
Making CodeCity evolve

David Moreno-Lumbreras
Universidad Rey Juan Carlos and Bitergia

Madrid, Spain
dmoreno@bitergia.com

Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos

Madrid, Spain
jgb@gsyc.es

Valerio Cosentino
Bitergia

Madrid, Spain
valcos@bitergia.com

Abstract

CodeCity is a software analysis tool with the
goal of visualizing software systems as interac-
tive, navigable 3D cities. They rely on the city
metaphor, that uses the layout of the city in
order to visualize different metrics about soft-
ware systems. There were other implementa-
tions of CodeCity among the years but there
are no modern options that contemplate the
representation of time evolution of the city.
We propose a solution to this time evolution,
developing a web version of CodeCity that
works with any device that has a web browser.
Then, we analyze different projects and show
the time evolution of their cities. Finally, we
conclude with some needed features and draw-
backs that are going to be considered in future
works.

Index terms— CodeCity, data visualization, vir-
tual reality, web, 3D

1 Introduction

Codecity [1] is an approach of a 3D visualization which
creates cities that look real, due to the combination
of layouts, topologies, metric mappings applied at an

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: D. Di Nucci, C. De Roover (eds.): Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels,
Belgium, 28-11-2019, published at http://ceur-ws.org

appropriate level of granularity. It depicts object-
oriented software systems as habitable [2] cities that
one can intuitively explore. Codecity settles on the city
metaphor because it offers a clear notion of locality,
thus supporting orientation, and features a structural
complexity that cannot be oversimplified. Codecity
represents classes as buildings located in quarters rep-
resenting the packages where the classes are defined.
The metrics that Codecity uses are the number of
methods (NOM) mapped on the building’s height and
the number of attributes (NOA) on their base size, and
for packages, the nesting level mapped on the quarter’s
color saturation:

Figure 1: Example of the Jmol Java package city ana-
lyzed with Codecity

One of the known limitations of this approach is
that CodeCity is developed using an old framework
(SmartTalk) and it does not have support for sev-
eral devices. We rely on web development and we
are going to solve this limitation developing a version
of CodeCity using web technologies and open source

1

software in order to make the tool more universal and
every device that has a web browser could visualize
these 3D cities. In the next sections, we detailed the
development and the technologies used.

On the other hand, in terms of interaction, we ar-
gue that this visualization type can get more value and
better comprehension adding it a Virtual Reality en-
vironment, allowing the user to tour and navigate into
the city.

Another of its limitations is that Codecity doesn’t
follow a fixed layout for its blocks/quarters, it means
that every time a code city is generated, the layout and
the position of a package could change. This would
be an important drawback in terms of time evolution
analysis because the city would change every single
time that it’s generated. We are going to solve that,
making the city evolve among the time, increasing and
decreasing the area and height of the buildings as the
metrics represented changes among the time, fixing the
position of the buildings, fixing the same position of
each building while the time snapshot changes.

Moreover, Codecity is strongly bonded to ana-
lyze the program structure. We argue that the city
metaphor can be more than just analyze code, like
analyze the contributions, users, and other kinds of
metrics related to the community. This is one of the
future works (section 4) that is going to be analyzed.

2 Related works

We are going to separate the related works in two cat-
egories, one related to the implementations of the city
metaphor and the other related to the time evolution
implementations about treemap algorithms. Regard-
ing the city metaphor implementations, Juraj Vin-
cur et all. [3] propose a Virtual Reality city for an-
alyzing software, made it with non-web technologies,
Steinbrückner and Lewerentz [4] propose stable city
layouts for evolving software systems, using a different
layout than a treemap. Getaviz [5] is another tool that
uses the city metaphor in order to generate structural,
behavioral, and evolutionary views of software systems
for empirical evaluation. In terms of interaction with
the city, one good example is CityVR [6] that uses the
same metrics as the original Codecity but adds interac-
tions with a VR headset using the controllers and the
sight direction. Regarding the evolution of a treemap
layout, Willy Scheibel et all. propose EvoCells [7], a
treemap layout algorithm for evolving tree data, using
rectangular areas. Another field of treemap evolution
research is the Voronoi treemaps, these treemaps have
not rectangular areas, making the treemap more flexi-
ble in order to evolve the areas, Avneesh Sud et all. [8]
proposes a dynamic Voronoi treemap algorithm that
explores this dynamic changes that can be used as an

evolution of the treemap.

