CEUR-WS.org/Vol-2696/paper_112.pdf

A study of Machine Learning models for
Clinical Coding of Medical Reports
at CodiEsp 2020

Marco Polignano, Vincenzo Suriano, Pasquale Lops, Marco de Gemmis, and
Giovanni Semeraro

University of Bari Aldo Moro, Dept. Computer Science, Bari , Italy.
marco.polignano@uniba.it, v.surianolO@studenti.uniba.it,
pasquale.lops@uniba.it, marco.degemmis@uniba.it,
giovanni.semeraro@uniba.it

Abstract. The task of identifying one or more diseases associated with
a patient’s clinical condition is often very complex, even for doctors
and specialists. This process is usually time-consuming and has to take
into account different aspects of what has occurred, including symp-
toms elicited and previous healthcare situations. The medical diagnosis
is often provided to patients in the form of written paper without any
correlation with a national or international standard. Even if the WHO
(World Health Organization) released the ICD10 international glossary
of diseases, almost no doctor has enough time to manually associate the
patient’s clinical history with international codes. The CodiEsp task at
CLEF 2020 addressed this issue by proposing the development of an
automatic system to deal with this task. Our solution investigated dif-
ferent machine learning strategies in order to identify an approach to
face that challenge. The main outcomes of the experiments showed that
a strategy based on BERT for pre-filtering and one based on BiLSTM-
CNN-SelfAttention for classification provide valuable results. We carried
out several experiments on a subset of the training set for tuning the final
model submitted to the challenge. In particular, we analyzed the impact
of the algorithm, the input encoding strategy, and the thresholds for
multi-label classification. A set of experiments has been carried out also
during a post hoc analysis. The experiments confirmed that the strategy
submitted to the CodiEsp task is the best performing one among those
evaluated, and it allowed us to obtain a final mean average error value
on the test set equal to 0.202. To support future developments of the
proposed approach and the replicability of the experiments we decided
to make the source code publicly accessible.
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1 Introduction

Clinical coding [30] is the task of associating unique identification codes with
a clinical diagnosis, or sometimes with a portion of it. Doctors and specialists
associate the diagnosis given to the patients with the corresponding interna-
tional classification only in rare cases. One of the most widely adopted standards
is ICD10 [22], the tenth version of the international medical glossary released
by WHO (World Health Organization). Although this annotation task may not
seem very useful for medical purposes, it is extremely relevant for statistical pur-
poses, automatic diagnosis analysis of clinical records, and data interoperability
across healthcare systems in different countries. Indeed, if each diagnosis is fully
digitized with a worldwide standard, every doctor in the world who is visiting us
could uniquely interpret our medical records and provide us with the appropriate
treatment. In addition, diagnostic patterns used by clinicians could be identi-
fied to improve automatic disease prediction strategies and provide automatic
specialist support for decision making. These observations strongly support the
need for automated systems to support clinicians to perform this task quickly
and without human intervention. From the technical point of view, this task is
very challenging because it requires the development of an artificial intelligence
system able to not only assign more than one class label to the medical response
choosing from a very high number of choices, but also to identify the fragment of
text associated to that choice. The CodiEsp task at CLEF 2020 [30, 13, 21] tries
to face this problem by releasing a corpus of 1,000 clinical case studies manually
selected by practicing physicians and clinical documentalists. Using that dataset,
we carried out an experimental study by testing several machine learning ap-
proaches, and we submitted the best performing one to the competition. In the
following, we first analyze the state of the art concerning the reference topic
(Sect. 2), then we provide the details of the proposed models (Sect. 3). In Sect.
4, we thoroughly present the performed experiments, and we finally present the
main outcomes and possible future work.

2 Related Work

The research community has addressed clinical coding tasks for a long time, and
numerous scientific contributions have been proposed about the topic. Indeed,
CLEF (Conference and Labs of the Evaluation Forum) conference has been
working on eHealth and Information Extraction since 2013, but the oldest corpus
on the subject dates back to 1973 [30]. Chapman et al. [9], already in 1999, stated
that a computer algorithm could solve the clinical coding task better than a
human being. This assertion is intuitive because even for an expert in the field,
it can be very complex to assign a specific code to the result of a medical diagnosis
choosing it from more than 70,000 currently available ICD-10 codes. However,
in 2006, Kukafka et al. [18], confirmed that when the identification of the right
code is not obvious, also Natural Language Processing (NLP) tools could easily
lack accuracy. Today, NLP and machine learning techniques are widespread and



