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ABSTRACT 

We present an Artificial Neural Network (ANN) text classifier to 

deal with the task of automatically detecting a tweet as being flood-

related or not. The framework for classifying flood-related tweets 

consists of three basic ANN models. Each model is a different ANN 

type and the final output is determined by a majority rule on the 

individual model outputs. The overall F1 score on the test set was 

0.5405, significantly lower than on the training/validation set, 

suggesting that we overfitted the training set.  

1 INTRODUCTION 

This research was conducted as part of the ‘Flood-Related 

Multimedia Task’ challenge provided by the Multimedia 

Evaluation Benchmark (MediaEval) 2020 [1]. The goal of the task 

is to automatically identify and classify tweets which are relevant 

to flooding in Northeastern Italy. For this binary classification 

problem, we used different types of ANNs to automatically classify 

the tweet’s text [2]. As different types of ANNs might capture 

different characteristics of the ANN input, we chose to implement 

three different types and determine the final decision by using a 

majority rule on the individual ANN outputs. 

2 APPROACH 

2.1 Text Vectorization 

To convert the tweet’s text to a numeric format as required by the 

ANNs input layers we make use of word embeddings [3]. Word 

embeddings are a way to map words onto low dimensional 

(compared to other text numerical representation formats) vectors 

with the important property that words with similar meaning are 

mapped to vectors which are close to each other (in e.g. Euclidean 

distance) in the associated vector space [3]. 

Word embeddings are calculated by ANNs trained on large 

corpora, and many sets of such embeddings for a lot of different 

languages exist. However, rather than using pre-calculated word 

embeddings, we found that including an Embedding layer in our 

models and calculate/learn from scratch the embeddings jointly 

with the classification task produced better F1-scores on the dev. 

set. 

In order to calculate the desired word embeddings, we first tokenize 

text, i.e. decompose it to individual words, symbols, punctuation 

marks etc. Each token is assigned an index and we consider a 

vocabulary of the most frequent tokens. Further, we set the length 

of the text’s representation as a sequence of tokens to a fixed length. 

Both the vocabulary’s size and the text’s length are 

hyperparameters with which one can experiment. 

2.2 Undersampling 

As mentioned in [1] the dataset is skewed/imbalanced; there are 

fewer samples of the positive class (i.e. flood-related) than the 

negative (approximately 20% - 80%). This makes training the 

model hard because during training it is presented with more 

negative samples and consequently ‘learns’ better the negative 

class and misclassifies a lot of positive samples, thus leading to a 

poor F1-score. 

To tackle this issue, we use under sampling as follows: We keep all 

positive samples of the training set and select randomly some (not 

all) of the negative samples in order to have a set with a negative-

positive class ratio closer to one and therefore a more balanced set. 

The value of this ratio is a hyperparameter which can be fine-tuned 

2.3 ANN Models 

Many ANN types for different tasks exist [2]. In this study, we are 

dealing with a binary classification problem whose solution may be 

viewed as a partition of the embeddings space into two sets, one for 

each class. This can be achieved by Multi-Layer Perceptron (MLP) 

added after the Embedding layer of the model. We chose a simple 

architecture of one hidden layer with 32 units having a ReLU 

activation function followed by a single output unit with a sigmoid 

activation function. 

We then build on the previous model by considering a layer of the 

so-called Recurrent Neural Networks (RNN) consisting of 32 

bidirectional LSTM units. RNNs are models where units have 

internal state acting as memory, thus they are capable of processing 

and learning sequence characteristics since they can ‘remember’ 

inputs seen in the past. A typical application of RNNs is time series 

prediction, but since text is a sequence of  (correlated) words they 

are also used a lot in Natural Language Processing (NLP). The Copyright 2020 for this paper by its authors. Use permitted under Creative 
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LSTM layer is placed after the Embeddings layer and on top of that, 

we have the previous MLP structure. 

Finally, we employed another type of ANN capable of handling 

sequences - the Convolutional Neural Network (CNN). Here 

learning a sequence is achieved via a different mechanism which 

exploits the mathematical operation of convolution of the input 

sequence with a small kernel. We thus placed after the Embeddings 

layer two parallel layers with 32 kernels of length 5 each. The 

outputs of those parallel Convolutional layers are then merged and 

being fed into the previous MLP architecture. 

To convert the continuous (between zero and one) ANN output to 

binary (i.e. flood-related input text or not) we use a threshold. Texts 

having output above the threshold are labelled as flood-related (i.e. 

one) and texts having output below the threshold as labelled zero. 

The threshold is chosen for each model separately by maximizing 

the F1-score. Finally, the text’s class was assigned by a majority 

rule on the three models’ output.  

 

3 RESULTS AND DISCUSSION 

3.1 Model setup and performance 

After experimenting with various values, we ended up with a 

vocabulary of size 3000, sequence length of 40, embedding vector 

dimension of 300 and under-sampling ratio of 1.75. The vocabulary 

size and sequence length are small compared to typical Natural 

Language Processing (NLP) applications due to the short form of 

the tweet's text. The architecture of the ANNs used is described 

above. 

ANNs were trained and evaluated individually on the same 

train/validation sets which were created by splitting the devset to 

an 80-20% ratio. The F1-scores on the validation set were 0.59 for 

the MLP, 0.60 for the RNN and CNN. Those scores were obtained 

by choosing thresholds 0.40, 0.65, 0.40 respectively. Finally, we 

combined the three ANN outputs by assigning to each input the 

majority class for the three ANN outputs. We chose this strategy, 

hoping that each ANN would perhaps capture different 

idiosyncrasies of the input. The overall F1 score improved slightly 

to 0.61. Our score on the test set was 0.5405, significantly lower, 

suggesting that we overfitted the training set. 

 

3.2 Limitations of the study 

The main challenge of the task was related to the labelling of the 

training dataset. We noticed that many samples looked flood-

related from a visual inspection but were not labeled as such (some 

example ids are:940319294084202496, 944240672294531073, 

950753737466830940, 1059017654088790018, 

1055172135587536896). Further, we noticed that many positive 

samples are from meteorological alerts. This could maybe restrict 

the training set and explain the difficulties of the model in 

generalizing well and thus, influence the overall model 

performance.   

 

3.3 Outlook - Ways to improve the performance 

Experimenting with simpler text representations such as Bag of 

Words (BOW) and Term Frequency Inverse Document Frequency 

(TF-IDF) vectors and a Logistic Regression classifier revealed that 

taking into account tweet entities such as hashtags, in addition to 

the plain text, improved predictive performance. 

However, due to time limitations, this approach was not 

implemented in our ANN framework. Further, it would require 

more sophisticated tokenization schemes able to extract hashtags, 

than those used for the ANNs input. 

Geographical information of tweets, either in the form of metadata 

(e.g. coordinates, place attribute) or location mentions in the 

tweet’s text could be exploited to ‘geo locate’ the tweet and 

possibly be used as additional inputs to the model. Especially since 

the dev. set focuses on a particular study area [1]. 

Finally, let us mention that this study focused solely on the tweet’s 

text without considering the associated image. A two-branch 

model, where one branch would be the model presented here 

excluding the output layer and the other branch an image classifier 

both feeding the same output layer could be used to handle both 

text and image input. 

 

3.4 Code availability 

The model was implemented as a Google Colab Ipython notebook 

and code is available upon request 

(theo_nikoletopoulos@yahoo.co.uk). 
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