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Abstract. The authors analyze different approaches to forming estimates of 
autocorrelation coefficients of random and pseudorandom number sequences. 
An integral estimate of normalized autocorrelation coefficients is theoretically 
obtained. Estimates of some statistical properties of normalized autocorrelation 
coefficients have been improved. The autocorrelation criterion for quality as-
sessment of time series based on simultaneous analysis of several autocorrela-
tion coefficients has been further developed by adapting it to uniformly distrib-
uted random variables. The technique of its implementation is presented. Ap-
plying the criterion revealed statistical deviations for some pseudorandom num-
ber generators that successfully pass all TestU01 autocorrelation tests. 
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1 Introduction 

Since random number sequences are multi-parameter processes, different methods 
and criteria are used for assessing their quality. These methods and criteria consider 
random processes from different standpoints using different statistical estimates. 

The most famous test suits are: the Donald Knuth’s statistical tests set [1]; George 
Marsaglia’s DIEHARD tests [2]; NIST Statistical Test Suite [3]; TestU01[4]. In addi-
tion, there are other packages and tests. Among them CRYPT-X [5], NIST PUB FIPS 
140-2 [6] can be distinguished. 

Based on the definition of discrete white noise [7], an autocorrelation test is one of 
the most common tests, which allow detecting statistical irregularities of the studied 
sequences of numbers. 

In [1], as in [8], it is recommended to use the criterion of serial (cyclic) correlation 
between cyclically shifted copies of the studied sequence. In [4, 9, 10], estimates of 
autocorrelation coefficients are formed by comparing two subsequences. The count of 



the subsequences’ elements is made from the beginning and from the end of the stud-
ied sequence. In [11], the autocorrelation coefficients are calculated for sequence 
successive intervals, which can overlap or stand away from each other. 

Thus, there are different approaches to finding empirical autocorrelation coeffi-
cients that form an autocorrelation function (ACF) estimate. However, the main task 
of the autocorrelation test is to determine the correspondence of the sequence ACF 
estimate to the ACF of random number sequence described by the Dirac delta func-
tion [12]. Thus, estimates of the autocorrelation coefficients at non-zero points should 
go to zero. Their significance is most often evaluated by the Student's criterion [13]. 

The authors of the work [4] verify the correspondence of the distribution of auto-
correlation coefficients estimates at nonzero points to the binomial law. For a large 
number of values, it can be approximated to normal. 

In [14, 15] the statistical criteria of ACF side lobes complex estimate are proposed. 
Instead of testing the significance of each individual autocorrelation coefficient, these 
criteria check several autocorrelation coefficients to be different from zero. However, 
the proposed criteria are not adapted to analyze sequences of uniformly distributed 
random and pseudorandom numbers. 

Thus, the question of estimating autocorrelation coefficients needs further study. 
This leads to the need for deeper analysis to identify the correlation properties inher-
ent in sequences generated by natural sources of discrete white noise and not inherent 
in artificially generated pseudorandom sequences (PRS). 

The purpose of this work is to develop a criterion for assessing the quality of se-
quences of uniformly distributed random and pseudorandom numbers, which allows 
detecting statistical irregularities not detected to date. 

2 Formal Problem Statement 

According to [16], the normalized autocorrelation coefficient  ', ''x t t  of a random 

process  X t  is calculated in the general form according to the expression: 

         ', '' ', '' ' '' ,X Xt t K t t Var X t Var X t           

where            ', '' ' ' '' ''XK t t E X t E X t X t E X t             is the correlation 

moment (covariance coefficient) of the intersections  'X t  and  ''X t  of the random 

process  X t  at times 't  and '' 't t   ;  'E X t   ,  ''E X t   ,  'Var X t   , 

 ''Var X t    are the expectations and the variances of  'X t ,  ''X t . We will repre-

sent the intersections  'X t  and  ''X t  as random variables (r.v.) 'X  and ''X . 

Then    ' 'E X t E X   ,    '' ''E X t E X   ,    ' 'Var X t Var X   , 

   '' ''Var X t Var X   . 



 

Suppose that random number generator (RNG) or pseudorandom number generator 
(PRNG) forms a stationary random process. For such a process, 

   ' '' XE X E X m const   ,     2' '' XVar X Var X const   , and an autocor-

relation coefficient depends only on the lag '' 't t   :    ', ''X XK t t k  . 

Let  ' ' 'X X E X 
�

,  '' '' ''X X E X 
�

 be r.v. with expectations 

' '' 0E X E X       
   

� �

 and variances 2' '' XVar X Var X        
   

� �

. Then the correla-

tion moment   ' ''Xk E X X    
 

� �

 and the normalized autocorrelation coefficient 

         2' '' ' ''X X Xk Var X Var X E X X        
 

� �

. 