are receiving substantial attention from research communities. Among the best
performing systems, the one proposed by Miftahutdinov [19] at CLEF eHealth
2017 uses an LSTM on a TF-IDF representation of the text to identify the
most suitable ICD-10 code for the input sequence. This allows to obtain an
F1 score equal to 0.85, considering a classification on 1,256 distinct classes.
During the same competition, Cabot et al. [7] used an NLP pipeline to obtain the
highest F1 score of the competition on the data provided in French (i.e., 0.764).
Several preprocessing steps were performed, including stop words filtering, then
a method based on the Double Metaphone phonetic encoding algorithm was used
to operate a first approximate term search. Finally, a Weighted Distance Score
algorithm has been developed to rank the list of candidate terms. The most likely
term having the highest score is retained as the matching ICD-10 code for the
phrase. In 2018, Atutxa et al. [3], proposed a three-level sequence-to-sequence
neural network-based approach. The first neural network tries to assign one set
of ICD-10 codes to the whole document, then they are refined to assign one set of
codes to the line, and finally one specific code. This strategy allowed the model to
obtain an F1 score between 0.7086 and 0.9610, depending on the language of the
dataset on which the system has been evaluated. Almagro et al. [1] proposed a
supervised learning system based on a multilayer perceptron, SVMs, and a One-
vs-Rest strategy. The approach allows to train a binary model for each of the
target ICD-10 codes, indicating the presence or absence of the code. The model
was able to obtain an F1 score of 0.910. At CLEF eHealth 2019, the best system
was proposed by Sénger et al. [28], obtaining an F1 score of 0.80. The proposed
model utilized a multilingual BERT [10] text encoding model, fine-tuned on
additional training data of German clinical trials also annotated with ICD-10
codes. The model is extended by a single output layer to produce probabilities for
specific ICD-10 codes. Amin et al. [2] participated in the same task obtaining
the second place. They evaluated various approaches, such as Convolutional
Neural Networks (CNN) and Attention models, among others. They obtained
the best results when relying on Bidirectional Encoder Representations from
Transformers (BERT) and, more specifically, on BioBERT, which was trained
on biomedical documents. Considering the successful models presented as state
of the art, we decided to use a machine learning approach that combines CNNs,
Bidirectional LSTMs, Attention Layers, and BERT. Details of the proposed
architecture are provided in Sect. 3.

3 Resources and Model Architectures

3.1 CodiEsp 2020 corpora

The CodiEsp track at CLEF 2020 [30, 13,21] contains three sub-tracks (2 main
and 1 exploratory) about analysis of clinical reports:

— CodiEsp Diagnosis Coding main sub-task (CodiEsp-D): it requires automatic
ICD10-CM [CIE10 Diagnéstico] code assignment. This sub-track evaluates
systems that predict ICD10-CM codes (in the Spanish translation, CIE10-
Diagnéstico codes).



Table 1. Statistics on the training datasets.

ICD10-CM|ICD10-PCS
Number of code sections 21 16

Total number of possible codes 71,486 72,081
Unique codes used in

the training set

Number of total annotations
in the training set

1,788 546

8,494 2,587

— CodiEsp Procedure Coding main sub-task (CodiEsp-P): it requires auto-
matic ICD10-PCS [CIE10 Procedimiento] code assignment. This sub-track
evaluates systems that predict ICD10-PCS codes (in the Spanish translation,
CIE10-Procedimiento codes).

— CodiEsp Explainable AT exploratory sub-task (CodiEsp-X). Systems are re-
quired to submit the reference to the predicted codes (both ICD10-CM and
ICD10-PCS). The correctness of the provided reference is assessed in this
sub-track, in addition to the code prediction.

For each task a dataset for training, development and test has been released.
Generally speaking, the CodiEsp corpora contain manually annotated clinical
reports with corresponding clinical codes. The clinical reports are written in
Spanish, and they are annotated with the CIE10 glossary (the Spanish version
of ICD10-CM and ICD10-PCS). The training set contains 500 clinical cases,
while the development and the test set provide 250 clinical cases each. The
CodiEsp corpus format is plain text with UTF8 encoding, where each clinical
case is stored in a single file whose name is the clinical unique case identifier. The
final collection of the 1,000 clinical cases of the corpus contains 16,504 sentences,
with 16.5 sentences per clinical case on average. It contains 396,988 words, with
396.2 words per clinical report on average. For sub-task 1 and 2 of the CodiEsp
task, (CodiEspD and CodiEsp-P), the training files contain the following fields:
[articleID, label, ICD10-code, text-reference].

