
DeepXDE: A Deep Learning Library for Solving Differential Equations

Lu Lu1, Xuhui Meng1, Zhiping Mao1, George Em Karniadakis1

1Division of Applied Mathematics, Brown University
Providence, RI 02906

george karniadakis@brown.edu

Abstract

Deep learning has achieved remarkable success in diverse
applications; however, its use in solving partial differen-
tial equations (PDEs) has emerged only recently. Here, we
present an overview of physics-informed neural networks
(PINNs), which embed a PDE into the loss of the neural
network using automatic differentiation. PINNs solve inverse
problems similarly to forward problems. We also present a
Python library for PINNs, DeepXDE. DeepXDE supports
complex-geometry domains based on the technique of con-
structive solid geometry, and enables the user code to be com-
pact, resembling closely the mathematical formulation. We
introduce the usage of DeepXDE, and we also demonstrate
the capability of PINNs and the user-friendliness of Deep-
XDE for two different examples.

More recently, solving partial differential equations (PDEs)
via deep learning has emerged as a potentially new sub-field
under the name of Scientific Machine Learning. To solve a
PDE via deep learning, a key step is to constrain the neu-
ral network to minimize the PDE residual, and several ap-
proaches have been proposed to accomplish this. Compared
to the traditional mesh-based methods, such as the finite dif-
ference method and the finite element method, deep learn-
ing could be a mesh-free approach by taking advantage of
the automatic differentiation, and could break the curse of
dimensionality. Among these approaches, one could use the
PDE in strong form directly; in this form, automatic differ-
entiation could be used directly to avoid truncation errors.
This approach is called physics-informed neural networks
(PINNs). An attractive feature of PINNs is that it can be used
to solve inverse problems similarly to forward problems.

In this paper, we present PINN algorithms implemented
in a Python library DeepXDE (https://github.com/lululxvi/
deepxde). DeepXDE can be used to solve multi-physics
problems, and supports complex-geometry domains based
on the technique of constructive solid geometry (CSG),
hence avoiding tedious and time-consuming computational
geometry tasks. Last but not least, DeepXDE is designed to
make the user code stay compact and manageable, resem-
bling closely the mathematical formulation.

Copyright c© 2020, for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CCBY 4.0).

1 Physics-informed neural networks
We consider the PDE parameterized by λ for the solution
u(x) with x = (x1, . . . , xd) defined on a domain Ω ⊂ Rd:

f

(
x;

∂u

∂x1
, . . . ,

∂u

∂xd
;

∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
; . . . ;λ

)
= 0,

(1)
with suitable boundary conditions (BCs) B(u,x) = 0 on
∂Ω. For time-dependent problems, we consider time t as a
special component of x.

x

t

σ

σ

...

σ

σ

σ

...

σ

û

NN(x, t;θ)
∂
∂t

∂2

∂x2

∂û
∂t − λ∂2û

∂x2

PDE(λ)

I

∂
∂n

û(x, t)− gD(x, t)

∂û
∂n (x, t)− gR(u, x, t)

BC & IC

Loss θ∗

Tf

Tb

Minimize

Figure 1: Schematic of a PINN for solving the diffusion
equation ∂u

∂t = λ∂2u
∂x2 with mixed BCs u(x, t) = gD(x, t)

on ΓD ⊂ ∂Ω and ∂u
∂n (x, t) = gR(u, x, t) on ΓR ⊂ ∂Ω.

The algorithm of PINN is shown visually in the schematic
of Fig. 1 solving a diffusion equation. We explain each
step as follows. In a PINN, we first construct a neural net-
work û(x;θ) as a surrogate of the solution u(x). Here,
θ = {W `, b`}1≤`≤L is the set of all weight matrices and
bias vectors in the network û. One advantage of choosing
neural networks as the surrogate of u is that we can take the
derivatives of û with respect to x by the automatic differen-
tiation. In the next step, we need to restrict û to satisfy the
PDE and BCs. We only restrict û on some scattered points,
i.e., the training data T = {x1,x2, . . . ,x|T |} of size |T |. T
is comprised of two sets Tf ⊂ Ω and Tb ⊂ ∂Ω, which are the
points in the domain and on the boundary, respectively. We
refer Tf and Tb as the sets of “residual points”. To measure
the discrepancy between û and the constraints, we consider
the loss defined as:

L(θ; T) = wfLf (θ; Tf) + wbLb(θ; Tb), (2)

where Lf (θ; Tf) = 1
|Tf |

∑
x∈Tf

∥∥∥f (x; ∂û
∂x1

, . . . ;λ
)∥∥∥2

2
,

Lb(θ; Tb) = 1
|Tb|
∑

x∈Tb ‖B(û,x)‖22, and wf and wb are the
weights. In the last step, the procedure of searching for a
good θ by minimizing the lossL(θ; T) using gradient-based
optimizers is called “training”.

