
Change Patterns for Decision Model and Notation

(DMN) Model Evolution

Faruk Hasić and Estefańıa Serral
Research Centre for Information Systems Engineering (LIRIS)

KU Leuven, Brussels, Belgium
{estefania.serralasensio, faruk.hasic}@kuleuven.be

Abstract

Information systems rely on decision knowl-
edge during their execution. A recently intro-
duced standard, the Decision Model and No-
tation (DMN), has been adopted in both in-
dustry and academia as a suitable method for
modelling decision knowledge. However, this
decision knowledge is not static and may un-
dergo changes after system deployment. DMN
change patterns have not yet been studied in
the literature. This paper fills this gap by pre-
senting an initial set of DMN change patterns.
The patterns presented in this paper will not
only facilitate the understanding of decision
change management, but can also be capi-
talised on for, among other things, adapting
decision management systems to be more flex-
ible, consistency checking of decision models,
and developing modelling tools that facilitate
those changes.

Index terms— Decision Model and Notation
(DMN), Model Evolution, Change Patterns

1 Introduction

Decision Model and Notation (DMN) is a recently
introduced decision modelling standard that has en-
joyed significant interest in literature [1, 2, 3, 4, 5].
DMN consists of two levels that are to be used in con-
junction. First, the decision requirement level repre-
sented by the Decision Requirement Diagram (DRD)

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: D. Di Nucci, C. De Roover (eds.): Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels,
Belgium, 28-11-2019, published at http://ceur-ws.org

which depicts the requirements of decisions and the
dependencies between elements involved in the deci-
sion model. Second, the decision logic level, which
presents ways to specify the underlying decision logic.
The DMN standard employs rectangles to depict de-
cisions and sub-decisions, and ovals to represent data
input. The decision logic level is usually represented in
the form of decision tables. An example of a DRD di-
agram deciding on the severity of Chronic Obstructive
Pulmonary Disease (COPD) in a patient is provided in
Figure 1, while Figure 2 depicts the top-level decision
logic in the form of a decision table.

Although it is obvious that the reasoning of deci-
sions can change over time to adapt to changing re-
quirements, all current works approach DMN from a
static perspective, i.e., no attention has been given to
changing or adaptable decision models. In this paper
we approach this research gap by identifying a first
set of change patterns that can be applied to DMN
decision models. These findings can aid in developing
and implementing dynamic decision management tools
and systems that meet the requirements of flexible and
changing decision knowledge.

This paper is structured as follows. Section 2 con-
stitutes a related work section. In Section 3 runtime
evolution of decision models is explained, while pos-
sible decision model change patterns are discussed in
Section 4. Section 5 deals with future research. Fi-
nally, Section 6 concludes the paper.

2 Related Work

Most works around DMN have focused on the inte-
gration of process and decision models from a mod-
elling point of view e.g., [2, 6, 7, 8, 9]. Others focus
on the automatic discovery of decision model from en-
riched process event logs [10, 11]. Furthermore, litera-
ture provides a set of tools for modelling DMN models
[12, 13, 14].

1



COPD severeness

Heart rhythm Respiration

ECG data Respiratory data

Muscle activity Skin temperature

Skin sensor dataEMG data

Decision node
(top-level decision)

Decision node
(subdecision)

Input data node

Information
requirement

Figure 1: A DMN model for COPD severeness.

Figure 2: A decision table for COPD severeness.
The ability of a knowledge-based system to effi-

ciently deal with decision rule changes is considered a
key property in literature [15, 16, 17, 18, 19, 20, 21, 22].
This way, business rigidity is avoided and the ability
to transform the underlying business rules to new re-
alities is facilitated. However, existing DMN decision
model literature addresses decision modelling from a
static perspective where decision models are built and
used, without any form of model evolution. Change
patterns are often used to define the possible evolu-
tion of models. These change patterns rely on the
elementary edit operations that can be applied on the
model elements, i.e., insertion and deletion, as well
as substitution, which in essence is a combination of
insertion and deletion [23]. Furthermore, change pat-
terns can help facilitate the understanding of model
change management as they provide a guide for imple-
menting changes to models while maintaining model
consistency. Nonetheless, change patterns for decision
models were not yet addressed in the literature.

3 Runtime Decision Evolution

In this section we explain how decision models are used
at runtime. An overview of decision model execution
is given in Figure 3. In what follows, we take a closer
look at the elements of the architecture and their in-
terrelations.