3 Our approach: BabiaXR and Web
CodeCity with time evolution

3.1 BabiaXR Visualizations

There are different technologies based on WebGL that
are focused on making 3D scenes in the browser.
Specifically, we rely on A-Frame1, a web framework
for building 3D and VR scenes for the web, for the vi-
sualization render engine, developing, thus a new ver-
sion of CodeCity that works in any device that has a
web browser and the needed standards included (the
most important, WebVR), A-Frame is developed on
top Three.js2.

Before the development of CodeCity, we got used
to making some usual 3D visualization in this web
3D environment. Starting with BabiaXR3, a Git-
Lab/GitHub organization where the developing of the
different visualizations are allocated. BabiaXR has
the aim of aggregate different components, using A-
Frame, that can create different types of chart in a
modern browser, the web is a universal environment
and any device that has a modern browser that sup-
ports WebVR can visualize the charts that the Babi-
aXR components produce, making it more universal
and easy to use. The first step of BabiaXR was to
make the most common visualizations, the pie chart,
the 3D and 2D bar chart, and the bubbles chart.
The development of these visualizations is separated in
some A-Frame components, geosimplebarchart for 2D
bar chart, geo3dbarchart for 3D bar chart, geopiechart
for pie chart and geobubbleschart for bubbles chart.
Moreover, there are components related to data man-
agement, these components can query, filter data and
add behavior to the visualization components. There
are two components that query data, querier json for
querying JSON files and querier github that query the
GitHub API. The component filterdata can filter the
data retrieved from a querier component and the com-
ponent vismapper that maps the data filtered by a
filterdata component to geometry attributes of the dif-
ferent charts, it ”prepares” the data and save it in the
entity that it is defined.

In the repository, there is a user guide where all the
information and the steps in order to create a 3D and
VR dashboard are defined.

One example of these charts is the one shown in 2:

One of the advantages of A-Frame is that extends
HTML, so using just two sentences of HTML with a
JSON data can generate a 3D and VR visualization in

1https://aframe.io/
2https://threejs.org/
3https://github.com/babiaxr

2

Figure 2: Usual visualizations of BabiaXR

the web environment. For example, the next HTML
code and JSON data will generate the figure 3:

1 <a-scene background="color: #A8F3FF" id="AframeScene">

2 ...

3 <a-entity geo3dbarchart= 'legend: true; data:

example.json '
4 position="-10 0 0" rotation="0 0 0"></a-entity>

5 ...

6 </a-scene>

1 [

2 {"key":"David","key2":"2019","size":9},

3 {"key":"Pete","key2":"2011","size":8},

4 ...]

Figure 3: 3D bar chart generated with BabiaXR com-
ponents

3.2 BabiaXR Codecity

The CodeCity version of BabiaXR is developed with
the goal of exploring the known limitations of the orig-
inal CodeCity, the approach is also inside the compo-
nents pack, specifically, the components related to the
CodeCity visualization are codecity-block for blocks
and codecity-quarter for quarters. The first step in
order to create this visualization is the layout selec-
tion, we rely on the treemap pivot algorithm [9] for
the blocks and quarters positions, it shows a consis-
tent layout and a desired aspect-ratio of the building
area (making them the best ”real building” possible
appearance).

Moreover, there is an option for changing the ap-
pearance of the buildings for real building models load-
ing gTLF models, making more realistic cities and im-
proving the notion of locality. As A-Frame extends
HTML and each building is defined as an HTML tag,

Figure 4: BabiaXR CodeCity examples

we defined a unique identifier for each building in or-
der to change its area and height in the time evolu-
tion maintaining the position and solving one of the
limitations that the original CodeCity has. In terms
of interaction, A-Frame includes by default the possi-
bility of entering the scene in Virtual Reality mode,
therefore, the functionality of clicking a quarter with
the mouse or a controller if it using a VR device has
been implemented in order to show more information
about the building/quarter clicked/hovered, showing
the name of it as a title on top of it.

