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Towards Causal Knowledge Graphs - Position Paper

Eva Blomqvist' and Marjan Alirezaie’ and Marina Santini?

Abstract. In this position paper, we highlight that being able to
analyse the cause-effect relationships for determining the causal sta-
tus among a set of events is an essential requirement in many contexts
and argue that cannot be overlooked when building systems target-
ing real-world use cases. This is especially true for medical contexts
where the understanding of the cause(s) of a symptom, or observa-
tion, is of vital importance. However, most approaches purely based
on Machine Learning (ML) do not explicitly represent and reason
with causal relations, and may therefore mistake correlation for cau-
sation. In the paper, we therefore argue for an approach to extract
causal relations from text, and represent them in the form of Knowl-
edge Graphs (KG), to empower downstream ML applications, or Al
systems in general, with the ability to distinguish correlation from
causation and reason with causality in an explicit manner. So far,
the bottlenecks in KG creation have been scalability and accuracy
of automated methods, hence, we argue that two novel features are
required from methods for addressing these challenges, i.e. (i) the
use of Knowledge Patterns to guide the KG generation process to-
wards a certain resulting knowledge structure, and (ii) the use of a
semantic referee to automatically curate the extracted knowledge. We
claim that this will be an important step forward for supporting inter-
pretable Al systems, and integrating ML and knowledge representa-
tion approaches, such as KGs, which should also generalise well to
other types of relations, apart from causality.

1 Introduction

Knowledge Graphs (KGs) have emerged in the past decade as a
prominent form of knowledge representation, frequently used by
large enterprises such as Google, Facebook, Amazon, Siemens, and
many more [16]. A KG is simply a graph representing some set of
data, usually coupled with a way to explicitly represent the mean-
ing of the data, e.g. an ontology. This can be seen as a revival of
graph-based knowledge representation, with roots in the early 1970’s
(for instance, the term knowledge graph was used as early as 1972
by [28]]), but with recent advances mainly related to the Semantic
Web, such as Linked Data on the Web, and Semantic Web ontolo-
gies. This renewed popularity has been accelerated by two main re-
alisations regarding Machine Learning (ML), including Deep Learn-
ing (DL) models: Although outperforming humans on many specific
tasks, ML/DL methods (i) are often unable to determine the seman-
tics of the correlations found in the data, and (ii) lack the ability to
transparently explain a prediction. A particularly challenging exam-
ple is the case of causal relations. As pointed out by [17] the future
development of Al depends on building systems that incorporate the
notion of causality, e.g. to allow the system to reason about situations
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that have not been previously encountered, based on general princi-
ples. There is an active field of research developing specific ML/DL
algorithms targeting causal learning and reasoning. However, only
targeting ML/DL-based causal reasoning does not necessarily im-
prove interpretability, hence there is a need to also develop methods
for producing and utilising interpretable causal models, as we shall
discuss further in Section[3]

KGs, being symbolic models, allow to define the semantics of
relations in data, at the level of formalisation necessary for an in-
tended task, e.g., through ontologies if needed, and by integration
with ML/DL methods this supports interpretability of predictions.
Hence, KGs can be used to address both the main shortcomings of
ML/DL mentioned earlier, but the construction of KGs is a major
bottleneck in their adoption, just as was the case with knowledge rep-
resentation in general, in early Al systems. Outside large companies,
such as Google, and huge crowdsourcing initiatives, such as Wikidata
[32], it is usually infeasible to construct large scale KGs “manually”.
Rather, they have to be bootstrapped from existing sources, such as
semi-structured data or text. Current KG generation algorithms, how-
ever, either do not take into account the desired formalisation of the
KG at all, or they hard-code it into the extraction algorithm. An ex-
ample of the latter is DBPedia [20], which is specific to a Wiki source
and results are expressed using a fixed ontology, which means the
method does not generalise to new settings or other input structures.
Additionally, the quality of the generated KGs is usually poor [11],
requiring manual curation, and further, no automated approach so far
targets complex relations, e.g. causality. Therefore, it is our goal to
specifically target new methods and algorithms for KG generation
from text, which (a) explicitly take KG requirements into account,
e.g. allowing to flexibly specify the required schema of the output
graph, and (b) automate the curation process, to radically improve
the quality of resulting KGs. In order to fulfil a specific set of KG
requirements, as well as to achieve a sufficient level of accuracy, we
propose to use the notion of Knowledge Patterns (KPs) [?] as for-
malisations of KG requirements. A KP represents both a linguistic
frame that can be detected in text [2], but also the representation of
that frame in the desired KG output formalism, i.e. similar to the no-
tion of Ontology Design Patterns (ODP) [5 4. In order to tackle a
particularly important obstacle to the future development of the Al
field, i.e., considering the importance of causal models and reason-
ing, we intend to specifically target KPs and KGs targeting complex
causal relations.

