 2017; Nguyen et al. 2018; Li et al. 2019).

Split MNIST 5 tasks, where every task is a 2-class clas-
sification. The tasks are labels 0/1, 2/3, 4/5, 6/7, and 8/9
from the MNIST dataset; used in (Chaudhry et al. 2018;
Wiewel and Yang 2019).

Similar EMNIST Hand-picked labels from the EMNIST
dataset such that the classification tasks look approximately
similar; 4 tasks, 3-class classification, task labels are 2/O/U,
Z/8/V, 7/9/W, and T/Q/Y.

CIFAR100 Realistic image dataset with 5 tasks; 3-class
classification; task labels are 0/1/2, 3/4/5, 6/7/8, 9/10/11, and
12/13/14.

Similar CIFAR100 As CIFAR100, but tasks are chosen
from superclasses such that the labels per task correspond
to the coarse classes. We chose the coarse classes to be
“aquatic mammals”, “food containers” and “household fur-
niture”. Since each coarse class contains 5 superclasses, this
corresponds to 3-class classification spanning over 5 tasks.

Two of the datasets of our choice are similar continual
datasets. The effect of task similarity has been discussed pre-
viously (Kemker et al. 2018), but these discussions consider
permutated data to be similar tasks. On the other hand, our
investigation considers different datasets to be similar if the
labels draw from some common superclass distribution of
data. This is of practical significance since in real world clas-
sification systems, we usually desire our classification abil-
ity to persist when the newer classification tasks are label-
wise similar to the previous data. For example, we expect
a classifier that classifies between cars and motorbikes to
easily (continually) learn the distinction between trucks and
bikes.

Additionally, we note that a lot of the work in continual
learning is evaluated on incremental classes, but with incre-
mental classes the network is expected to remember just the
labels that have been seen over multiple tasks. However, re-
membering multi-class classification requires remembering
the differences between all the classes in each task. This is
our rationale for the choice of few-class classification span-
ning over 4 or 5 tasks.

5.3 Results

Our numerical results are given in Table 1. We report the
following insights:

Baselines and Existing Approaches As expected, the base-
lines for all the datasets incur catastrophic forgetting. This
forgetting is less for the similar datasets Sim-EMNIST and
Sim-CIFAR100, because the classification tasks are related,
that is, learning the first task is enough to perform decently
on following tasks. EWC and SI significantly improve upon
the baseline accuracies.

DM-L1 vs DM-L2 We find that in almost all the datasets
(an exception being Sim-EMNIST) the L1 variant finds a
better overall solution over multiple tasks, compared to the
L2 variant. In the case of fine control, this still holds on al-
most all the datasets, but the exception is Sim-CIFAR100.
Note that even in the exceptional cases, the mean accuracies
differ by a very small amount.

Fine Control We expect the fine-control version of DM-L1

and DM-L2 to perform the best in all datasets, because with
the correct hyperparameters it can find the optimum which
jointly maximizes both plasticity and stability. We indeed
observe this for the grayscale datasets, where the improve-
ments are good, but this does not hold in the case of the CI-
FAR100 datasets. We speculate that this is because of the rel-
atively coarse granularity of the hyperparameter search for

c(1) and c(2). Since the λ search for the CIFAR100 datasets
was already computationally expensive, we chose not to re-
peat the search with finer granularity. Nevertheless, the best
values for the fine methods are still better than EWC and SI.

Method P-MNIST S-MNIST Sim-EMNIST CIFAR100 Sim-CIFAR100

Baseline 55.63 (1.04) 63.36 (0.38) 75.38 (1.15) 37.48 (5.74) 76.25 (0.49)
EWC 93.86 (0.30) 70.85 (2.65) 89.65 (2.99) 61.70 (2.41) 83.76 (2.06)
SI 92.64 (0.75) 78.30 (2.65) 91.41 (1.21) 62.08 (1.34) 83.67 (0.88)

EWC-p 94.47 (0.26) 72.02 (2.80) 89.15 (2.95) 65.41 (3.36) 85.00 (1.35)

DM-L1 (best) 95.02 (0.30) 77.24 (1.96) 88.65 (2.97) 65.61 (4.88) 84.33 (1.64)
DM-E0.5 (best) 94.98 (0.23) 80.30 (2.09) 88.90 (1.93) 65.91 (2.15) 84.39 (0.97)
DM-L2 (best) 94.27 (0.32) 71.23 (3.43) 89.53 (2.64) 61.24 (2.07) 83.64 (0.60)

DM-L1 (best, fine) 95.07 (0.13) 80.04 (1.88) 92.95 (0.76) 65.77 (4.80) 83.87 (1.77)
DM-E0.5 (best, fine) 95.05 (0.19) 80.30 (2.10) 91.62 (1.06) 65.25 (1.81) 84.53 (0.97)
DM-L2 (best, fine) 94.35 (0.29) 68.99 (0.85) 89.45 (2.89) 61.24 (2.07) 83.91 (2.04)

Table 1: Mean and std final average validation accuracies (%) across 5 seeds for the best hyperparameters for all methods
described in Section 5 and for all the datasets mentioned in Section 5.2. The details of the hyperparameter search are mentioned
in Section 5.1. Methods are ranked by their mean validation accuracy across 5 seeds.

Relative Retention in Cases I–IV Given the variance in
our results, we find no clear empirical order of retention us-
ing DM-L1. While each case responds to λ in a different
way, we observe that at optimal λ, the cases have approxi-
mately equal retention across all datasets. We illustrate this
in Figure 5 for Sim-EMNIST, for two tasks.