Decision models can be specified according to the
DMN standard. The models are saved in a file reposi-
tory as an Extensible Markup Language (XML) file,
adhering to the XML Metadata Interchange (XMI)
standard [24], as specified by DMN 1.2 [1]. Execu-
tion engines are capable of interpreting XML files of
decision models from the file repository, and conse-
quently executing the corresponding decisions. Such
an engine is provided by Camunda [25]. The engine
executes the decisions and consequently the software
services related to the decisions. The engine logs the
executions for possible future analyses.

The connection between the aforementioned com-
ponents is shown in Figure 3. The arrows between the
components represent information flows. Namely, the
decision models are fed into the file repository, which
is then fed to the execution engine for enactment. The
engine executes the decisions and logs the execution.

Changing the decision model at runtime will re-
sult in a new XML specification of the model, i.e.,
a new model variant. Deploying a new model vari-
ant for interpretation affects all future instances, as
they will follow the newest model variant. Old run-
ning instances will continue to run according to the old
model specification as a result of the variant version-
ing mechanism of the engine. This is a straightforward
approach to assure that old instances continue to run

2



in a sound way.

4 Towards Decision Model Change
Patterns

To accommodate decision model changes, designers
should be able to evolve the decision models after de-
ployment. A number of changes can occur in the de-
cision model. The core elements of a decision model
are depicted in Figure 1, i.e. the input data and the
decision nodes within a DRD, connected via informa-
tion requirements arrows. The logic encapsulated in a
decision node is usually modelled with decision tables,
such as shown in Figure 2. To determine the change
patterns, we investigate the changes that can mani-
fest themselves on the core DMN elements, provided
in the meta-model of the DMN specification [1], at dif-
ferent levels of granularity. First, we assess the change
patterns within a single decision rule, i.e., changing
the inputs and outcomes of a single rule or row in the
decision table. Next, we look at change patterns for
a decision rule in its entirety, i.e., adding or deleting
decision rules from a decision table. These change pat-
terns all pertain to a single node of the DRD, i.e., a
single decision table, according to the DMN decision
table meta-model [1]. Finally, we investigate change
patterns on the topological structure of the DRD itself,
respectively the addition and deletion of decision nodes
and data input nodes. The change patterns are derived
from the formalisation of core decision model elements
in [2] and the elementary edit operations that can be
applied on the elements, i.e., insertion and deletion,
as well as substitution, which in essence is a combina-
tion of insertion and deletion [23]. Table 1 provides
an overview of the change patterns directly relating to
core DMN elements.

4.1 Change patterns within decision rules

We indicate a change pattern with ∆Π. For changes
within decision rules, we can distinguish three ele-
ments in the decision table that can undergo changes:
the inputs, the outputs, and the logic mapping the
inputs to the outputs, i.e. the decision rules:

1. ∆Π1: Excluding a decision input indicates
deleting an existing input variable from a decision
table. However, simply deleting an input variable
can render the decision table to be incomplete and
incorrect. As such, the table may need to undergo
refactoring in order to render a decision table that
is complete and correct [26].

2. ∆Π2: Including a decision input indicates
adding a new input variable to a decision table.
Similar to ∆Π1, the table may need to undergo
refactoring after this change pattern is applied

3. ∆Π3: Excluding a decision output indicates
the deletion of an existing output from the output
set of a decision table.

4. ∆Π4: Including a decision output indicates
an addition of a new output to the output set of
a decision table.

5. ∆Π5: A decision logic change indicates a
change in relating the existing input symbols to
the existing output symbols within the decision
table, i.e., the mapping from inputs to outputs.

4.2 Change patterns on decision rules in their
entirety

Next to changes within decision rules, we can view
decision rules as an atomic entity and perform changes
on the decision rule in its entirety:

1. ∆Π6: Excluding a decision rule if a decision
rule is deemed irrelevant at a certain point in time.
The decision rule can be deleted in its entirety
from a decision table. Notice that by deleting
decision rules, the decision table may not be com-
plete anymore. To avoid this, either the decision
table should be completed by ensuring that all
input values are mapped to existing decision out-
comes, or the system should be redesigned to cap-
ture the possibility of no decision outcome being
returned.

2. ∆Π7: Including a decision rule if a new de-
cision rule is deemed relevant at a certain point
in time. The decision rule can be added in its
entirety to an existing decision table.

Table 1: Overview of decision model change patterns.
Decision table change patterns

Changes within decision rules
∆Π1 Decision input exclusion.
∆Π2 Decision input inclusion.
∆Π3 Decision output inclusion.
∆Π4 Decision output exclusion.
∆Π5 Decision rule logic change.

Changes on decision rules
∆Π6 Decision rule exclusion.
∆Π7 Decision rule inclusion.

Decision requirements diagram change patterns
Decision node changes

∆Π8 Decision node exclusion.
∆Π9 Decision node inclusion.

