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Abstract. Automated prediction of plant species from images is im-
mensely useful to conservationists, especially in the case of data-scarce
regions of biodiversity. The PlantCLEF 2020 Challenge provides a plat-
form for the creation of a classifier to identify plant species from a large
collection of labelled images. The aim of the challenge is to identify
which methods work best on the same data, and hence accelerate research
progress in the field. In this paper, we discuss the submissions made by
our team to the challenge, based on transfer learning. For our submis-
sions, we trained our models on Cloud TPUs and TPU Pods available on
Google Cloud Platform. All our models, which were initially trained on
the ImageNet Dataset, were fine-tuned to the PlantCLEF 2020 Dataset
using transfer learning. With our ResNet-50 models, we achieved an over-
all MRR of 0.008 in the testing phase. For specifically chosen classes with
fewer training samples, we achieved an MRR of 0.003.
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1 Introduction

Automated plant species identification from images is immensely useful in data-
scarce regions of biodiversity, to identify and record the flora present. With the
advent of Deep Learning and novel model architectures, performance in this
task has improved considerably over the years. However, classification with a
very large number of classes is still a tough task with considerable scope for
improvement.

It is with the objective of building a reliable plant species identification sys-
tem that the PlantCLEF 2020 Challenge [3] was organised, as part of LifeCLEF
2020 [5]. The challenge provides a platform for the evaluation of different meth-
ods on the same dataset, in an effort to identify the best-performing algorithm
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for the task. A large labelled dataset of plant images was provided by the organ-
isers, wherein the images exhibit great inter- and intra-class diversity, mimicking
the real world.

Evaluation of the submissions to the challenge was based on the Mean Recipro-
cal Rank (MRR) metric. Additionally, the MRR for the classification of specific
species with fewer training samples was considered as a secondary metric.

In this paper, we will discuss our team’s submissions to the PlantCLEF 2020
Challenge in detail. We will first discuss the methodology we employed to solve
the task. next, we will outline the resources used to build our models. Finally,
we will discuss the results obtained by our submissions, along with an analysis
and a note on future work.

2 Methodology

2.1 Data Preprocessing

First, we normalised the pixel values to the range [0, 1]. All the images were
then resized to 224× 224× 3, due to limited computational resources. To do so,
we first resize the smaller of the two spatial dimensions (H or W ) to 224 pixels,
and then extract the center crop of size 224×224 (H×W ). The disadvantage of
this preprocessing step is the possible removal of salient information present in
pixels that were discarded. An alternative approach could be the use of multiple
224 × 224 crops from the image extracted with a certain stride, to ensure all
details in the original image are present in a subset of the extracted images.
However, this would increase the number of images in the dataset and thus the
computation time.

We applied augmentations to the training images to improve the generalisation
performance of our models. Images were randomly zoomed-in or zoomed-out by
up to 20% of the image width, rotated by an angle in the range [-45◦, 45◦] and
flipped about their vertical axis. The objective of these augmentations is to make
the models learn robust features, invariant to scale or rotation.

2.2 Models Used

VGG-16 & VGG-19: We first experimented with the VGG-16 and VGG-19
architectures [9], pre-trained on the ImageNet Dataset [2,8]. The pre-trained
models were used as non-trainable feature extractors, and their output for every
image was passed to a shallow ANN of 2 Dense layers (each having 4096 units),
followed by a Fully-Connected layer (with softmax activation). This method did
not perform well on our validation set, and we did not make any submissions
based on this method.



ResNet-50: Both our final submissions to the challenge were made using the
ResNet-50 [4] models. We used the ResNet-50 architecture, again pre-trained on
the ImageNet Dataset [2,8], as a trainable feature extractor network. Following
the layers of the ResNet, we added 2 Dense layers of 2048 units each, followed
by a Fully-Connected layer with softmax activation.

All models were trained with Adam as the optimiser and categorical cross-entropy
as the loss function. The number of training epochs was set to 8. As there were
training examples for only 998 classes, all our models had an output vector of
998 probabilities.