The Effect of Freezing Important Weights Compared to
EWC, EWC-p always produces an improved solution, ex-
cept in the case of Sim-EMNIST, where it remains close to
EWC. It outperforms the other methods for Sim-CIFAR100.
We also note that for the grayscale datasets the best degree
of preservation p is between 20%−40%, while for the realis-
tic image datasets, the best degree of preservation is around
60% − 80%. This is in agreement with the strength of the
stability bias λ for the realistic image datasets for EWC,
which are also high, meaning that the realistic images re-
quire stronger preservation to register improvements.

6 Conclusions

In the context of real world classification systems, catas-
trophic forgetting may not just cause performance deterio-
ration, but also cause a loss of safety-validated knowledge.
Existing (regularization) strategies to mitigate catastrophic
forgetting typically minimize the elastic criterion, which can
produce non-sparse solutions and require a costly hyperpa-
rameter search for the appropriate penalty weight.

In this paper, we re-formulated the continual learning
problem to directly minimize an approximate upper bound
on the absolute amount of forgetting. We found that directly
minimizing this upper bound produces a weaker bias for
continual learning, thereby resulting in a higher model vari-
ance and stronger preservation of past classification knowl-
edge. This, in turn, can be seen as a stronger retention of
safety-validated knowledge. We demonstrated different vari-
ants of network preservation corresponding to different sys-
tem requirements, showed how to achieve the joint stability-
plasticity optimum and also proposed a simple modification
to EWC to achieve a similar degree of retention. Finally,
through experiments on grayscale and colored datasets, we
also demonstrated that better preservation of past knowledge

Figure 5: Average performance (smoothed) of Cases I–IV on
Sim-EMNIST; 2 tasks with DM-L1, 5 seeds (λ ∈ [1, 102]).
Retention is defined as the percentage of classifier predic-
tions on task 1 that stay the same after task 2 has been
trained.

can often produce solutions with better performance.

References

Chaudhry, A.; Dokania, P. K.; Ajanthan, T.; and Torr, P. H.
2018. Riemannian walk for incremental learning: Under-
standing forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), 532–
547.

Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research 12(Jul):2121–
2159.

Geman, S.; Bienenstock, E.; and Doursat, R. 1992. Neural
networks and the bias/variance dilemma. Neural computa-
tion 4(1):1–58.

Gigerenzer, G., and Brighton, H. 2009. Homo heuristicus:
Why biased minds make better inferences. Topics in Cogni-
tive Science 1(1):107–143.

Huszár, F. 2018. Note on the quadratic penalties in elastic
weight consolidation. Proceedings of the National Academy
of Sciences of the United States of America 115 11:E2496–
E2497.

Kemker, R.; McClure, M.; Abitino, A.; Hayes, T. L.; and
Kanan, C. 2018. Measuring catastrophic forgetting in neural
networks. In Thirty-second AAAI conference on artificial
intelligence.

Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N. C.; Veness, J.;
Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho,
T.; Grabska-Barwinska, A.; Hassabis, D.; Clopath, C.; Ku-
maran, D.; and Hadsell, R. 2016. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National
Academy of Sciences of the United States of America 114
13:3521–3526.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.;
Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ra-
malho, T.; Grabska-Barwinska, A.; et al. 2018. Reply to
huszár: The elastic weight consolidation penalty is empiri-
cally valid. Proceedings of the National Academy of Sci-
ences 115(11):E2498–E2498.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
nature 521(7553):436.

Li, Z., and Hoiem, D. 2017. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence 40(12):2935–2947.

Li, X.; Zhou, Y.; Wu, T.; Socher, R.; and Xiong, C. 2019.
Learn to grow: A continual structure learning framework for
overcoming catastrophic forgetting. In International Con-
ference on Machine Learning, 3925–3934.

Lopez-Paz, D. 2017. Marc’aurelio ranzato. Gradient
episodic memory for continuum learning. NIPS.

McCloskey, M. W. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem” the
psychology.

Nguyen, C. V.; Li, Y.; Bui, T. D.; and Turner, R. E. 2018.
Variational continual learning. In International Conference
on Learning Representations.

Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and Wermter,
S. 2019. Continual lifelong learning with neural networks:
A review. Neural Networks.

Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; and Dick-
stein, J. S. 2017. On the expressive power of deep neural
networks. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 2847–2854. JMLR.
org.

Serra, J.; Suris, D.; Miron, M.; and Karatzoglou, A. 2018.
Overcoming catastrophic forgetting with hard attention to
the task. In International Conference on Machine Learning,
4555–4564.

Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013.
On the importance of initialization and momentum in deep
learning. In International conference on machine learning,
1139–1147.

Wiewel, F., and Yang, B. 2019. Localizing catas-
trophic forgetting in neural networks. arXiv preprint
arXiv:1906.02568.

Yoon, J.; Lee, J.; Yang, E.; and Hwang, S. J. 2018. Lifelong
learning with dynamically expandable network. In Inter-
national Conference on Learning Representations. Interna-
tional Conference on Learning Representations.

Zenke, F.; Poole, B.; and Ganguli, S. 2017. Continual learn-
ing through synaptic intelligence. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70,
3987–3995. JMLR. org.

Zou, H., and Hastie, T. 2005. Regularization and variable
selection via the elastic net. Journal of the royal statistical
society: series B (statistical methodology) 67(2):301–320.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