In inverse problems, there are some unknown parame-
ters λ in Eq. (1), but we have extra information on points
Ti ⊂ Ω: I(u,x) = 0, for x ∈ Ti. PINNs solve inverse
problems by adding an extra term to Eq. (2): Li(θ,λ; Ti) =
1
|Ti|
∑

x∈Ti ‖I(û,x)‖22. We then optimize θ and λ together:
θ∗,λ∗ = arg minθ,λ L(θ,λ; T).

2 DeepXDE usage
In this section, we introduce the usage of DeepXDE. Deep-
XDE makes the code stay compact and nice, resembling
closely the mathematical formulation. Solving differential
equations in DeepXDE is no more than specifying the prob-
lem using the build-in modules, including computational do-
main (geometry and time), differential equations, ICs, BCs,
constraints, training data, network architecture, and training
hyperparameters. The workflow is shown in Procedure 1.

A B

A | B

A - B

A & B

| &

-

Figure 2: CSG examples. (left) A and B represent the rectan-
gle and circle, respectively. A|B, A−B, and A&B are con-
structed from A and B. (right) A complex geometry (top)
is constructed from a polygon, a rectangle and two circles
(bottom).

In DeepXDE, The built-in primitive geometries in-
clude interval, triangle, rectangle, polygon,
disk, cuboid and sphere. Other geometries can be
constructed from these primitive geometries using three
boolean operations: union (|), difference (-) and
intersection (&). This technique is called construc-
tive solid geometry (CSG), see Fig. 2 for examples.

DeepXDE supports four standard BCs, including
Dirichlet, Neumann, Robin, and Periodic, and
a more general BC can be defined using OperatorBC.
The initial condition can be defined using IC. There
are two networks available in DeepXDE: feed-forward
neural network (maps.FNN) and residual neural network
(maps.ResNet). It is also convenient to choose different
training hyperparameters, such as loss types, metrics,
optimizers, learning rate schedules, initializations and
regularizations.

3 Demonstration example
We use PINNs and DeepXDE to solve inverse problems. A
diffusion-reaction system in porous media for the solute con-
centrations CA, CB and CC (A+ 2B → C) is described by
∂CA

∂t = D ∂2CA

∂x2 − kfCAC
2
B , ∂CB

∂t = D ∂2CB

∂x2 − 2kfCAC
2
B

for x ∈ [0, 1], t ∈ [0, 10] with IC CA(x, 0) = CB(x, 0) =
e−20x and BCs CA(0, t) = CB(0, t) = 1, CA(1, t) =
CB(1, t) = 0. We estimate the diffusion coefficient D =
2 × 10−3 and the reaction rate kf = 0.1 based on 40000
observations of the concentrations CA and CB in the spatio-
temporal domain. The identified D (1.98 × 10−3) and kf
(0.0971) are displayed in Fig. 3.

 0

 4

 8

 12

 16

 0 1 2 3 4 5 6

A

P
ar

am
et

er
 v

al
ue

Iterations (104)

True ρ
True σ
True β

Identified ρ
Identified σ
Identified β

-1

 0

 1

 2

 3

 0 1 2 3 4 5 6 7 8

B

P
ar

am
et

er
 v

al
ue

Iterations (104)

True kf
True D

Identified kf
Identified D

Figure 3: The
identified values of
diffusion-reaction
system converge
to the true values
during the training
process.

Procedure 1 Usage of DeepXDE for solving differential
equations.

1. Specify the computational domain using the geometry
module.

2. Specify the differential equations using the grammar of
TensorFlow.

3. Specify the boundary and initial conditions.
4. Combine the geometry, PDE, and IC/BCs together into

data.PDE or data.TimePDE for time-independent or
time-dependent problems, respectively. To specify train-
ing data, we can either set the specific point locations, or
only set the number of points and then DeepXDE will
sample the required number of points on a grid or ran-
domly.

5. Construct a neural network using the maps module.
6. Define a Model by combining the PDE problem in Step

4 and the neural net in Step 5.
7. Call Model.compile to set the optimization hyperpa-

rameters, such as optimizer and learning rate. The weights
in Eq. (2) can be set here by loss weights.

8. Call Model.train to train the network from random
initialization or a pre-trained model using the argument
model restore path. It is extremely flexible to mon-
itor and modify the training behavior using callbacks.

9. Call Model.predict to predict the PDE solution at
different locations.

References
Lu, L.; Meng, X.; Mao, Z.; and Karniadakis, G. E. 2019.
Deepxde: A deep learning library for solving differential
equations. arXiv preprint arXiv:1907.04502.