— ArticlelID: it contains the identifier of the clinical text that corresponds to
the name of the file.

Label: it contains the diagnostic or procedimiento code.

ICD10-code: it contains the ICD10 code.

— Text-reference: it contains the word or phrase in the clinical text.

In Fig. 1 and 2, it is possible to observe how annotations provided with the
training data of the two tasks are differently distributed between the different
sections of the two ICD10 vocabularies. It is immediately clear that the distri-
bution is not uniform, and some classes are more represented than others. For
example, for the training set of task CodiEspD, class 18 is the most represented
one, with 2,214 annotations, while class 16 is the least represented with only
23 examples. In Table 1, it is possible to observe that considering all the pos-
sible codes of ICD10, the training dataset covers only 1,788 unique codes for
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Fig. 1. Distribution of annotations in the training dataset among the ICD10-CM sec-
tions.
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Fig. 2. Distribution of annotations in the training dataset among the ICD10-PCS
sections.

CodiEspD and 546 codes for CodiEspP. Based on this observation, we decided
to use models that only provide codes with at least one example in the training

set.

The organizers of the CodiEsp task also released an additional resource that
extends the previous datasets. It contains the description of the codes in the



ICD10 vocabulary, both “Diagnosis” and “Procedures” (Fig. 3). This resource
contains two files:

— “codiesp-D_codes.tsv”: it contains all the 98,288 ICD10-CM codes, along
with their description in Spanish and English.

— “codiesp-P_codes.tsv”: it contains all the 87,170 ICD10-PCS codes, along
with the their description in Spanish and English. It contains the codes up
to the fourth nesting lever its of hierarchy.

16075 | Derivacion de ventriculo cerebral a intestino, con sustituto de tejido autélogo, abordaje abierto Bypass Cerebral Ventricle to Intestine with Autologous Tissue Substitute, Open Approach

16076 | Derivacién de ventriculo Gerebral a cavidad peritoneal, con sustituto de tejido autglogo, abordaje ablerto  Bypass Cerebral Ventricl to Peritoneal Cavty with Autologous Tissue Substitute, Open Approach
16077 | Derivacin de ventriculo cerebral a tracto urinario, con sustituto de tejido autélogo, abordaje abierto Bypass Cerebral Ventricle to Urinary Tract with Autologous Tissue Substitute, Open Approach
16078 ‘ Derivacion de ventriculo cerebral a médula Gsea, con sustituto de tejido autdlogo, abordaje abierto Bypass Cerebral Ventricle to Bone Marrow with Autologous Tissue Substitute, Open Approach

0016078 | Derivacion de ventriculo cerebral a cisternas cerebrales, con sustituto de tejido autélogo, abordaje abierto  Bypass Cerebral Ventricle to Cerebral Gisterns with Autologous Tissue Substitute, Open Approach

0016040 | Derivacion de ventriculo cerebral a nasofaringe, con sustituto sintético, abordaje abierto Bypass Cerebral Ventricle to Nasopharynx with Synthetic Substitute, Open Approach
0016041 ‘ Derivacién de ventriculo cerebral a seno mastoideo, con sustituto sintético, abordaje abierto Bypass Cerebral Ventrice to Mastoid Sinus with Synthetic Substitute, Open Approach
0016042 | Derivacién de ventriculo cerebral a auricula, con sustituto sintético, abordsje abierto Bypass Cerebral Ventricle to Atrium with Synthetic Substitute, Open Approach

0016043 ‘ Derivacion de ventriculo cerebral a vaso sanguineo, con sustituto sintético, abordaje abierto Bypass Cerebral Ventricle to Blood Vessel with Synthetic Substitute, Open Approach

Fig. 3. Example of code description provided as addition task resource.

3.2 Classification model proposed to the CodiEsp task

The Clinical Coding task has been approached using different machine learning
strategies that are commonly used to deal with the classification task in the field
of Natural Language Processing (NLP). In particular we focused on the use of
deep learning techniques such as LSTM [15], CNN [17], Attention Layers [32]
and Bidirectional Encoder Representations from Transformers (BERT) [10].

