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Abstract. The article presents an inductive clustering model of RNA-seq data 

for solving the problem of identifying glioblastomas subtypes by inductive 

methods based on k- and c-means algorithms. Comparative studies between in-

ductive and classical iterative clustering algorithms are carried out using the cri-

teria for evaluating clustering and data visualization. The basic principles of 

creating an inductive model of objective clustering are formed, the ways and 

prospects of the possible implementation of the model are shown, the advan-

tages of the objective clustering model in comparison with traditional methods 

of data clustering are determined. 

Keywords: Inductive Modeling, Multiform Glioblastoma, Clustering of Biolo-

gist Objects, the Method of Group Accounting of Arguments, K-Means Algo-

rithm, External Balance Criterion. 

1 Introduction 

Glioblastoma multiforme (Glioblastoma multiforme, GBM) is one of the most com-

mon and most aggressive types of brain cancer [1] and the leading cause of death in 

adult brain tumors. Glioblastoma accounts for 52% of all brain tumors. According to 

the classification of central nervous system tumors by the World Health Organization, 

the standard term for this brain tumor is “glioblastoma,” and it has two forms: giant 

cell glioblastoma and gliosarcoma. Glioblastomas are also important brain tumors. It 

has a very poor prognosis, despite the existence of many therapeutic methods, includ-

ing surgical resection of a larger tumor volume, followed by concomitant or subse-

quent chemoradiotherapy. Despite advances in the genomics and classification of 
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glioma subtypes [2-4], glioblastoma has a worse prognosis than any other cancer of 

the central nervous system, with an average lifespan of 14 months.  

While genomic data continues to grow rapidly, clinical use and treatment transfer are 

lagging behind. Big data currently stored on the “The Cancer Genome Atlas (TCGA)” 

network provides a window for creating new clinical hypotheses [5]. 

One of the main topics is how genomics can be used to obtain clinically relevant 

information to improve therapy for patients. Two techniques are currently relevant for 

the formation of an array of gene expression: DNA microarray sequencing method [6] 

and RNA molecules [7].  

The use of the RNA-sequencing method (RNA-seq method) allows you to get the 

number of studied genes for the studied samples directly. For this reason, this method 

is more accurate than the DNA microarray method. The number of genes determines 

the level of activity of this gene or its expression. At the next stage, the problem of 

identifying the boundary value arises, which allows us to divide the genes into low-

expressive and highly expressive. Data needs to be normalized. This involves convert-

ing the count values to the same suitable range. 

Numerous studies have shown that RNA sequencing technology is more efficient 

than DNA microarray technology in terms of the quality of the data obtained [8]. 

Identifying cancer subtypes is an important component of a personalized medicine 

system. Identifying cancer subtypes is critical when choosing the right treatment for 

patients, as different subtypes of cancer can respond well to different treatments. Cur-

rently, a greater number of computational methods have been developed to detect 

subtypes of cancer. However, existing methods rarely use information from gene 

regulation networks to facilitate the identification of subtypes [9]. One of the compu-

tational methods that allows us to solve this problem is clustering. Clustering methods 

are divided into hierarchical and iterative [10]. 

Hierarchical algorithms are associated with the construction of dendrograms. In 

agglomerative algorithms, before the start of clustering, all objects are considered 

separate clusters, which are combined during the algorithm. 

However, the hierarchical cluster analysis procedure is good for a small number of 

objects and is not suitable for large data due to the complexity of the agglomerative 

algorithm and too large dendrograms. In iterative algorithms, the data is immediately 

divided into several clusters, the number of which is estimated based on the condi-

tions. Further, the elements are moved between clusters so that a certain criterion is 

optimized, for example, variability within the clusters is minimized [11].  

However, iterative clustering algorithms, in particular, k-means, have several dis-

advantages: 

• It is not guaranteed to achieve the global minimum of the total quadratic devia-

tion, but only one of the local minimums. 

• The result depends on the choice of the initial centers of the clusters; their opti-

mal choice is unknown. 

• The number of clusters must be known in advance. 

High subjectivity is one of the key shortcomings of existing iterative algorithms. 

Increasing the objectivity of clustering is possible through the use of inductive meth-

ods for modeling complex systems based on the inductive method of data processing 



 

[12], in which data processing is carried out by two equal power subsets, and the final 

decision on the nature of the separation of objects into clusters is made on the basis of 

integrated use external relevance criteria and internal criteria for assessing the quality 

of clustering. Thus, the development of models and methods for clustering objects 

based on inductive modeling methods to solve the problem of identifying cancer sub-

types is an urgent task. 