2 ML - Causality and Interpretability

While ML methods perform very well in learning complex connec-
tions between large amounts of input and output data, there is no
guarantee that they capture causation (cause and effect relations).
This shortcoming stems in part from the ignorance of data-driven
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methods with respect to reasoning techniques, which are effortlessly
applied by humans. Consider the two imaginary groups of people:
Group A: 100 asthmatic people with a death rate of 40%, and Group
B: 100 asthmatic people who also suffer from pneumonia, with a
death rate of 35%. A ML method solely fed with the data can only
learn a nonsense result saying: asthmatics with pneumonia have more
chances to live! [8)]. The learning method has perhaps learned the as-
sociations (or correlations) among the variables in the data correctly.
However, due to the absence of context and common sense knowl-
edge, and also the lack of reasoning abilities, the method has not been
able to explicitly and correctly capture the cause-effect relations.
That is why the outcome of the example above is not only counterin-
tuitive, but also misleading. By context, we refer to any information
that may not be represented in the observed data directly, and may
include the actual causes behind the observations, e.g., some set of
background information about the setting. In the given example, peo-
ple in Group B are more high risk patients than those in Group A. The
lower death rate of people in Group B can have different reasons, for
instance, due to their high risk status they may more likely be taken
to the intensive care unit (ICU) or they may be taking more effective
medicines, which are all factors (or features) not considered by the
learning model [29]]. Additionally, some common sense knowledge,
such that additional diseases generally increase mortality rather than
decreasing it, could have also supported a system in avoiding the er-
roneous conclusion, e.g., through using knowledge representations
as a referee for the learned model [1]], as we will discuss furhter later
on in this paper.

To provide sufficient support for a reliable and precise prediction
or diagnosis process, every prediction made by a system needs to
be perfectly transparent and interpretable by the user. This is neces-
sary for any autonomous system to act as the support for humans in
making decisions, and even legally and ethically required in many
domains, including the medical domain. Although ML should def-
initely be a part of the solution, what is predicted needs to be in-
terpretable, so that any conclusion based on that knowledge can be
explained in detail, most often including some notion of reliability or
confidence. A solution to this shortcoming of ML methods is to inte-
grate them with explicitly represented knowledge, such as in the case
of causality, a formal causal model that reflects all the possible and
existing relations, including cause-effect ones, among the concepts
of a given domain.

3 Causal Models

By causal model, we refer to a parametric model that represents a set
of probability densities over variables including concepts defined in
a system (e.g., diseases and symptoms in the context of medicine),
together with the plausible causal relationships between them [31].
Once available, integration of causal information (inferred from a
causal model) with the training (observational) data, can enable a
ML/DL method to also learn the causes behind its mistakes (i.e., mis-
classification) [1], and consequently improve its performance. In this
paper we specifically target causal relations, i.e. the focus is not on
determining the probability distributions but rather on the underlying
knowledge representation.