Long-short term memory model. The neural network model based on
long-short term memory (LSTM) was proposed in 1997 [15]. Since then, it has
been widely used with data that have an inherent sequential structure, such as
text. LSTMs are part of the family of sequential models based on recurring neu-
rons [12]. In particular, an architecture of this type is based on the idea that
the state of the specific neuron depends on that of the previous ¢ — 1 state. The
natural evolution of a model based on recurring neurons introduces a memory.
This structure allows the recurring neuron to depend not only on the state of the
single one at step t—1, but also on the state of the different neurons at step t—n.
This idea is the base of architectures such as RNN, LSTM, and GRU. Among
them, LSTM has the peculiarity of having also a forget gate able to manage
the amount of information to be kept in memory. At each step a portion of the
memory is deleted and another one is added. These features allow the model
to be state-of-the-art for many NLP applications, such as machine translation
[35], automatic summarization [29], parsing, and sentiment analysis [33,5]. In
our architecture we used LSTM in its bidirectional variant.



Convolutional neural network. Convolutional neural networks (CNN)
are born from an accurate study of how the portion of the brain cortex works
for vision [16]. This has promoted their wide use in the computer vision task
for image recognition since 1980 [11]. Recently, they are also widely used in text
analysis tasks, thanks to the fast increase in computational power available to
everyone. A convolutional neuron is able to concentrate only on a portion of the
input data [12], e.g., a set of pixels in an image. A layer full of neurons using
the same filter (or convolution kernels) gives a feature map, which highlights the
areas in an input that are most similar to the filter. During the training, a CNN
finds the most useful filters for its task, and learns to combine them into more
complex patterns. A CNN is usually followed by a Pooling Layer. Its goal is to
subsample the input image in order to reduce the computational load, the mem-
ory usage, and the number of parameters. A pooling layer typically works on
every input channel independently, so the output depth is the same as the input
depth. A neural model using CNN usually alternating CNN layers with Pooling
layers with a dense final layer aimed at prediction (classification or regression).

Self attention. Similarly to the attention strategy proposed in [4], self-
attention, also known as intra-attention, provides the model ability to weigh the
vectors of single words of the sentence differently, according to the similarity of
the neighboring tokens. It is possible to say that the level of attention can provide
us an idea of what features the network is looking at most during learning and
subsequent classification. In particular, we consider an additive context-aware
self-attention equal to the whole set of words in input (Eq. 1) [34].

i = tanh(zl Wy + 2L Wy + by)
et = o(Wehy o + be)

agpr = softmax (e ) (1)

n
Iy = Z At .t Tt/
=1

where, o is the element-wise sigmoid function, W; and WY are the weight ma-
trices corresponding to the hidden states h; and hy’; W, is the weight matrix
corresponding to their non-linear combination; b; and b. are the bias vectors.
The attention-focused hidden state representation [; of a token at timestamp ¢
is given by the weighted summation of the hidden state representation hy of all
other tokens at timesteps t. We use the last self-attention implementation for
Keras ! .

BERT. The Bidirectional Encoder Representations from Transformers (BERT)
[10] is a deep learning model based on the Transformer concept [32]. In particu-
lar, a Transformer architecture can be considered as a stack of N input encoding
modules and M decoding modules to obtain an output using multi-head atten-
tion and feed-forward layers. The encoder and decoder blocks are identical in

! https://github.com/CyberZHG /keras-self-attention



numbers, and they are stacked on top of each other. The idea behind a Trans-
former architecture is to formalize the dependencies between input and output
without the use of recurring neural networks. BERT uses a modified version of
this architecture in which only encoding layers are present. In particular, the ba-
sic version of BERT uses 12 layers, the full version 24. BERT uses two different
training strategies “masking” and “next sentence prediction”. The first strat-
egy trains the model to recognize certain words in the input sentence that have
been appropriately hidden. Usually, the amount of hidden elements is 20% of
the words in the sentence. The second mode is to guess the sentence that follows
the input sentence. During training, 50% of the inputs are a pair in which the
second sentence is the subsequent sentence in the original document, while in the
other 50% a random sentence from the corpus is chosen as the second sentence.
This training strategy makes BERT an extremely reliable model that can be
very accurate in formalizing semantics among words considering their context.
As a result, the pre-trained BERT model can be refined with only one additional
output layer to create state-of-the-art models for a wide range of tasks, such as
question answering and language inference, without significant changes to the
task-specific architecture. There are currently several versions of BERT, also
trained on data in languages other than English, such as BETO [8] for Spanish
and AIBERTo [26] for Italian.