2.3 Prediction

A single species could have one or more images associated with the same sub-
mission ID. Two techniques were used to make predictions for the individual
species. The predictions were made for the individual images, and either the
average or the maximum of the probabilities predicted were used to rank the
species and generate the final predictions.

3 Source Code and Resources Used

Our models were built using the Keras [1] Deep Learning framework, and the
code was written in Python 3. Jupyter Notebooks containing our code have been
made publicly available on our GitHub Repository1.

All of the work was performed on the Google Cloud Platform (GCP). Tensor
Processing Units (TPU) are processors developed by Google specifically for the
purpose of accelerating tasks that involve computation on tensors. TPU Pods are
a collection of TPUs that are connected by a high speed network. GCP provides
access to Cloud TPUs and Cloud TPU Pods. Both individual TPUs (version 2
with 8 cores and version 3 with 8 cores) as well as a TPU Pod (version 3 with
256 cores) were made use of in the training phase.

For all other tasks, including making of predictions, an n1-highmem VM in-
stance was used, with 8 CPU cores and 52GB of RAM. The storage drive used
was a 150GB SSD, connected to the instance.

Despite the power of the computational resources available, we were unable to
experiment with more powerful models or approaches due to limited availability
of credits. Furthermore, the TPUs allocated to us were present in regions other
than that of our VM instance, causing delays and increased compute time due to
network operations. The training of our ResNet model, for instance, took around
2 hours per epoch, highlighting the importance of computational resources in
data-intensive tasks.
1 https://github.com/nandahkrishna/PlantCLEF2020
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4 Results

The results obtained by our models can be seen in Table 1. We have included
the categorical cross-entropy loss for all our models as well as the MRR score for
our submitted models. With both our submissions, we obtained a Testing MRR
score of 0.008, with an MRR of 0.003 on the species with fewer training samples.

Table 1. Validation and Testing Loss and MRR obtained by our models

Model Training Loss Validation Loss Testing MRR
Testing MRR
(Few Species)

VGG-19 2.3316 4.2236 – –

VGG-16 2.1365 3.0349 – –

ResNet-50
Avg

1.7417 2.2261 0.008 0.003

ResNet-50
Max

1.7417 2.2261 0.008 0.003

Overall our submissions received the 44th and 45th ranks on the challenge
leaderboard. The scores obtained by all submissions to the challenge can be
visualised in Fig. 1. The top scores were obtained by teams ITCR PlantNet
(Overall MRR 0.180) and Neoun AI (Overall MRR 0.121). On the species with
limited training examples, the ITCR PlantNet team obtained a poorer score
(MRR 0.062) than the Neuon AI team (MRR 0.108).

Fig. 1. Overall results of the PlantCLEF 2020 Challenge



5 Conclusion and Future Work

Despite the resources available, training our models was computationally expen-
sive as the large dataset was very large. We were unable to train our models
for a larger number of epochs due to the constraints of our cloud computing
resources. Increasing the number of training epochs could yield larger gains in
classification accuracy or MRR, as indicated by Fig. 2.

Fig. 2. Validation cross-entropy loss curve

Additionally, the lower scores obtained by our methods could be attributed to
the low similarity between the dataset used for pre-training and the task-specific
dataset. In such a setting, using homogeneous domain adaptation techniques
such as MMD [6] or approaches based on an architecture criterion [7] could im-
prove performance on the target domain by accounting for the difference in data
distribution. We consider only the supervised setting as the PlantCLEF dataset
contains sufficient number of examples to facilitate the same. An alternative to
this would be the use of heterogeneous domain adaptation techniques using gen-
erative models as discussed in [10], which could help improve performance on
a target domain which is very different from the source domain, as is in our case.

For the future, we would still consider a transfer learning based approach, how-
ever, with pre-training on a similar large dataset. This would considerably im-
prove model performance. In addition, we would like to consider using extreme
classification methods to handle the large number of output classes better.
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