Suppose that the r.v. 'X
�

 and ''X
�

 are uncorrelated (this corresponds to the proper-
ties of white noise intersections) and independent. Then the  X   value is invariant 

to the value of 0   and  0 0X     [9]. 

The product of r.v. ' ''X X  
� �

 can be considered as a r.v. with parameters: 

  ' '' 0E E X E X         
   

� �

 and      
2

2 2 ' ''Var E E E X X  
        
   

� �

 

2 2

' '' ' ''E X E X Var X Var X
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 or   4
XVar   , and 2

X  . In this 

case    X E     . 

If values of a discrete random process  t  form a countable set of independent 

values 1 2, , , ,n     then    1
lim 1

n

iin
E n 


  . 

According to the Lindeberg-Levy theorem [16], if mutually independent r.v. 

1 2, , , ,n     are equally distributed and have an expectation  E a   and a vari-

ance 2
 , then the value  1

n

ii
na n 


  is normally distributed when n  : 

   
1

0;1
n

ii
na n N 


  . Given that   0E a   , 

       
1 1

1 0;1
n n

i i Xi i
na n n n n E n N         

 
        .  

In other words, the marginal distribution of the normalized autocorrelation coeffi-
cient  X   of a random process whose intersections are independent r.v., is a nor-

mal distribution with expectation    0XE     and variance    1XVar n   . 



Consider that             2
2 2

1
lim 1X X X Xi

Var E E       


    . It 

follows that 

   2

1
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  . (1) 

Expression (1) defines the limit value of the ACF side lobes power 
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   . 

In addition, since the r.v.    0;1X N n    when n  , the r.v.  2

1 Xn


 

  

has a distribution 2  with   degrees of freedom  n  : 

  2 2

1 Xn

  


 . (2) 

Then for side lobes power   2nW   . 

Thus, expression (2) is an integral estimate for autocorrelation coefficients. It cre-
ates the preconditions for constructing statistical criteria for checking the correlation 
properties of sequences of random and pseudorandom numbers by their empirical 
estimates. 

Normalized autocorrelation coefficients are strictly defined by the theoretical ex-
pression (1). However, the correlation properties estimate of empirical number se-
quence can significantly depend on the studied sequence properties and the experi-
ment conditions. In particular, the sequence correlation properties estimate can be 
performed: 

─ on a sequence period in the case of its periodicity, by analyzing a periodic ACF 
(PACF); 

─ on some fixed size sample; 
─ in real time, when sequence elements arrive to the analyzer sequentially. 

In addition, the estimating correlation properties of random and pseudorandom num-
ber sequences may be conducted under conditions where the distribution law of a 
discrete random variable (d.r.v.) and its parameters are either fully known or empiri-
cally determined. In all these cases, it is necessary to know the first and second initial 
moments of normalized autocorrelation coefficients for their integral estimate. 

We estimate these statistical properties of the normalized autocorrelation coeffi-
cients of a discrete random process calculated according to the defined approaches. 



 

3 Estimate of Statistical Properties of Normalized 
Autocorrelation Coefficients 

3.1 Periodic ACF Estimate 

ACF is periodic if an original sequence is also periodic. Moreover, as it shown in 
[17], it is advisable for periodic signals to estimate the probabilistic moments in the 
minimum period. Taking into account the symmetry property of the PACF graph with 
respect to the axis, which is half period from the y-axis, it is allowed to reduce the 
number of calculated values by 2 times. 

Let the number sequence  0 1 1, , , nx x x   be repeated periodically with period n . 

In this case, as shown in [1] and [8], the estimate of the normalized autocorrelation 
coefficient is calculated according to the expression: 
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, (3) 

where 
1

0

n

ii
x x n




   is a statistical estimate of the X  expectation. 

Note that the estimate (3) is performed for the whole sequence period. Therefore, 
the estimate of the d.r.v. X  expectation coincides with the expectation: 

   1

0 0
lim

n m

i ii im
x x n x x m E X



 
     . Based on similar considerations, the 

variance estimate over the entire sequence period also coincides with the d.r.v. vari-

ance:        
2 212 2

0 0
lim

n m

x i i Xi im
x x n x E X m Var X 

 
       . Then the 

expression (3) can be represented as 

         1 2
mod0

1
n

PACF x i Xi ni
r n x E X x E X 


       . 

Obviously, given the symmetry property of the PACF graph, the analysis of auto-

correlation coefficients estimates is advisable to perform for   0; 2 1n   . 