The machine learning model we proposed for the CodiEsp challenge uses all
the previously described architectures. Specifically, we decided to use a BERT-
based classifier to perform a pre-filtering operation in order to select a subset of
sentences possibly referring to a clinical state. Later, the candidate sentences are
submitted to a classifier based on BiLSTM, CNN, and self-attention to assign
them one or more clinical codes. The architecture of the final model proposed
for the clinical coding task is shown in Fig. 4. It is worth to note that using the
proposed strategy it was not possible to participate in task 3 of the competition
(CodiEsp-X), which requires the identification of the fragment of text referring
to the code. Indeed, we do not focus on the portion of text that specifically
refers to a disease, while we used a classification model working with the whole
sentence.

Focusing more on the proposed model in Fig. 4, we observe that the input
text is provided to a BERT model. The goal is the data pre-filtering, in order to
select generally speaking sentences, from those talking about a symptom, disease,
or treatment. This is a mandatory step because BERT accepts as input only
pieces of text not exceeding 128 characters. For this reason, we work on the task
at the sentence level, splitting the original clinical report into many sentences
that could be or not associated with one or more codes. As pre-trained BERT
model, we decided to use BETO [8], a Spanish pre-trained version of BERT.
The authors trained BETO using 12 self-attention layers with 16 attention-
heads each and 1,024 as hidden size. They used all the data from Wikipedia
and all of the sources of the OPUS Project [31], having the text in Spanish.
This source includes the United Nations and Government journals, TED Talks,
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Fig. 4. Architecture of the model used as final submission at the CodiEsp challenge.

Subtitles, News Stories, and more. The total size of the corpora gathered was
comparable with the corpora used in the original BERT. We decided not to
use the multilingual version of BERT because it has been shown that a version
trained on the native language performs much better in many NLP tasks [27].
The sentences classified as possible references of clinical codes are consequently
passed to the second part of our model. First of all, the sentences are encoded into



word embeddings. In this step, we decided to use a FastText embedding strategy
[6], which proved to be more effective than GLoVE [24] and Word2Vec [20] when
many domain-specific words occur in the dataset [25]. For our final configuration
of the model, we chose the one released by José Caifiete? made of 300 dimensions,
trained on the Spanish Unannotated Corpora® containing more than 3 billion
words. We have configured the LSTM network to work with its bidirectional
version. We set the value of hidden units to 64 and the internal dropout value
to 0.3. This choice was motivated by the need to reduce the dimensionality of
the network output, in order to make the operations to be carried out by the
following layers not computationally expensive. Moreover, the dropout value was
used to reduce, during the learning, the effect of the overfitting on the training
data. We have also decided to vary the function of activation used by the net,
setting it to the hyperbolic tangent function (tanh). This activation function
has an S-Shape and produces values in the -1 and 1 range, making the layer
output more centered to the 0. Moreover, it produces a gradient larger than the
sigmoid function, helping to speed up the convergence. A level of self-attention
is added following the LSTM. We applied the CNN layer on the result of the
attention algorithm. Such hidden level has a matrix form due to the vectorial
representation supplied by the word embeddings on the tokens in the input. In
detail, it has the form of 128x64, which allows us to apply a 1D Convolutional
network with 64 filters and 5x5 kernel. We used ReLu as activation function,
that unlike the hyperbolic tangent is faster to calculate. On the top of the CNN
layer, we added a Max Pooling function for subsampling the values obtained,
reducing the computational load and, the number of parameters of the model.
In particular, we used a small 2x2 kernel. On the output of the last max-pooling
layer, we applied a dropout function. The hidden model obtained until this
step has been merged with the output of the previous Bi-LSTM. We apply this
operation for letting the model conceptualize both local and long-term features
better. After that, we used a max-pooling layer for ’flattening’ the results and
reduce the model parameters. An analog function of dimensionality reduction is
performed by the consequent dense layer and the following dropping function.
Finally, another dense layer with a soft-max activation function has been applied
for estimating the probability distribution of each clinical code available in the
dataset. The source code of the model is publicly available on GitHub?.

4 Experimental session

The final architecture of the model, proposed in Section 3.2, was obtained after
conducting several experiments on 20% of the training dataset released for the
Codiesp-D subtask. In order to always select the same portion of the dataset,
we randomly selected sentences using the value 42 as seed for our random func-

2 https://github.com/dccuchile/spanish-word-embeddings
3 http://crscardellino.github.io/SBWCE/
* https://github.com/marcopoli/ CODIESP-10



tion. During our experimental session, we raised five different experimental ques-
tions:

— RQ1: Do recent deep learning models, such as LSTMs, outperform classical
machine learning approaches?