Although recent research reflects the considerable impact of causal
inference in different domains, such as public health [[15] or earth
science and climate change [27], it is still also challenging to involve
causal models within a learning process. One of the hindering fac-
tors is, in fact, the lack of available domain-related causal models
compatible with the data used for learning [22], which leads to the

need of manually creating such models for each use case. However,
for many domains nowadays, such as e-health and patient monitoring
through smart homes, both the set of potential outcomes and the set
of variables are extremely large. Therefore, manually constructing
and maintaining causal models requires a huge effort, and cannot be
easily adapted to a new domain. Even further, manual construction of
models representing all the environmental features and relations may
not even be practically feasible, due to the changing nature of the
environment. This has already changed the focus of research to auto-
matically generating causal models [22], which is a line of research
we are also contributing to.

Furthermore, causal relations are usually not as simple as one ex-
plicit link between two well-defined (cause and effect) concepts. De-
pending on the context and the conditions, we may, for instance, end
up with a set of causations with different certainty values. The ap-
propriate modelling of the causal relations also heavily depend on
the use cases of the resulting model, e.g., the kind of reasoning and
prediction tasks that it should support. For instance, reasoning on po-
tential guideline and treatment interactions in an individual patient
context, e.g., the target use case of [7]], requires a highly complex
causal model, while in other cases a more simple one might suffice.
In Fig.[I] we illustrate this through two examples. At the right (b) is a
highly complex conceptual model (inspired by the model in [7]) rep-
resenting the belief that a causal relation exists, with some frequency
and strength. At the left (a) is a also a causal relation, but represented
as a much more simple conceptual model.

Our proposed method intends to address the lack of causal models,
by automating the generation of highly accuracte causal KGs from
text. We intend to cater for the differing requirements of specific use
cases by using Knowledge Patterns (KPs), similar to the conceptual
models in Fig.[T|coupled with linguistic frames, to represent require-
ments that make sure the resulting causal model enable the required
type of reasoning or predictions.

4 Proposed Approach: Generating Causal KGs
from Text

The overarching goal of our research is to support the integration
of ML/DL and Knowledge Representation, for improving both ac-
curacy and interpretability of downstream Al applications. As dis-
cussed previously, we believe that KGs can play a crucial role in
this integration, but then the KG construction bottleneck needs to be
resolved. Therefore, we propose to develop new methods and algo-
rithms for KG generation from text, which (a) explicitly take KG
requirements into account, e.g. allowing to flexibly specify the re-
quired schema of the output graph, and (b) automate the KG curation
process to radically improve the quality of resulting KGs with mini-
mal human effort. In order to fulfil a specific set of KG requirements,
as well as to achieve a sufficient level of accuracy, we argue that the
notion of Knowledge Patterns (KPs) [?] as formalisations of KG re-
quirements, is a crucial concept. We here specifically focus on KPs
and KGs targeting causal relations, since causal models and causal
reasoning are one of the main challenges for ML approaches today.
However, the approach we outline is generic, and by exchanging the
KPs used, it can be used to target any type of complex relation that
can be expressed in natural language. The proposed approach is a
novel combination of methods from ML/DL for NLP, with recent
advancement in Knowledge Representation, such as KGs and KPs.
As can be seen in Fig. [2| we propose a continuous process that
iteratively improves its ML/DL models based on feedback from a
curation step. As initial input (1), the process needs a set of KPs rep-
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Figure 2. We propose to use KPs to guide the iterative ML process for extracting a Knowledge Graph from unstrutured texts, as well as automating the curation

process using a semantic referee. The generated Knowledge Graph, can later be used to support a ML method to derive causal relations from observational data.

resenting the requirements of the output KG, one or more language
models, as well as a text corpus from which to extract the KG. The
language models then need to be tuned (2) to the relations expressed
by the specific KPs at hand. Next, initial instantiations of the KPs,
i.e., the linguistic frames they represent, are detected in the text cor-
pus and formalised using the KP as a “schema” (3), whereafter these
KP instantiations are merged into an initial KG (4). The initial KG is
then subjected to an automated curation and repair process (5), where
the formalisation of the KPs is used by a semantic referee to detect
postential mistakes in the extracted KG, and suggest repair actions.
The result of this curation process is not only a high-quality KG, but
also feedback sent back in order to tune, or even retrain, the language
models, and to iteratively extend the KG by continuously running the
overall process. Below, we go into more details of the ML/DL-based
NLP methods to be used, the role and nature of the KPs, and the
semantic referee used for curation, respectively.