3.3 Creating a City

We separate the creation of a city corresponding of a
software system in two parts, the first one is related of
how we retrieve the data that we are going to visual-
ize as a city, we analyze a repository using Graal [10],
Graal leverages on the Git backend of Perceval [11]
and enhances it to set up ad-hoc source code analy-
sis. Thus, it fetches the commits from a Git repos-
itory and provides a mechanism to plug third-party
tools/libraries focused on source code analysis. More-
over, Graal can retrieve similar metrics as the origi-
nal CodeCity, we use Graal to obtain analyze projects
using code complexity analysis (CoCom)4, retrieving
metrics like the number of lines of code or the num-
ber of functions that the file code has. Graal stores
the data in an ElasticSearch database, once the data
is there, we run a Python code included in the Babi-
aXR components repository in order to get the JSON
with the data that will be injected in the CodeCity
component of BabiaXR, summarizing:

1. Run Graal specifying the ElasticSearch database
and the repositories that are going to be analyzed.

2. Run the code generate structure codecityjs.py
with the time evolution flag and the snapshot ar-
gument filled and it will return a set of JSON data
with all the information needed of the city.

4https://github.com/chaoss/grimoirelab-graal#backends

3

Once we have run the previous code, in the set
of JSON files returned, there is one that has the
starting information about the city evolution, called
main data.json, it has a structure that defines the data
files needed of the time evolution, the sampling days
that have been used and the time field where the evo-
lution has been made:

1 {

2 "date_field":"field",

3 "sampling_days":"180",

4 "init_data":"data_X_tree.json",

5 "time_evolution":true ,

6 "data_files":[

7 {

8 "date":1573001804.136289 ,

9 "file":"data_X.json"

10 },

11 ...

12]

13 }

This file is the starting point and has to be defined
as the main data when the component is written in
HTML. The data files follow the next structure, start-
ing for the main point, that has all the needed build-
ings and quarters tree in order to create the city:

1 [{

2 "block":"name",

3 "blocks":[

4 {

5 "block":"name_child",

6 "items":[

7 {

8 "id":"file_path",

9 "area": 1,

10 "height":2

11 },

12 ...

13]

14 },

15 ...

16 }]

Then, the next files just have a list with the new
values of the buildings:

1 [

2 {

3 "id": "file_path",

4 "name": "file_name",

5 "height": 1,

6 "value": 2

7 },

8 ...]

Then, just creating a simple HTML file, loading the
dependencies needed (from A-Frame, BabiaXR com-
ponents and the file time evol.js), and defining the pa-
rameters of the codecity-quarter component, we can
see the city of the project analyzed evolving among
the time:

1 <a-scene id="scene">

2 <a-entity codecity-quarter= 'items: main_data.json '
position="0 0 0"></a-entity>

3 ...

4 </a-scene>

4 First Applications

The following figures (5, 6, 7) represent the analysis of
the project Angular5. Each building represents a file

5https://github.com/angular/angular

of the project and the quarters are defined as the tree
folders that the file belongs to. As metrics, we rep-
resent the lines of code as the height of the buildings
and the area represents the number of functions that
the file has. Moreover, the figures represent a selected
time snapshot, starting with the time snapshot of the
5th of November, 2019. Then going back 6 months
(the 5th of May, 2019) and going back 18 months (the
5th of May, 2019). The demo available in the repro-
duction package6gives more information because there
are more time samples and it is possible to see the
evolution of the city in a completed and visual way.

Figure 5: Angular CodeCity of the 5th of November,
2019

Figure 6: Angular CodeCity of the 5th of May, 2019

Figure 7: Angular CodeCity of the 5th of May, 2018

We can observe how the city evolves and how the

4

buildings decrease their area and some of them dis-
appear, as this is an evolution from present to past,
some of the files maybe not in the past version, so the
space that they filled is changed to empty terrain. For
example, focusing on the center of the city, the central
quarter is related to some packages that Angular in-
cludes in their code, if we observe the evolution, there
are some buildings that disappear, those buildings are
related to some packages that have been included in
Angular in the latest version, their space is not filled
in older versions.

There is a reproduction package6 available in order
to reproduce all the steps in a controlled environment.

Discussion

The proposed solutions to the known limitations of
the original CodeCity has been developed success-
fully. Using the HTML identifiers of each building
fixes the non-fixed location of the buildings, making
the same location of each building as the city evolves,
just changing the area and the height of each building
in each time snapshot. In terms of the interaction, the
possibility of adding Virtual Reality to the city and the
development using web technologies solve the limita-
tion of the interaction of the original CodeCity, mak-
ing the BabiaXR version more universal and able to
use in any device that has a modern web browser that
supports WebVR. On the other hand, we are analyz-
ing similar software metrics of the original CodeCity,
it needs to add effort to this research and changes the
type of metrics analyzed to new ones that make sense
to represent using the city metaphor.