According to [1],     1 1PACF xE r n    . The upper bound estimate of vari-

ance of  PACF xr   calculated from (3) for arbitrary independent variables is: 

  
   

2

2
1 2

PACF x

n
Var r

n n
 

 
. However,     
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norm PACF x
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 [18] 

for the normal distribution of the initial values, and 

     2 7 324
log

5unif PACF xVar r n O n n     [1] for their uniform distribution. In 

addition, as shown in [19], the value  PACF xr   is distributed asymptotically normal 

even for sufficiently small samples  10n  . In [1] it is recommended that the esti-



mate (5) should be between      2PACF x PACF xE r Var r   and 

     2PACF x PACF xE r Var r   for uncorrelated values  0 1 1, , , nx x x  . 

3.2 ACF Estimate on Fixed Size Sample 

ACF estimate on some fixed size sample  0 1 1, , , nx x x   is widely used in economet-

rics for constructing regression models [14, 15]. In addition, a similar ACF estimate is 
used to investigate sequence properties in the aperiodic mode typical to information 
transmission in communication systems [20]. In this case, the estimate of normalized 
ACF is calculated according to the expression [21]: 

             21 1*

0 0
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n n

x i i ii i
r n x E X x E X n x E X


    

 
            (4) 

for a known a priori value of  E X , or the expression [21]: 

           21 1**
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           . (5) 

In [21] it is shown that if the random vectors  ,i ix x   are independent and equally 

distributed, then the distribution law of the value  *
xr   (as well as  **

xr  ) has an 

asymptotic normal distribution. 
Various authors use or recommend to use for (5) the value of zero as an approxi-

mate estimate of its expectation and the value of 1 2n  [14] or       1 2
2n n n 


   

[15] as an approximate estimate of its root-mean-square deviation. However, the exact 

value of the  **
xr   expectation is defined in [22] and is equal to 

     1** 1xE r n    . The upper bound of the estimate (5) variance is defined in 

[23] for any law of distribution of the initial values  ix : 
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. 

In addition, in [23] it is also shown that 

            2** 4 3 2 2 23 3 2 1 4 1 1norm xVar r n n n n n n n               for 

normally distributed r.v., and the expression        ** / 2xVar r n n n     from 

[15] is valid in the case of a known expectation  E X , that is, for the value  *
xr  . 

Consider the normalized ACF estimate, which is given, for example, in [9] or [10]: 
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           . (6) 

Let us extend and present more fully the results of estimates of expectation 

  ***
xE r   and variance   ***

xVar r   obtained in [24]. 

The  ***
xr   distribution law for independent and equally distributed random vec-

tors  ,i ix x   is an asymptotic normal distribution [25]. This statement is also con-

firmed by [26, 27]. They show that the distributions of correlation analysis statistics 
are resistant to deviations of the observed multidimensional law from normal. The 
empirical distributions of these statistics are well described by the boundary laws 
obtained from the assumption of normality of the observed values. 

To find   ***
xE r  , we use the methodology described in [22]. 
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The variance   ***
xVar r   can be calculated according to the well-known expres-

sion:          2*** *** 2 ***
x x xVar r E r E r    . 

As it shown in [23],  21 1 1 22 2 2
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where 
*  denotes a summation for all different indices from 0 to 1n  . 

Using an equality 
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As shown in [23, 29], 2
4 21 1n S S   for any distribution law of r.v. iz . Then, by 

analogy with [23], it is possible to obtain the variance upper bound of the correlation 

coefficient estimate (6). To do this, replacing 2
4 2E S S    by 1 n  we get 
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. Then 
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According to [22], for normally distributed r.v. ix ,     2
4 2 3 1 1E S S n n n      , 
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One can notice that     *** 1norm x n
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. In addition, in the general case 
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Thus, the obtained results are in full agreement with [10]. The variance of the esti-
mate (6) is asymptotically equal to  1 n   if n  is large. However, the estimates (7) 

and (8) are more accurate. 
We denote the relative error of approximation of the autocorrelation coefficient es-

timate variance   ***
xVar r   by           *** ***, 1x xn Var r n Var r       . 

Analysis of the dependency ( , )n   graph for  50;100n ,  1;25   (Figure 1) 

indicates that ( , ) maxn    for max  , minn  . In particular, 

  4100,1 1.02 10   ,   3100, 25 1.578 10   , and  50, 25 0.02  . It is also worth 

noting that     min , ,1n n    for a fixed value of n . 