4.1 Relation Extraction from Text

Causal relations can be extracted from running text by exploiting lin-
guistic cues and then the detected relations can be formalized, for in-
stance, in the form of simple facts (triples). For example, the causal
relation in the sentence COVID-19 is caused by the SARS-CoV-
2 virus, can be formalized as the fact <SARS-CoV-2 causes
COVID-19>, which could be represented as a triple in a standard
Knowledge Representation language, such as RDlﬂ However, in

4https://www.w3.0org/RDF/

many cases more complex representations are needed, such as in-
cluding unknown variables, as introduced by Pearl [24]), in the notion
of Structural Causal Models. Creating a relation such as: COVID-
19:=f(SARS-CoV-2, randomness), which means that the appearance
of the COVID-19 disease depends on the virus and some other ran-
dom vairable(s) independent from the virus, e.g. environmental fac-
tors, and features of the person in question El An illustration of two
conceptual models for representing causal relations were already
given in Fig.[T] To instantiate such models (i.e., such KPs), linguistic
expessions of causation such as caused by, cause, as a result, for this
reason, due to the fact, consequently and similar are cues identified
by NLP tools, such as Part-of-Speech Taggers, Dependency Parsers,
lexicons, and the like [[19|9]].

The NLP task that will contribute to our envisioned approach is
mainly Information Extraction (IE), or more specifically Relation
Extraction (RE). Recent work in this field includes [30], who de-
scribe an innovative approach for relation learning, based on the pre-
training of a huge language model, such as BERT [10]], passing sen-
tences through its encoder to obtain an abstract notion of a relation,
and then fine-tuning on a certain schema, like Wikidata or DBpe-
dia, mainly containing simple binary relations. Our aim is similar,
although we intend to develop a slightly different method that can
be tuned to a (combination of) a set of smaller, abstract, KPs, tar-
geting more complex relations. An interesting aspect is that [30] are
also able to extract generic relations, i.e., potential schema exten-

5 The notation is again informal, but the symbol := is here used to indicate
the causal relation, and () represents a function.
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sions, which might be a valuable addition in our proposed curation
and feedback step. Earlier work on frame detection in text [14} [12]],
and generation of KGs from this, may also be relevant for compar-
ison, especially since [[14] also applied the notion of KPs related to
the frames detected, however, they did not allow for the frames to be
preselected as the KG requirements, or exchanged.

Further, NELL [23] targets the learning of common facts, ex-
tracted from natural language texts. Although their approach does
not target a specific output structure or relation, i.e., specific KPs, the
continuous improvement process is similar to our proposal. In other
recent studies, such as by [25], KGs are also generated from natu-
ral language text, but they do not target complex relations such as
causality, and the approaches use a fixed output schema.

Very little research exists on extracting more complex relations,
i.e. relations that cannot be expressed as single facts (triples), and in
particular causal relations, directly from text. One study that gener-
ated causal KGs from text is [26]. The difference to our envisioned
approach is mainly the types of input data, as well as that [26] tar-
gets one fixed logical structure of the output, i.e., a single fixed KP
expressing simple direct relations between diagnoses and symptoms.
To learn a more complex formalisation of causality, we may also
need more complex learning, such as suggested by [18]], who pro-
posed a method for extracting a relation graph directly from natural
language, where the relations express entailment rules rather than
simple facts (triples).

Another area where NLP has been widely used is KG comple-
tion, e.g., link and relation prediction in an existing KG. Although
we intend to generate a KG “from scratch”, the KG generation from
instantiated KPs, as well as the subsequent curation process, have
some similarities with link and relation prediction. Hence, inspira-
tion may come from work such as [33], who propose to use pre-
trained language models for knowledge graph completion, scoring
candidate triples for addition through their KG-BERT model. This
is similar to how we envision to assess potential links between the
instantiated KPs, when generating the overall KG. Another approach
was recently proposed by [6], where language models such as GPT-2
are combined with a seed KG, allowing the learning of its structure
and relations, whereafter the language model can generate new nodes
and edges. However, our KPs are abstract and do not contain concrete
facts, which is a main difference to the seed KGs they used.