— RQ2: Which is the best strategy for encoding text in the form of word
embedding?

— RQ3: Which is the best model among those we proposed that allows us to
achieve the best performance?

— RQ4: Can the use of a sentence pre-filtering classifier help to improve the
performance of the model?

— RQ5: Is there a class probability threshold that allows us to choose more
than one code as a result of the classification?

In order to validate our claims we repeated the experiments also on the annotated
test set released by the task organizers after the challenge.

4.1 Metrics and Settings

We trained different classification models in order to understand the best ap-
proach to solve the CodiEsp challenge. In particular we developed the following
models:

— LSTM, BiLSTM

CNN, CNN + Self Attention

— BERT

BiLSTM + CNN, BiLSTM + CNN + Self Attention

— (Pre-filtering) BERT - (Classification) BILSTM + CNN + Self Attention

— (Pre-filtering) BiLSTM + CNN + Self Attention - (Classification) BERT

— (Pre-filtering) BERT - (Classification) BERT

— (Pre-filtering) BiLSTM + CNN + Self Attention - (Classification) BiLSTM
+ CNN + Self Attention

For the selection of the word embedding strategy to use for encoding the
textual sentences, we have evaluated the following resources:

— FastText Spanish official release [14]

Fastext Spanish Unannotated Corpora (SUC) by José Cafete °

— GloVe Spanish Billion Word Corpus (SBWC) by George Pérez 5
Word2Vec Spanish Billion Word Corpus (SBWC) by Cristian Cardellino °

Finally, as baselines we chose classic machine learning approaches used for
dealing with a classification problem. In particular we implemented them in
Python using the scikit learn library [23]:

— Logistic Regression, C=0.1

® https://github.com/dccuchile/spanish-word-embeddings



Table 2. Results obtained running the baselines on the 20% of the training set.

Marco-P|Macro-R|Macro-F1
Logistic Regression 0.03367 |0.03412 ]0.03071
SVC - rbf 0.00106 |0.00128 |0.00116
Decision Tree Classifier 0.00729 [0.00868 |0.00771
Random Forest Classifier [0.00531 [0.00272 [0.00275
Ada Boost Classifier 0.00106 |0.00127 ]0.00116
LSTM - no pre-trained
word embeddings

0.08473 |0.09060 [0.07923

Table 3. Results obtained varying the pre-trained word embeddings on the 20% of the
training set.

Macro-P|Macro-R |Macro-F1
%:ifll\f[e;t Spanish official 0.09299 0.09629 10.08589
;“:;:"li/lb;t SUC 0.09357 |0.09903 |0.08845
é?fvhf SEWC 0.09252 [0.09722 [0.08715
%siﬁ\}ec SBWC 0.09202 |0.09672 |0.08685

— SVC (SVM Classifier) with RBF kernel, C=0.1

— Decision Tree Classifier

— Random Forests Classifier, n_estimators= 500

— ADA Boost, n_estimators= 100, learning_rate= 0.01

The model performance has been evaluated using the standard metrics of
precision, recall, F1 in their macro-average version and on test set also the Mean
Average Precision (MAP) [12]. We trained all the models for 30 epochs with a
fixed random value of 42 a batch size of 256 when needed.

4.2 Discussion of results

Looking at results in Tab. 2, it is worth to note that the strategy based on deep
learning, i.e. the LSTM model, outperforms those based on classical machine
learning approaches. Specifically, the logistic regression is the best model among
the “classic” ones, with a F1 score equal to 0.03071. The LSTM strategy here
proposed, based on a layer of word embeddings trained only data provided as
input, i.e. no pretrained weights are used, achieves a F1 score performance which
is higher than twice that of logistic regression, i.e. 0.07923. This result allows us
to provide a positive answer to RQ1.

Tab. 3 reports the results obtained by evaluating different pre-trained word
embedding weights. As expected, the differences in the final F1 outcome are



Table 4. Results obtained holding the FastText SUC word embedding, varying the
model, using an evaluation on the 20% of the training set.

Macro-P|Macro-R|Macro-F1
LSTM 0.09357 |0.09903 |0.08845
BiLSTM 0.10354 10.10909 [0.09789
BiLSTM + CNN |0.09995 |0.11552 |0.09831
BiLSTM + CNN
+ SelfAtt.