 

 

Fig. 1. The graph of dependence  ,n   for  50;100n ,  1;25   

The graph of the relative error of approximation of the autocorrelation coefficient 

estimate variance   ***
norm xVar r   for normally distributed r.v. ix  

          *** ***, 1norm norm x norm xn Var r n Var r        depending on 

 50;100n ,  1;25   is shown in Figure 2. 

 

Fig. 2. The graph of dependence  ,norm n   for  50;100n ,  1;25   

For the specified definition area  , maxnorm n    for min  , minn  . In par-

ticular,  100,1 0.021norm  ,  100, 25 0.019norm  , and  50,1 0.042norm  . How-

ever, in the general case     minmax , ,norm normn n     for a fixed value of  . In 

Figure 2, this situation is observed for  21;25  . 



3.3 ACF Estimate for Long Period Sequences 

When analyzing the correlation properties of a random number sequence, any shift of 

the analyzed sequence belongs to the set   ix t  of realizations of a stationary dis-

crete random process  X t . In other words, the "zero" point for the beginning of 

realization may be arbitrary. In this case, we can consider a set of realizations 

      :i i i jx t x t x t j  . To enable autocorrelation coefficients practical analysis, 

we will assume sequences of n  numbers, the first of which are formed at times 

0,1,2,t   , by realizations of a random process  X t . This approach is most effec-

tive when the correlation properties of a random number sequence are analyzed in real 
time, not by some fixed size sample. In this case, the sequence elements are written to 
a limited size buffer (this approach is similar to the sliding window method). 

We denote the element of a random number sequence at a discrete time t  by tx . 

Then the estimate of the normalized autocorrelation coefficient of order   is as fol-
lows: 
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where   1
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0
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    are the average sample values 

of random process intersections  X t ,  X t  . Note that for a stationary random 

process, equality      lim 1
n

P x t x t  


     is satisfied for any small 0  . 

The distribution law of the estimate  xr r   (9) for independent and equally dis-

tributed random vectors  ,t i t ix x     is asymptotically normal [25] with expectation 

 x    and variance [30]  
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where km  are the theoretical central moments of the order k  and m : 

     k m

km t i t i t i t ix E x x E x          . According to [30], 

    221xrVar n    in the case of a normally distributed population. 

However, as shown in [30], applying the Fischer logarithmic transformation [31] to 
the sample correlation coefficients r  leads to the following conclusions. The value 

    1 2ln 1 1z r r    should be considered normally distributed with an average 



 

       1 2ln 1 1 2 1n       and a variance  1 3n  . Therefore, the value 

 
1 1 1 1
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r
n

r n

 


                      
 is normal:  0;1N � . 

Thus,   0X    for independent and equally distributed random vectors 

 ,t i t ix x    , the value         3 2ln 1 1x x xn r r        has a standard 

normal distribution, and   2 2

1
x



  





  

3.4 ACF Estimate for Uniformly Distributed Random/Pseudorandom 
Number Sequences with Known Parameters 

Often, sequence statistics are checked at the output of a generator of uniformly dis-
tributed random or pseudorandom numbers in some range  ,a b  (such generators are 

most widely used for information security tasks as key entropy generators). Then the 
simplest analysis of the studied sequence allows us to determine the set of d.r.v. val-
ues at the generator output. If there is a sequence of numbers  ix A  from the al-

phabet A , then its cardinality    max min 1i iN x x   , the range of d.r.v. values 

   min ;maxi iX x x   , its expectation       min max 2i iE X x x  , and its 

variance    2 1 12X NVar   . 

A similar estimate can be made if the size of the analyzed number sequence sig-
nificantly exceeds the capacity of the alphabet. Otherwise there is a possibility to 
incorrectly define the lower or upper limit of d.r.v. values set. The probability that the 
minimum or the maximum value of N -symbol alphabet will not be present in a se-

quence of V  symbols is equal to   2 1
n

erP N N  . 

Thus, for the given values of alphabet capacity M  and probability erP , it is possi-

ble to calculate the required sample size  1log 2erN NV P . 

For example, for 256N   and 1010erP   we get: 10
1 1 256log 10 2 6061V 
  . 

For known parameters (expectation  E X  and variance  Var X ) of a random 

process  X t , the estimate of normalized ACF can be calculated by the expression 
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0
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In this case, for independent values ix , as well as in accordance with the regularities 

stated in (1) and (2), and n  ,    ' 0;1xr N n  ,    2
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For side lobes power     2

1
' 'xW r





    of ACF estimate (10), 

  lim '
n

W n




    and the expression (11) can be rewritten as follows: 

   2'nW   . (12) 

In this case, the statistical criterion for corresponding an ACF estimate of uniformly 
distributed random number sequence to the white noise ACF provides calculating the 
normalized autocorrelation coefficients from (10), forming an estimate of the side 
lobes power  'W  , and then estimating it with (12). 