Input data node changes
∆Π10 Input data node inclusion.
∆Π11 Input data node exclusion.

4.3 Change patterns on the decision nodes in
the DRD

This subsection deals with the deletion or addition of
decision nodes in the decision requirements diagram.

3



Modelling 
environment

File repository

Execution
engine

Log

Figure 3: An overview of decision model execution.
1. ∆Π8: Excluding a decision node from the

DRD corresponds to deleting all decision rules
from a decision node. Hence, this change pat-
tern is an aggregation of multiple exclude decision
rule changes (∆Π6). Note that deleting a decision
node also deletes all its incoming and outgoing in-
formation requirements arrows.

2. ∆Π9: Including a decision node to the set of
decision nodes corresponds to adding a new de-
cision table, and thus, adding multiple decision
rules encapsulated in the decision node. Hence,
this change pattern is in essence an aggregation
of multiple include decision rule changes (∆Π7).
Note that adding a decision node also adds the
necessary incoming and outgoing information re-
quirements arrows.

4.4 Change patterns on the input data nodes
in the DRD

This subsection deals with the deletion or addition of
input data nodes in the decision requirements diagram.

1. ∆Π10: Including an input data node to the
set of data input nodes also adds its necessary
input requirement arrows and connects it to the
relevant decision nodes in the DRD. Notice that
this change pattern on the DRD level corresponds
to adding a new input variable to the decision
table that requires the newly added data input
node. Hence, this change pattern is equivalent to
∆Π2.

2. ∆Π11: Excluding an input data node from
the set of data input nodes also deletes all its in-
put requirement arrows. Notice that this change
pattern on the DRD level corresponds to deleting
an input variable from the decision table that re-
quired the input data node. Hence, this change
pattern is again equivalent to ∆Π1.

Note that adopting a change pattern on a DMN
decision model can lead to within-model inconsisten-
cies and that additional change patterns may need to

be propagated throughout the entire decision model
to safeguard within-model consistency. For instance,
deleting an input data node will also require delet-
ing the inputs in the decision tables that require the
deleted input data node.

5 Future Work

In future work, we will investigate how a change in
the decision model can require the triggering of other
changes in order to safeguard within-model consis-
tency. Additionally, we will investigate how chang-
ing decision models impacts other systems and mod-
els that rely on the logic encapsulated in the decision
models. More specifically, we will examine how the
proposed change patterns influence process and deci-
sion model consistency in an integrated process and
decision model environment. Changing the underly-
ing decisions of a process can lead to change patterns
in the process model as well if the sound interaction
between the process and decision model is to be en-
sured.

Furthermore, flexible decision models are of partic-
ular interest to Internet-of-Things (IoT) process set-
tings [27], as IoT process are inherently subject to
a dynamic and changeable environment. Therefore,
we will investigate how these change patterns mani-
fest themselves in decision-intensive IoT processes.

Finally, we will look into developing a tool that pro-
vides possibilities for DMN model evolution with au-
tomated model consistency checking and repair, while
maintaining the link with the Camunda execution en-
gine.

6 Conclusion

This paper presents an initial set of decision model
change patterns for the evolution of DMN decision
models. We recognise that the adaptation of a DMN
decision model can lead to within-model inconsisten-
cies and that additional change patterns may need to
be propagated throughout the entire decision model to
safeguard within-model consistency.

4



References

[1] OMG. Decision Model and Notation (DMN) 1.2,
2018.

[2] Faruk Hasić, Johannes De Smedt, and Jan Van-
thienen. Augmenting processes with decision in-
telligence: Principles for integrated modelling.
Decision Support Systems, 107:1 – 12, 2018.

[3] Faruk Hasić and Jan Vanthienen. From decision
knowledge to e-government expert systems: the
case of income taxation for foreign artists in bel-
gium. Knowledge and Information Systems, Oct
2019.

[4] Faruk Hasić and Jan Vanthienen. Complexity
metrics for dmn decision models. Computer Stan-
dards & Interfaces, 65:15 – 37, 2019.

[5] Marjolein Deryck, Faruk Hasić, Jan Vanthienen,
and Joost Vennekens. A case-based inquiry into
the decision model and notation (dmn) and the
knowledge base (kb) paradigm. In Christoph
Benzmüller, Francesco Ricca, Xavier Parent, and
Dumitru Roman, editors, Rules and Reasoning,
pages 248–263, Cham, 2018. Springer Interna-
tional Publishing.

[6] Faruk Hasić, Johannes De Smedt, and Jan Van-
thienen. Redesigning processes for decision-
awareness: Strategies for integrated modelling. In
International Conference on the Quality of Infor-
mation and Communications Technology, 2018.