2 Problem Statement 

A block diagram of the identification of experimental data obtained by RNA sequenc-

ing with glioblast is presented in Figure 1. 

 

Fig. 1. Procedure for the identification of experimental data obtained by RNA sequencing with 

glioblastoma. 

The paper implements the principles of inductive modeling within the framework of 

inductive clustering, which suggest the following steps [13]:  

 normalization of signs of the studied objects, i.e. their reduction to the same range 

with one median of the attributes of objects; 

 dividing the original data set into two equal in power subsets; 

 determination of an external criterion or group of relevance criteria for choosing 

the optimal clustering for two subsets of the same power; 

 selection or development of a basic clustering algorithm used as a component of an 

inductive model of objective clustering of objects. 

Solving the problem of identifying a cancer subtype consists of three main steps: data 

pre-processing and selection of characteristics, cancer subtype identification methods, 

verification of results and visualization. 

In most cases, genomic data sets are multidimensional and contain noise and miss-

ing values. Reducing the size of an element is necessary to remove unnecessary ele-

ments and reduce interference. In this paper, we implement the Principal Component 

Analysis (PCA). 

In this paper, four clustering methods are used: 

a) classical k-means clustering methods and its fuzzy version of c-means; 

b) inductive k-means clustering methods and its fuzzy version of c-means. 



 For all four approaches, the application of all the indicated clustering procedures 

both on the initial data and on the data matrix after the Feature Selection procedure 

using the PCA. Evaluation of the results using Index Dunn, Index Calinski-Harabasz, 

Entropy, and graphical visualization using Silhouette 

The aim of the work is to develop inductive models of object clustering of sub-

types by multiglioblastomas based on k- and c-srenich algorithms and to assess the 

quality of the solution of the results obtained. 

3 Review of the Literature 

The basic concepts for creating an inductive method for clustering objects are de-

scribed in [12]. Further development of this theory is reflected in [14]. The concept of 

objective cluster analysis is presented in the following sections and was further devel-

oped in [15]. The authors determine the basic principles of creating an objective clus-

ter inductive model, show the ways and prospects of its implementation, determine 

the advantages of a cluster inductive model in comparison with traditional methods of 

data clustering. 

Theoretical developments on the implementation of billisterization methods for 

systems of inductive modeling of complex processes are presented in [16]. In the 

work [13] authors presented an inductive model of object clustering of objects based 

on k-means clustering. An algorithm is proposed and practically implemented for 

dividing the source data into two equal-sized subsets. The paper presents studies on 

the assessment of the stability of the model to the noise component using the "Seeds" 

data. However, it should be noted that, despite the successful results achieved in this 

area, an objective cluster model based on the analysis of cluster systems does not 

currently have practical implementation for solving problems in bioinformatics. 

4 Materials and Methods 

4.1 Data 

A glioblastoma (GBM) gene expression dataset downloaded from TCGA. This is a 

small dataset with 1500 genes and 100 cancer samples extracted from gene expression 

data for examples [5]. 

4.2 Normalization 

Data normalization was carried out according to the characteristics in accordance with 

the formula: 

           (1) 

where xij is the value of the attribute i in column j, x՛ij is the normalized value of this 

attribute, medj is the median of column j. The choice of this normalization method 

was determined by the fact that as a result, the set of data attributes in all columns had 



 

the same median with a maximum range of variation of attributes from -1 to 1, while 

the data volume for each column falling into the interquartile distance (50%) is the 

largest compared to other normalization methods. 

 

4.3 Splitting Into Equidistant Sets 

The algorithm for dividing the original set of objects Ω into 2 equally powerful dis-
joint subsets Ω

A
 and Ω

B
 consists of the following steps [16]: 

1. calculation of pairwise distances between objects in the original data 
sample; 

2. selection of a pair of objects the distance between which is minimal: 

 

3. distribution of the object  into a subset , and the object  into a subset ; 

repeating steps 2-3 for the remaining objects. If the number of objects is odd, the last 

object is distributed into both subsets. 

4.4 Inductive k-means Algorithm 

The k-means algorithm is one of the machine learning algorithms that solves the clus-

tering problem. This algorithm is a non-hierarchical, iterative clustering method; it 

has gained great popularity due to its simplicity, visualization of implementation, and 

rather high quality of work. It was invented in the 1950s by the mathematician Hugo 

Steinhaus [17] and almost simultaneously by Stuart Lloyd [18]. Particularly popular 

after the publication of the work of McQueen [19] in 1967. 