4 Description of the Criterion for Estimating Uniformly 
Distributed Random Number Sequences 

The criterion for estimating uniformly distributed random number sequences is the 
following: 

1. if the d.r.v. definition area is unknown, it is empirically determined; 
2. the d.r.v. expectation and variance are calculated; 
3. using the expression (10), the sequence of estimates  'xr   of normalized autocor-

relation coefficients is calculated for  1;   ; 

4. the side lobes power     2

1
' 'xW r





    of the ACF estimate is calculated; 

5. if the value  'nW   for the selected level of significance does not exceed the 

quantile 2
1 ,    of chi-square distribution with   degrees of freedom, the null hy-

pothesis is accepted. It is that the numbers of the sequence under study are random. 
Otherwise, the null hypothesis is rejected. 

5 Applying the Criterion for Estimating Uniformly Distributed 
Random Number Sequences 

We implement the developed criterion for known PRNG, which pass all tests of the 
TestU01 test package [4]. For this purpose we conduct 1000N   independent tests. 

We define the value  'nW  . Then calculate the relative frequency of the event 

  2
1 ,'A nW      . 



 

We denote by Q  the value that in each specific test takes a value of 1 if the event 

A  is true and 0 if the event A  is false. Then the relative frequency of the event 

  2
1 ,'A nW       in N  independent tests is 

1
*

N

ii
p Q N


  .  

The expectation of the relative frequency is  * 1E p   , its variance is 

   * 1 NV par    . Then the inequality    * 1 1p t N       is satis-

fied with probability  , where t  is the quantile of standard normal distribution with 

level  . In other words, the calculated relative frequency *p  falls within the confi-

dence interval     1 1 ;1 1t N t N             with probability  . 

For testing we will choose 0.05   . Then the confidence interval for *p  is 

 0.9365;0.9635 . The test results are summarized in Table 1. 

Table 1. The results of applying the criterion for estimating uniformly distributed PRNG 

PRNG 
TestU01 autocorrelation 

tests results (4 smallCrush + 4 
bigCrush), passed/total tests 

Test results of 
the developed 

criterion 
LCG( 242 , 16598013, 12820163) 2/8 failed 
LCG( 312 , 65539, 0) 6/8 failed 
LCG( 322 , 69069, 1) 5/8 failed 

LCG( 322 , 1099087573, 0) 5/8 failed 
LCG( 462 , 135 , 0) 7/8 failed 

LCG( 482 , 25214903917, 11) 7/8 failed 
LCG( 482 , 195 , 0) 7/8 failed 

LCG( 482 , 33952834046453, 0) 7/8 failed 

LCG( 482 , 44485709377909, 0) 7/8 failed 

LCG( 592 , 133 , 0) 8/8 failed 

LCG( 632 , 195 , 1) 8/8 failed 

LCG( 632 , 9219741426499971445, 1) 8/8 failed 

LCG( 312 1 , 31 102 2 , 0) 6/8 passed 

LCG( 312 1 , 16807, 0) 7/8 passed 

LCG( 612 1 , 30 192 2 , 0) 8/8 passed 

LCG( 1210 11 ,427419669081, 0) 8/8 passed 

 
The results indicate that some of the generators that successfully pass all the 

TestU01 autocorrelation tests do not meet the developed criterion. 

6 Conclusions 

The study has produced the following results: 



─ integral estimate of normalized autocorrelation coefficients (ACF side lobes) is 
theoretically obtained. This provides the basis for building statistical criteria for 
verifying correlation properties of random and pseudorandom number sequences 
by their empirical estimates; 

─ the first and second initial moments of estimates of normalized autocorrelation 
coefficients are presented for: PACF; ACF of fixed size sample calculated accord-
ing to different approaches (for example, presented in [9, 10, 21]); "sliding win-
dow" ACF for long period sequences; 

─ the upper bound of the variance of estimates of normalized autocorrelation coeffi-
cients calculated by [9] or [10] is clarified. This allows increasing the accuracy of 
ACF side lobes integral estimate; 

─ the criterion for estimating autocorrelation of time series based on simultaneous 
analysis of several autocorrelation coefficients (similar to the Box-Pierce [14] and 
Ljung–Box [15] criteria) has been further developed by adapting it to uniformly 
distributed r.v. This made it possible to perform a complex estimate of ACF for se-
quences of uniformly distributed random and pseudorandom numbers; 

─ applying the criterion revealed statistical deviations for some PRNG that success-
fully pass all TestU01 autocorrelation tests. 
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