[7] Faruk Hasić, Johannes De Smedt, and Jan Van-
thienen. Developing a modelling and mining
framework for integrated processes and decisions.
In Christophe Debruyne, Hervé Panetto, Georg
Weichhart, Peter Bollen, Ioana Ciuciu, Maria-
Esther Vidal, and Robert Meersman, editors, On
the Move to Meaningful Internet Systems. OTM
2017 Workshops, pages 259–269, Cham, 2018.
Springer International Publishing.

[8] Thierry Biard, Jean-Pierre Bourey, and Michel
Bigand. Dmn (decision model and notation): De
la modélisation à l’automatisation des décisions.
In INFORSID 2017, 2017.

[9] Kimon Batoulis, Anne Baumgraß, Nico Herzberg,
and Mathias Weske. Enabling dynamic decision
making in business processes with dmn. In In-
ternational Conference on Business Process Man-
agement, pages 418–431. Springer, 2015.

[10] Júlio Campos, Pedro Richetti, Fernanda Araújo
Baião, and Flávia Maria Santoro. Discovering
business rules in knowledge-intensive processes

through decision mining: an experimental study.
In International Conference on Business Process
Management, pages 556–567. Springer, 2017.

[11] Johannes De Smedt, Faruk Hasić, Seppe K.L.M
vanden Broucke, and Jan Vanthienen. Holistic
discovery of decision models from process execu-
tion data. Knowledge-Based Systems, 183:104866,
2019.

[12] Carl Corea and Patrick Delfmann. A tool to mon-
itor consistent decision-making in business pro-
cess execution. Proceedings of the Dissertation
Award, Demonstration, and Industrial Track at
BPM, pages 9–14, 2018.

[13] Knut Hinkelmann, Kyriakos Kritikos, Sabrina
Kurjakovic, Benjamin Lammel, and Robert
Woitsch. A modelling environment for business
process as a service. In International Conference
on Advanced Information Systems Engineering,
pages 181–192. Springer, 2016.

[14] Knut Hinkelmann, Arianna Pierfranceschi, and
Emanuele Laurenzi. The knowledge work
designer-modelling process logic and business
logic. In Modellierung (Workshops), pages 135–
140, 2016.

[15] Zohra Bellahsene. Schema evolution in data ware-
houses. Knowledge and Information Systems,
4(3):283–304, 2002.

[16] Natalya F Noy and Michel Klein. Ontology
evolution: Not the same as schema evolution.
Knowledge and information systems, 6(4):428–
440, 2004.

[17] Wan MN Wan Kadir and Pericles Loucopoulos.
Linking and propagating business rule changes to
is design. In Information Systems Development,
pages 253–264. Springer, 2005.

[18] Jérôme Boyer and Hafedh Mili. Agile business
rule development. In Agile Business Rule Devel-
opment, pages 49–71. Springer, 2011.

[19] Flavio Corradini, Alberto Polzonetti, and
Oliviero Riganelli. Business rules in e-government
applications. arXiv preprint arXiv:1802.08484,
2018.

[20] Gordon Blair, Nelly Bencomo, and Robert B
France. Models@ run. time. Computer,
42(10):22–27, 2009.

[21] Michael Szvetits and Uwe Zdun. Systematic liter-
ature review of the objectives, techniques, kinds,
and architectures of models at runtime. Software
& Systems Modeling, 15(1):31–69, 2016.

5



[22] Sihem Loukil, Slim Kallel, and Mohamed Jmaiel.
An approach based on runtime models for devel-
oping dynamically adaptive systems. Future Gen-
eration Computer Systems, 68:365–375, 2017.

[23] Andreas Wombacher and Maarten Rozie. Eval-
uation of workflow similarity measures in service
discovery. Service Oriented Electronic Commerce,
80:51–71, 2006.

[24] OMG. Xml metadata interchange (XMI) 2.5.1,
2015.

[25] Camunda. Process engine.
https://docs.camunda.org/manual/7.8/user-
guide/process-engine/, 2018. Accessed: 2018-11-
16.

[26] Diego Calvanese, Marlon Dumas, Ülari Laurson,
Fabrizio M Maggi, Marco Montali, and Irene
Teinemaa. Semantics, analysis and simplifica-
tion of dmn decision tables. Information Systems,
2018.

[27] Faruk Hasić and Estefańıa Serral Asensio. Exe-
cuting IoT processes in BPMN 2.0: Current sup-
port and remaining challenges. IEEE RCIS 2019
proceedings, 2019.

6