4.2 Knowledge Patterns

The use of patterns in developing knowledge representation models
has a long tradition in Al starting from the idea of Minsky in his pro-
posal of frames [21], and continued towards the notion of ontology
design patterns (ODP) in modern ontology engineering [S}4]. ODPs
have also been generalised into KPs [13]], where a KP may repre-
sents both a linguistic frame that can be detected in text [3[], but also
the representation of that frame in a desired output formalism. How-
ever, in [13]], KPs are described and defined informally, and there is
currently no concrete formalism for representing and applying KPs
specifically for KGs.

In order to capture specific types of knowledge from text, support-
ing a specific task, such as medical decision support, the knowledge
extraction process needs to be carefully guided by the requirements
of the intended task of the resulting KG. Tasks may include different
types of queries, prediction, applying specific graph pattern matching
algorithms, or reasoning. To address this challenge we argue for ap-
plying KPs as both a representation of the KG requirements, as well
as acting as a “schema” for the resulting KG. In short, as shown in

Figure 2] we propose to tune the language models to detect the spe-
cific KPs required, and further generate a KG from the instantiated
KPs.

Using KPs to guide the learning process makes it possible to cap-
ture different possible contextual situations separately, and target dif-
ferent causal models, each focused on a certain specific downstream
task. Depending on the relations that are found in the text, KPs will
also allow us to calculate more precise certainty values for each cap-
tured cause, similar to how we have used knowledge representations
as a referee for ML methods in our previous work[1]. This also al-
lows us to filter out extracted knowledge that does not make sense,
or is otherwise of questionable quality.

However, this also introduces new challenges, because although
KPs have been studied to some extent for ontologies and the Seman-
tic Web, there is so far no formal definition of a KP that can be used
operationally (technically) by a system, in particular for KGs. For
this purpose we need to operationalise the definition in [13]], by ex-
panding on the connection between linguistic frames and ODPs, for
use within our KG extraction framework.

4.3 Semantic Referee

Related to the integration of ML/DL and symbolic models, and us-
ing knowledge representation to verify and repair results of ML/DL
algorithms, we rely on the idea of a semantic referee introduced in
our previous work [1]. In that work, we demonstrated the benefit of
a semantic referee applied upon a causal model in the form of an
ontology (OntoCity) for improving a satellite imagery data classifier.
In particular, the ontology together with a reasoning process acted
as a semantic referee to guide the ML method (i.e, the classifier).
Using causal information represented in the ontology, the semantic
referee was able to explain the causes behind errors, and send the ex-
planations as feedback to the classifier. In this way, the ML method
is able to know the causes behind its mistakes and therefore better
learn from them [[1]]. We argue that this previous work, will be highly
useful, when integrated as step (5) in our KG extraction framework,
illustrated earlier in Fig.[2}

5 Conclusion

In this paper, we propose a possible approach to capturing causal
knowledge, in a scalable fashion, and representing it as a shared KG.
We argue that the advantage of constructing causal KGs is the inte-
gration of causality in reasoning and prediction processes, such as the
medical diagnosis process, to improve the accuracy and reliability of
existing ML/DL-based diagnosis methods, by producing transparent
justifications and explanations of the output.

More specifically we focus on KGs as a means for providing back-
ground knowledge and reasoning capabilities to ML/DL-based Al
systems, and target the KG creation bottleneck. In particular, we
recognise the challenge related to causal relations, where the capabil-
ity of performing causal reasoning is often lacking in pure ML-based
systems. Therefore we propose to generate causal KGs from textual
information, to then be used as the basis for causal models. Our novel
framework is based on using a set of formal KPs as input, acting both
as the requirements of the KG as well as the means for formalising
the extracted knowledge and curate it through logical reasoning.
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