CNN 0.09511 |0.10095 |0.09100
CNN -+ SelfAtt. 0.09279 |0.09484 |0.08706
BERT (BETO) 0.10381 |0.10821 [0.10294

0.10629 |0.11887 |0.10410

Table 5. Results obtained holding the FastText SUC word embedding, the two models
(BERT, BIiLSTM + CNN + SelfAttention) and varying their combinations for pre-
filtering and classification, using an evaluation on the 20% of the training set.

Macro-P|Macro-R|Macro-F1

(Pre-filtering)

BiLSTM + CNN + SelfAtt.
— 0.13241 ]0.10934 |0.11534
(Classification)

BiLSTM + CNN + SelfAtt.
(Pre-filtering)

BiLSTM + CNN + SelfAtt.
— 0.09180 |0.08871 |0.10022
(Classification)

BERT (BETO multi-class)
(Pre-filtering)

BERT (BETO)

— 0.09704 |0.10092 |0.11734
(Classification)

BERT (BETO multi-class)
(Pre-filtering)

BERT (BETO)

— 0.13823 |0.12053 [0.13632
(Classification)

BiLSTM + CNN + SelfAtt.

not significant, but the best score is obtained using the FastText approach pre-
trained on the Spanish Unannotated Corpora (SUC). We decided not to evaluate
word embeddings weights released for English, because we would like to focus
on the portion of data released in Spanish rather than its translated version. In
this new experiment, we increased the F1 score previously claimed, reaching a
value of 0.10410. These results allow us to answer properly to RQ2.

In Tab. 4, we reported results obtained by varying the architecture of our
model, by holding the pre-trained word embeddings choice at the previous exper-
imental step. An unexpected result is obtained by observing the strategy based



Table 6. Results obtained keeping fixed the FastText SUC word embedding, the two
models (BERT, BiLSTM + CNN + SelfAttention) and varying the threshold on the
probability returned by the architecture for each class. We use it for selecting multiple
labels for the specific sentence. Also in this case the evaluation has been performed on
the 20% of the training set.

BERT (BETO)
— Macro-P|Macro-R|Macro-F1
BiLSTM + CNN + SelfAtt.

— Threshold: 0.05 0.09271 |0.27911 {0.12479
— Threshold: 0.10 0.14951 |0.24802 |0.16011
— Threshold: 0.25 0.22644 (0.18310 |0.16188
— Threshold: 0.50 0.27531 |0.09811 |0.13210
— Threshold:

maxProb - (maxProb*0.10) 0.15545 |0.13324 |0.13584
— Threshold:

maxProb - (maxProb*0.25) 0.12746 |0.13943 |0.12802

— Threshold maxProb-0.10 0.00434 ]0.29032 |0.01028

on BERT as a simple classifier of codes. It performs quite worst than the one
that uses BiLSTM, CNN, and self-attention layers. The difference between the
two approaches is tiny, and, from our point of view, it is not very relevant. For
this reason, we decided to go over using both the approaches. In this step, we
obtained the best F1 score of 0.10410, i.e., around 0.02 points greater than the
previous result. The results allow us to provide a valid answer to RQ3.

The following evaluation step is about splitting the clinical coding task into
two independent steps: pre-filtering and classification. We reported the results
obtained by this evaluation step in Tab. 5. It is possible to note that, among the
different combinations of classifiers used for the two steps, the best configuration
is that using BERT as a pre-filtering strategy and BiLSTM + CNN + Self
Attention as a classification approach. We were able to increase F1 score by
around 0.03 points from the previous step, reaching the value of 0.13632. The
behavior we observed in results allows us to answer at RQ4 positively.

The last evaluation concerns the strategy for selecting many labels for a single
sentence. We decided to use a threshold on the result of the softmax function that
allowed us to extract the label on which the model is more certain. We decided to
vary the thresholds using both fixed and dynamic ones. The results are reported
in Tab. 6. It is possible to observe that both the values 0.10 and 0.25 achieve good
results. In particular, using a threshold of 0.10, we are maximizing the recall,
on the contrary, we observe high values of precision. Due to the consideration
that in a real scenario, a tool like this can be a decision support system for the
doctors, we decided to use the configuration that uses 0.10 as the final model
for the CodiEsp task. The results support our positive answer also for RQ5.

