CEUR-WS.org/Vol-2721/paper594 .pdf

SPANG: A SPARQL Client with Templates,
One-Liners, and Application Programming
Interfaces

Hirokazu Chiba

Database Center for Life Science, Chiba 277-0871, Japan
chiba@dbcls.rois.ac. jp

Abstract. SPARQL is a key component of the Semantic Web, and its
reusability of is crucial for maximizing productivity on the Semantic
Web. While an increasing number of datasets have been published in the
Resource Description Framework (RDF) and the SPARQL standard al-
lows for an interoperable framework for querying the RDF datasets, the
reuse of SPARQL queries remains limited. Herein, we present SPANG,
a framework used to facilitate the reuse of SPARQL queries by using a
template engine, one-liner functionalities, and application programming
interfaces. We demonstrate its use for making SPARQL queries more
reusable; assign a set of metadata for annotating a SPARQL query, which
enables the identification of the SPARQL query and provides useful infor-
mation for the query; parameterize SPARQL queries, which makes each
query reusable under different settings; assign a URI for each query; and
construct a server for providing the indices of SPARQL queries. SPANG
makes SPARQL queries more reusable in the local system or across the
Web and facilitate the construction of an eco-system wherein SPARQL
queries are shared to maximize the productivity of Semantic Web de-
velopers and users. SPANG is available at https://spang.dbcls. jp/.
]

Keywords: SPARQL - template engine - query library - one-liner - API

1 Introduction

An increasing number of datasets have been published in the Resource Descrip-
tion Framework (RDF). SPARQL is the standardized interface to RDF and con-
tributes to the effective reuse of distributed RDF data. Although eco-systems
have been developed for developing SPARQL queries, writing SPARQL codes
is often a burden for Semantic Web developers and users. SPARQL queries
have been written in many projects and are the result of developers’ efforts.
The value of the SPARQL queries accumulated thus far can be maximized by
reusing SPARQL queries. For the effective construction of Semantic Web appli-
cations, the reuse of such queries is invaluable. However, owing to the limitation

Copyright (© 2020 for this paper by its author. Use permitted under Creative Com-

mons License Attribution 4.0 International (CC BY 4.0).

https://spang.dbcls.jp/

Usage: spang2 [options] <SPARQL_TEMPLATE> [pari=vall par2=val2 ...]

Options:
-e, —-—endpoint <ENDPOINT> target SPARQL endpoint
-0, ——outfmt <FORMAT> tsv, json, n-triples (nt), turtle (ttl), rdf/xml (rdfxml), n3, xml, html
-a, —-abbr abbreviate results using predefined prefixes
-v, --vars variable names are included in output (in the case of tsv format)
-S, --subject <SUBJECT> shortcut for specifying subject
-P, --predicate <PREDICATE> shortcut for specifying predicate
-0, --object <OBJECT> shortcut for specifying object
-L, --limit <LIMIT> LIMIT output (use by itself or with -[SPOF])
-F, --from <FROM> shortcut to search FROM specific graph (use alone or with -[SPOLN])
-N, --number shortcut to COUNT results (use by itself or with -[SP0])
-G, --graph shortcut for searching for graph names (use by itself or with -[SP0])
-r, --prefix <PREFIX_FILES> read prefix declarations (default: SPANG_DIR/etc/prefix,”/.spang/prefix)
-n, --ignore ignore user-specific file (/.spang/prefix) for test purpose
-m, --method <METHOD> GET or POST (default: "GET")
-q, —-show_query show query and quit
-f, —-fmt format the query
-i, --indent <DEPTH> indent depth; use with --fmt (default: 2)
-1, --list_nick_name list available nicknames of endpoints and quit
-d, --debug debug (output query embedded in URL, or output AST with --fmt)
-V, --version output version number
-h, --help output usage information

Fig. 1. Usage of the SPANG command

of SPARQL specifications, such as the lack of a parameterization mechanism,
the reuse of these queries remains limited.

We present SPANG and demonstrate its use for making SPARQL queries
more reusable, thereby maximizing the value of the written SPARQL queries;
we assign metadata to SPARQL queries, parameterize the SPARQL queries,
assign a URI for each query, and construct a server for providing queries.