The algorithm is a version of the EM algorithm, which is also used to separate a 

mixture of Gaussians. The main idea of the k-means algorithm is that the data is ran-

domly divided into clusters, after which the center of mass for each cluster obtained in 

the previous step is iteratively recalculated, then the vectors are divided into clusters 

again according to which of the new centers is closer in selected metric. 

The purpose of the algorithm is to divide n observations into k clusters so that 

each observation belongs to exactly one cluster located at the smallest distance from 

the observation. 

Step 1. Start 

Step 2. Formation of the initial set  of studied objects. Presentation of the data in 

the form of a matrix  ; 1,ijx i m   , where n is the number of rows or the number of 

objects under investigation, m is the number of columns or the number of features 

characterizing the objects. 

Step 3. Data preprocessing - data normalization: 

• median normalization (Feature Median) is obtained by calculating the median of all 

data attributes: 

  jjijij madmedxz 
 



where  ij ijx z  is the i-th observation in the j-th variable (the i-th normalized observa-

tion in the j-th variable),  j ij
i

med med x is the median for the j-th variable, 

 j ij
i

mad mad x is the mean absolute deviation for the j-th variable. 

• normalization using a standardized score (z-score) is a measure of the relative spread 

of the observed or measured value, which shows how many standard deviations is its 

spread of the relative average value. This is a dimensionless statistic used to compare 

values of different dimensions or a measurement scale. 
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where X is the average value, ijxS
is the standard deviation of the i-th observation in 

the j-th variable. The best normalization method depends on the data that will be nor-

malized. Typically, the Z-score is very common to normalize the data [20]. 

Step 4. Dividing  into two equally powerful subsets in accordance with the above 

algorithm. The resulting subsets 
A  and 

B can be formally represented as follows: 
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Step 5. Choosing the initial number of clusters mink k
. 

Step 6. Configuring the k-means clustering algorithm. 

For each equidistant subset: 

Step 7. Sequential clustering and cluster fixing. 

Step 8. Calculation of the internal criteria for the quality of clustering. 

Silhouette: 1
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Dunn Index:  
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Calinski – Harabasz Index: 
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Step 9. Calculation of the external balance criterion: 
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Step 10. If the value of the balance criterion reaches the optimum, then: 

Step 11 Fixes the resulting clustering, 

otherwise the number of clusters increases by 1 and steps 5–9 are repeated 

Step 12. Determining the optimal number of clusters optk . 



 

Step 13. Clustering data (the set  of objects under study), fixing the clusters. 

Step 14. Validation of the results of clustering. 

Step 15. Visualize the results of clustering. 

Step 13. The End 

4.5 Inductive Fuzzy C-Means Algorithm 

The method of fuzzy clustering of c-means (or fuzzy clustering, soft k-means, c-

means) allows you to split the existing set of elements with cardinality into a given 

number of fuzzy sets. The fuzzy clustering method of c-means can be considered as 

an improved method of k-means, in which for each element from the considered set 

the degree of its belonging (or responsibility) to each of the clusters is calculated. The 

algorithm was developed by J.C. Dunn in 1973 [21] and improved by J.C. Bezdek in 

1981 [22]. 

 
(a) 



 
(b) 

Fig. 2. Pseudocode of inductive algorithm k-means (a) c-means (b) 

 

4.6 Clustering Quality Assessment 

As criteria for the quality of clustering were used: 

1. Silhouette [23] 

1

1
max

j

K

x
i

SWC S
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where K is the number of clusters, jxS
is the "best" membership of the element jx

in 

the cluster p. 

The best partition is characterized by the maximum SWС, which is achieved when the 

distance inside the cluster is small and the distance between the elements of neighbor-

ing clusters is large. 

2. Dunn Index [24] 

Compares intercluster dissolution with cluster diameter. The higher the index value, 

the better the clustering. 

 



 

3. Calinski Index - Harabasz [25] 
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where N is the number of objects, K is the number of clusters. The maximum index 

value corresponds to the optimal cluster structure. 

4. Entropy [26] 
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Entropy is known as a numerical expression of the ordering of a system. The entropy 

of the partition reaches a minimum at the highest ordering in the system (in the case 

of a clear partition, the entropy is zero). That is, the greater the degree of belonging of 

an element to one cluster (and the less the degree of belonging to all other clusters), 

the lower the value of entropy and the more qualitatively the clustering is performed. 

5 Experiments and Results 

For the experiment, we used data from the CancerSubtypes package, which is de-

signed to assist in identifying the validation of cancer subtypes based on arrays of 

genomic cancer data. The package is implemented in the R language and is available 

as a bioconductor package at http: // bioconductor. org / packages / CancerSubtypes /. 