The model we implemented, has been used for participating at both CodiEsp
subtasks, i.e., CodiEsp-D and CodiEsp-P.



Table 7. Results obtained on the annotated test set of the CodiEsp-D subtask.

BERT — BIiLSTM + CNN -+ SelfAtt.MAP |Macro-P|Macro-R|Macro-F1
Threshold 0.05 0.194 [0.12913 |0.25016 |0.16804
Threshold 0.10 0.202(0.19238 |0.21361 |0.19931
Threshold 0.25 0.181(0.28702 |0.19935 |0.2201
Threshold 0.50 0.15 ]0.38739 |0.11682 |0.1765
Threshold 0.75 0.118 [0.425 0.08365 ]0.13742
Threshold maxProb-0.10 0.156 [0.00599 |0.31974 |0.01172
Threshold maxPrb-0.25 0.142 [0.00394 |0.50282 |0.07813
Threshold maxProb - (maxProb*0.10) 0.165 [0.21341 |0.15787 |0.17897
Threshold maxProb - (maxProb*0.25) 0.168 [0.19305 |0.16649 |0.17636
Threshold: MeanValue 0.096 [0.00836 [0.48201 |0.0134
Threshold: MeanValue - MeanValue*0.25 0.093 |0.00735 |0.49042 |0.01187
Threshold: MeanValue - MeanValue*0.35 |0.0901|0.00698 |0.49313  |0.01118
Threshold: MeanValue - MeanValue*0.50 |0.089 |0.00643 0.49681 |0.01022
Table 8. Official CodiEsp task results.
CodiEsp-D
Run MAP MAP MAP30 MAP30 P R F1
_codes _codes
BERT (BETO)
— 0.202(0.236 |0.202 (0.236 |0.295|0.323|0.308
BiLSTM + CNN + SelfAtt.

BERT (BETO) 0.117 0.136 [0.117 0.136 0.272 [0.218 [0.242
BiLSTM+4CNN+SelfAtt. 0.169 [0.195 |0.16 0.185 0.135 |0.442 |0.207
CosiEsp-P

BERT

— 0.221(0.25 |0.219 0.247 0.186(0.38 |0.25
BiLSTM + CNN + SelfAtt.

BiLSTM 0.137 0.152 [0.127 0.141 0.122 |0.399 |0.187
BERT 0.141 [0.154 (0.14 0.153 0.155 |0.323 {0.209
BiLSTM+4CNN+SelfAtt. 0.17 (0.191 |0.15 0.168 0.097 |10.513 |0.164




4.3 Post Hoc Analysis

We performed a further investigation of the performance of our model on the
gold annotated test set. In particular, in this phase, we take into account the
score obtained for the MAP metric, because it is used by the organizers for
calculating the final leaderboard. As we can observe in Fig. 7, the configuration
of the model using a threshold equal to 0.10 is the best performing one, followed
by those obtained using a the threshold 0.05 and 0.25, respectively. The results
successfully supported our choice of using a threshold able to maximize the recall
more than the precision. The final results obtained by the CodiEsp task are those
reported in Tab. 8. Looking at the final scores of precision and recall, it is worth
to note that our model is more feasible for real use as a decision support system.
Indeed, it is able to obtain a higher recall than precision and, as previously
stated, this easily allows to select candidate codes for clinical reports.

5 Conclusion

In this paper, we faced the problem of clinical coding by applying several machine
learning methods. We compared traditional classification approaches such as lo-
gistic regression, random forests, and SVM, with deep learning models, including
LSTM, CNN, and BERT. The experimental analyses allowed us to propose a
classification model based on two steps of execution: pre-filtering and classifi-
cation. In the pre-filtering phase, we use a BERT based classification model to
select a set of medical report sentences that we believe can be associated with one
or more ICD10 codes. Later, we use a BILSTM, CNN, and Self-Attention-based
classifier to select the specific set of possible codes for the candidate sentence.
The results obtained in the post hoc evaluation phase have shown that the ap-
proach proposed for the challenge is the best possible among those considered in
this study. The results obtained for the challenge showed a MAP score of 0.202
for the CodiEsp-D task and 0.221 for the CodiEsp-P task. These are encouraging
results given the difficulty of the task, and there is also the possibility of further
improving the figures by better balancing the training data available among the
various categories of codes. As future work, we expect to be able to associate
the ICD10 code with the corresponding portion of text in order to implement a
first strategy for explaining results.
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