2 SPANG Overview

The SPANG project was commenced with the objective of maximizing the usabil-
ity of SPARQL. SPANG was originally developed as a command-line SPARQL
client [I], and it is now re-implemented in JavaScript using Node.js. Thus, it can
not only be called in the command line but also in the JavaScript code used to
construct a website.

3 Use Cases

The use cases illustrate the following issues involved in making SPARQL queries
more reusable. An example query to the DisGeNET endpoint [2] is presented
in Figure [2| This query retrieves genes associated with a specific disease. The
example query includes metadata at the beginning of the query in the form of
comment lines. The query also includes a parameter for a disease identifier with
a default value of C0751955 (“Brain Infarction”).

Otitle Get genes involved in a specific disease

Qendpoint http://rdf.disgenet.org/sparql/

Oprefix https://raw.githubusercontent.com/hchibal/spang/master/prefix/bio
Q@param argl=C0751955

SELECT DISTINCT ?gene ?score 7gene_label ?source 7gda 7pmid ?description
WHERE {
?gda si0:8I0_000628 umls:{{argl}} , 7gene ;
a 7type ;
$10:8I0_000253 7source ;
$10:SI0_000216/si0:SI0_000300 ?score .
?gene a ncit:C16612 ;
rdfs:label ?7gene_label .
OPTIONAL {
?gda sio0:SI0_000772 7pmid ;
dct:description 7description .
}
}
ORDER BY DESC(?score) ?source 7pmid

Fig. 2. Example query in the SPANG template library

3.1 Use in command line

The Unix command-line environment is available as an interface for the SPANG
template library. While the SPANG templates can be stored in the local system,
users can also call templates that are publicly available across the Web if each
query is assigned a dereferenceable URI. The following example command line
gives a parameter to a local template query file for the DisGeNET endpoint.

spang2 disease_gene.rq disease=C0751955
The template can also be a URL that returns a SPANG template (https://raw.
githubusercontent.com/hchibal/spang/master/library/disgenet/diseasz_
gene.rq). Thus, anyone can host the query libraries on GitHub. Other use cases
include one-liner functionalities, such as

spang2 -e disgenet -N -0 ncbigene:2247
where the query counts the number of triples that have ncbigene:2247 as the
object in the DisGeNET endpoint. The target endpoints and URI prefixes can
be predefined via configuration files. The following command prints the inter-
nally generated SPARQL query according to the command-line options to the
standard output.

spang2 -e disgenet -N -0 ncbigene:2247 -q
Most of these one-liner functionalities are compatible with previous versions of
SPANG [I]. The full usage of the SPANG command is illustrated in Figure

3.2 Use through API

The SPARQL templates can also be called in the JavaScript code used to con-
struct a website. The documentation is available at the project home page. Users
can also execute templates that are predefined and provided by the SPANG
server through the REST API. Accessing the following URI returns the result

https://raw.githubusercontent.com/hchiba1/spang/master/library/disgenet/disease_gene.rq
https://raw.githubusercontent.com/hchiba1/spang/master/library/disgenet/disease_gene.rq
https://raw.githubusercontent.com/hchiba1/spang/master/library/disgenet/disease_gene.rq

of the query with the given parameter: https://spang-portal.dbcls. jp/api/
library/disgenet/disease_gene.rq?argl=C0751955. The following URI re-
turns the list of queries in the library: https://spang-portal.dbcls. jp/api/
library/disgenet.

Users can also obtain the results on the SPANG server by clicking on the
web pages while browsing the templates on the server (https://spang-portal.
dbcls.jp/library/disgenet/disease_gene.rq)).

4 Implementation

The SPARQL templating syntax used in the SPANG framework is an extension
of sparql-doc [3]. Although the use of spargl-doc was originally aimed at the doc-
umentation of SPARQL, this notation is suitable for annotating each SPARQL
query with metadata to increase the usability of the query. Each query, with the
metadata added as comment lines, can be used as a standard SPARQL query.
Furthermore, if a parser is implemented for the comment lines, users can utilize
the metadata to search for useful information about the query. Herein, we further
parameterize the SPARQL queries and consider the parameters of the query as
the metadata of SPARQL. As a syntax for parameterization in SPARQL code,
we use mustache notation [4].