Conclusion and Future Work

This approach is a proof of concept of a tool that has
to evolve. We were focused on replicate CodeCity in a
modern and open source environment in order to make
it more universal and easy to use, in this case, the web
environment, and we were focused on the time evolu-
tion feature. The first versions of this tool are just the
beginning and it needs more effort on the interaction
part, we propose to add more functionality to the user
interface, for example, adding two types of cities, one
smaller as mock-up in order to see the entire city in a
small space and take advantage to the location of the
modern VR glasses. And the other one is to make a
city as the same ”size” as an actual city and tour the
user into it, for example, driving a car or even flying.
Other future work could be the feature of adding more
information about the software in the city, with more
user interaction than click/hover.

6https://gitlab.com/thesis-dlumbrer/repr-pckg-benevol-
2019

On the other hand, all the metrics seen were met-
rics related to modules or packages. Thus, the next
step is to look for the right way to represent different
kind of data further than software systems structure,
using different kinds of metrics. Specifically, we are
going to deep in other software development metrics.
For instance, the distribution of the commits/reposi-
tories, the relationships between the people, the time
evolution of the community, etc. Therefore, we have
to face the challenge of move this different kind of data
to a city, thinking about what will represent the build-
ing, the districts, etc. Making the representation easy
to understand and easy to answer questions that the
common visualizations don’t do.

Finally, another research branch is to approach
other kinds of metaphor apart from the city, for ex-
ample, islands and planets.

Acknowledgment

This work was supported by the Spanish Government
(IND2018/TIC-9669).

References

[1] R. Wettel and M. Lanza. Visualizing software sys-
tems as cities. In Proceedings of VISSOFT 2007
(4th IEEE International Workshop on Visualiz-
ing Software For Understanding and Analysis) ,
pages 92–99, 2007

[2] R. Wettel and M. Lanza. Program comprehension
through software habitability. In Proceedings of
15th International Conference on Program Com-
prehension (ICPC 2007). IEEE Computer Soci-
ety, 2007.

[3] Vincur, J.; Navrat, P. ;Polasek, I. VR City: Soft-
ware Analysis in Virtual Reality Environment.
2017 IEEE International Conference on Soft-
ware Quality, Reliability and Security Companion
(QRS-C), 2017.

[4] F. Steinbrückner, C. Lewerentz. Representing de-
velopment history in software cities, 2010 5th in-
ternational symposium on Software visualization
(SOFTVIS), New York, USA, 2010, pp. 193-202.

[5] Baum, D.; Schilbach, J.; Kovacs, P.; Eisenecker,
U.; Müller, R. Getaviz: Generating Structural,
Behavioral, and Evolutionary Views of Software
Systems for Empirical Evaluation. 2017 IEEE
Working Conference on Software Visualization
(VISSOFT), 2017.

[6] Merino L Ghafari M Anslow C Nierstrasz.
CityVR: Gameful Software Visualization. In-

5

ternational Conference on Software Maintenance
and Evolution (ICSME), 2017

[7] Willy Scheibel; Christopher Weyand; Jürgen
Döllner. EvoCells – A Treemap Layout Algorithm
for Evolving Tree Data. 9th International Con-
ference on Information Visualization Theory and
Applications (IVAPP), Madeira, Portugal, 2018

[8] Avneesh Sud; Danyel Fisher; Huai-Ping Lee.
Fast Dynamic Voronoi Treemaps. Seventh In-
ternational Symposium on Voronoi Diagrams in
Science and Engineering, (ISVD 2010), Quebec,
Canada, June 28-30, 2010

[9] Ben Shneiderman M; Ordered Treemaps Lay-
outs. Information Visualization, 2001. (INFO-

VIS), 2001

[10] Valerio Cosentino, Santiago Dueñas, Ahmed Ze-
rouali, Gregorio Robles, Jesus M Gonzalez-
Barahona. Graal: The Quest for Source Code
Knowledge 2018 IEEE 18th International Work-
ing Conference on Source Code Analysis and Ma-
nipulation (SCAM), 2018

[11] Santiago Dueñas, Valerio Cosentino, Gregorio
Robles, and Jesus M. Gonzalez-Barahona. Perce-
val: Software project data at your will. Proceed-
ings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings, 2018

6