Glioblastoma gene expression data set (GBM) downloaded from TCGA. This is a 

small data set with 1,500 genes and 100 cancer samples extracted from gene expres-

sion data. 

The inductive clustering algorithm was used for a complete set of data (1500x100), 

the preprocessing of which was carried out in the form of normalization (median, Z-

score) and for data whose preprocessing includes normalization and reduction of data 

sizes based on analysis of the main components (PCA). As a result, the number of 

genes was reduced to 44 components (44x100). 

For the experiment, two clustering algorithms were used - k-means and c-means. 

The results are presented in Table 1. 

Table 1. Table captions should be placed above the tables. 

Algorithm K-means C-means 
Data GeneExp 

with median 
normaliza-
tion 

GeneExp 
with zscore 
normalization 

PCA with 
median 
normaliza-
tion 

PCA with 
zscore 
normaliza-
tion 

GeneExp 
with median 
normalization 

GeneExp 
with zscore 
normaliza-
tion 

PCA with 
median 
normaliza-
tion 

PCA with 
zscore 
normaliza-
tion 

Size 1500x100 1500x100 44x100 44x100 1500x100 1500x100 44x100 44x100 
Clusters 3 3 3 3 3 3 3 2 
Clusters size 465446 89 452570478 42 1 1 13 16 15 618453429 618415467 18 22 4 20 1 23 
Average 
Silhouette 

0.06043241 0.07155017 0.00344284 0.00979075 0.05936179 0.07011326 0.000994238 0.007407239 

Index Dunn 0.3385516 0.3620989 0.7851683 0.7982813 0.3385516 0.3620989 0.7524122 0.7945162 
Entropy 1.090765 1.093573 0.2164141 1.094951 1.084931 1.084126 0.9302168 0.6890092 

 



The clustering results were visualized using the Silhiuette method. This method al-

lows to interpret and verify the data consistency within clusters. The technique pro-

vides a concise graphical representation. The Silhiuette value is a measure of how 

much the object resembles the one in its own cluster (cohesion) compared to other 

clusters (separation). The Silhiuette ranges from -1 to +1. A high positive value indi-

cates that the object is in good agreement with its own cluster and is poorly aligned 

with neighbouring clusters. If most objects have a high positive value, then the clus-

tering configuration is appropriate. If many points have a low or negative value, then 

too many or too few clusters can be in the clustering configuration. Figures 3 and 4 

show a graphical representation of the clustering results of the inductive k-means and 

c-means algorithms. 

 
Fig. 3. The Silhiuette graphical representation when evaluating data clustering results using 

clustering  by the inductive k-means algorithm after a median (a) and zcore (b) normalizing the 

data, as well as reducing this data using the PCA algorithm: median normalization + PCA (c) 

and zscore + PCA (d). 



 

 
Fig. 4. The Silhiuette graphical representation when evaluating data clustering results using 

clustering by the inductive c-means algorithm after median (a) and zcore (b) normalizing the 

data, as well as reducing this data using the PCA algorithm: median normalization + PCA (c) 

and zscore + PCA (d). 

6 Discussion 

An analysis of the results allows us to conclude that the process of data pre-

processing — normalization and size reduction using the principal component method 

— together with the inductive clustering algorithm improves the quality of clustering 

in terms of internal quality criteria. 

The inductive k-means algorithm applied to GeneExp data that went through PCA 

pre-processing with median normalization gives the best result in terms of entropy, a 

satisfactory result on the Dunn index. 

The best result for the average silhouette value is given by GeneExp with zscore 

normalization data with the inductive k-means algorithm. 

The best result from the point of view of the Dunn index was obtained with PCA 

data with zscore normalization with the inductive k-means algorithm. 



7 Conclusion 

This paper presents the results of studies identifying the validation of cancer subtypes 

based on arrays of genomic cancer data. As an experiment, we used the GeneExp 

dataset obtained from the data from TCGA (The Cancer Genome Atlas) projects. 

The source data matrix contained 1,500 genes and 100 cancer samples. At the first 

stage, we normalized the genes. In the second stage, the number of genes was 

changed to 44 components using the principal component analysis (PCA). Then we 

performed the inductive clustering algorithm and compared various clustering meth-

ods using internal clustering quality criteria as a criterion for evaluating the effective-

ness of the corresponding clustering method.  

An analysis of the processed data allows us to conclude that the proposed method 

is highly effective since its implementation can significantly reduce the set of compo-

nents of cancer genomic data for subsequent processing. 
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