We implemented the SPANG template engine in JavaScript, where the tem-
plate is transformed into an abstract syntax tree, processed using the given pa-
rameters, and then reconstructed into SPARQL to be submitted to an endpoint.
We used Parsing Expression Grammar (PEG) [5] expression of the SPARQL
grammar based on the EBNF of the SPARQL specifications [6]. PEG.js [7]
is a parser generator, and thus, we could generate a custom parser based on
a PEG description. The original implementation of PEG.js of the SPARQL
grammar is in the rdfstore-js project (https://github.com/antoniogarrote/
rdfstore-js). The PEG.js code was modified to fit the use in the case of the
SPANG framework. While other efforts have been made to implement the parser
and formatter of SPARQL [8], we developed a parser and formatter that stringify
the generated abstract syntax tree based on the PEG expression.

We also developed a SPANG server, wherein the SPARQL queries can be
executed in a browser or through a REST API (https://spang.dbcls. jp/).
The SPANG server is developed using Ruby on Rails, and it can run on Docker.
Thus, users can also run a SPANG server on their own.

5 Related Work

SPARQL templating mechanisms have been implemented in various projects.
SPARQL libraries, such as Bioqueries [9], have been implemented based on tem-
plating mechanisms. Bioqueries comprise an effort to collect SPARQL queries as
a community attempt, contributing to the increased findability of the queries.
However, the users should still copy the queries into their own software in spe-
cific templating formats to reuse the queries. In this paper, we present SPANG

https://spang-portal.dbcls.jp/api/library/disgenet/disease_gene.rq?arg1=C0751955
https://spang-portal.dbcls.jp/api/library/disgenet/disease_gene.rq?arg1=C0751955
https://spang-portal.dbcls.jp/api/library/disgenet
https://spang-portal.dbcls.jp/api/library/disgenet
https://spang-portal.dbcls.jp/library/disgenet/disease_gene.rq
https://spang-portal.dbcls.jp/library/disgenet/disease_gene.rq
https://github.com/antoniogarrote/rdfstore-js
https://github.com/antoniogarrote/rdfstore-js
https://spang.dbcls.jp/

framework, where we attempt to build a software network with solid program-
ming interfaces based on the Semantic Web platform.

References

1. Chiba, H., Uchiyama, I. (2017). SPANG: a SPARQL client supporting generation
and reuse of queries for distributed RDF databases. BMC bioinformatics, 18(1), 93.

2. Queralt-Rosinach, N., Pinero, J., Bravo, A., Sanz, F., Furlong, L. 1. (2016).
DisGeNET-RDF: harnessing the innovative power of the Semantic Web to explore
the genetic basis of diseases. Bioinformatics, 32(14), 2236-2238.

3. sparql-doc: Generate HTML documentation from SPARQL queries. https://
github.com/ldodds/sparql-doc

4. Logic-less templates. https://mustache.github.io/

5. Ford, B. (2004, January). Parsing expression grammars: a recognition-based syn-
tactic foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (pp. 111-122).

6. SPARQL 1.1 Query Language, W3C Recommendation 21 March 2013. http://www.
w3.org/TR/sparqlll-query/

7. PEG.js — Parser Generator for JavaScript. https://pegjs.org/

8. SPARQL.js — A SPARQL 1.1 parser for JavaScript. https://github.com/
RubenVerborgh/SPARQL. js

9. Garcia-Godoy, M. J., Navas-Delgado, 1., Aldana-Montes, J. (2011, December). Bio-
queries: a social community sharing experiences while querying biological linked
data. In Proceedings of the 4th international workshop on semantic web applica-
tions and tools for the life sciences (pp. 24-31).

https://github.com/ldodds/sparql-doc
https://github.com/ldodds/sparql-doc
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
https://pegjs.org/
https://github.com/RubenVerborgh/SPARQL.js
https://github.com/RubenVerborgh/SPARQL.js

	SPANG: A SPARQL Client with Templates, One-Liners, and Application Programming Interfaces

