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ABSTRACT

We present the UAI-CNRL submission to MediaEval 2020 task on
Emotion and Theme Recognition in Music. We make use of the
ResNet34 architecture, coupled with a self-attention module to
detect moods/themes in music tracks. The autotagging-moodtheme
subset of the MTG-Jamendo dataset was used to train the model. We
show that the proposed model outperforms the provided VGG-ish
and popularity baselines.

1 INTRODUCTION

Music has been shown to induce a variety of emotions such as
happiness, sadness, and anger [7, 8, 27]. This induction of emotions
can be attributed to different intrinsic properties such as tempo,
rhythm variations, intensity, mode and extrinsic properties such as
the association of music with personal events and previous experi-
ences [12, 23]. These emotional responses could also be one of the
important motivators for humans to listen to music [20-22].

Automatic tagging and detection of emotions of music is a dif-
ficult task considering the subjectivity of human emotions. The
MTG-Jamendo dataset [4] aims at tackling several such autotagging
tasks by providing royalty-free audios of consistent quality with sev-
eral tags for genre, instruments and mood/theme. The Emotion and
Theme Recognition Task of MediaEval 2020 uses the mood/theme
subset of the MTG-Jamendo dataset. The task is as follows - given
audio, automatically detect one or multiple moods/themes out of
56 given tags, for example, fun, sad, romantic, happy [3].

In this paper, we describe our approach (team name: UAI-CNRL)
for this task by using convolutional neural networks to extract
features from the mel-spectrograms of the audios and multi-head
self-attention to predict the mood/theme by processing the ex-
tracted features. Our approach achieves better performance than
the baselines.

2 RELATED WORK

Convolutional neural networks (CNNs) have been successful in
extracting meaningful features for tasks such as image recognition
[10, 14] and object detection [10]. In the field of audio processing,
CNNs have been used for a variety of tasks, such as automatic
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tagging [6], source separation [30], music emotion classification
[16] and speaker identification [18].

Transformer networks which use self-attention layers [28] have
been successful in tackling language tasks involving long-range
dependencies. They have also been used in the field of audio pro-
cessing for many tasks, such as automatic tagging [29], source
separation [5], and speech recognition [2].

A combination of these methods have been demonstrated to
achieve state-of-the-art performance [2, 9, 32]. Inspired by these, we
use convolution layers to extract features from mel-spectrograms
and self-attention layers to process those features to predict the
moods/themes.

3 APPROACH

We make use of a popular convolutional neural network archi-
tecture, the ResNet [10] as a feature extractor to extract compact
representations of our data. We pair this with self-attention [28] in
order to capture long-term temporal attributes of the given data. We
also make use of batch normalization [11] and dropout [24] in order
to further regularize the model. We describe the model architecture
in this section. Our code and trained model are available at this
URLS.

3.1 ResNet34

Residual connections make training deep neural networks easier,
since they address the problem of vanishing gradients. We make
use of a standard ResNet34 architecture to take advantage of this
property. This is preceded by two convolutional layers in order to
reshape the data into a form that can be fed into the ResNet. Another
convolutional layer is used after the ResNet feature extractor to
reduce the number of channels.

3.2 Self-Attention

The MTG-Jamendo dataset consists of tracks of varying lengths, a
majority of which are over 200 seconds. Using self-attention, we
attempt to capture long-range temporal attributes and summarize
the sequence of music representation.

Our model architecture is inspired by the works done in [25], which
uses multi-head attention along with positional encoding. 2 layers,
each consisting of 4 attention heads were used. The input sequence
length and embedding size used were unchanged.

3.3 Data Augmentation

3.3.1 Mixup. Previous submissions to MediaEval 2019 [25] for
this task have shown that Mixup [31] greatly improves the per-
formance of the model being used. Mixup creates a new training
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example by linearly combining two random, existing training sam-
ples - in the feature space as well as in the label space. More formally,
Mixup trains a neural network on convex combinations of pairs of
examples and their labels. This helps the model alleviate unwanted
behaviours, such as memorization, especially since the dataset size
is relatively small.

3.3.2 SpecAugment. SpecAugment [19] is an augmentation tech-
nique used for speech recognition, which involves augmenting the
spectrogram itself, instead of the waveform data. SpecAugment
modifies the spectrogram by warping it in the time axis, masking
blocks of frequency channels, and masking blocks of time steps.
This makes the model more robust to missing information in terms
of the input speech data as well as frequency information.

3.3.3 Other Augmentations. Other transformation techniques,
such as random cropping and random scaling were used to further
augment the given data.

4 TRAINING DETAILS

This section describes the details of data pre-processing, architec-
ture and other training details.

4.1 Data Preparation

We use the mel-spectrograms provided in the MTG-Jamendo dataset
for the purpose of training. Random cropping and scaling are used
to augment and transform the data into a tensor of length 4096
(approximately 87.4 seconds). Additionally, SpecAugment is used
to augment the dataset.

4.2 Architecture and Control Flow

o The input tensor of shape (1, 96, 4096) is divided into 16
segments length-wise, each new segment being of length
256.

e Each segment is then processed through 2 convolutional
layers, in order to obtain a representation with 3 channels.

o The obtained representation is then passed into the ResNet34
feature extractor, followed by a convolutional layer to ob-
tain an intermediate representation.

o The feature maps are then passed through the self-attention
module, followed by a series of linear layers to obtain the
final class scores. Dropout is used to regularise the training
process.

o The model returns the outputs of the self-attention module
and the feature maps (after passing them through the linear
layers). Both outputs are used to compute the loss and
perform backpropagation, but only the outputs of the self-
attention module are used to make predictions.

4.3 Hyperparameters and Other Details

The model was trained with the Adam [13] optimizer, at a learning
rate of 1le-4, for 35 epochs. The values of 1 and S, were set to 0.9
and 0.999 respectively. Binary cross entropy loss was used as the
loss function.
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Table 1: Results

Metric Ours  VGG-ish[3] popularity[3]
ROC-AUC-macro 0.7360 0.7258 0.5000
PR-AUC-macro 0.1275 0.1077 0.03192
precision-macro  0.1639 0.1382 0.0014
recall-macro 0.3487 0.3086 0.0179
F-score-macro 0.1884 0.1657 0.0026
ROC-AUC-micro 0.7865 0.7750 0.5139
PR-AUC-micro 0.1369 0.1409 0.0341
precision-micro 0.1105 0.1161 0.0799
recall-micro 0.4032 0.3735 0.0447
F-score-micro 0.1735 0.1771 0.0573

5 RESULTS

The proposed model produces results that improve on those of the
given VGG-ish and popularity baselines. We obtain an ROC-AUC-
macro metric of 0.7360 and a PR-AUC-macro metric of 0.1275. For
comparison, the baseline VGG-ish model produces an ROC-AUC
macro of 0.7258 and a PR-AUC macro of 0.1077. Detailed results
can be found in Table 1.

6 FUTURE WORK

In this section, we discuss other approaches that we considered
towards the problem statement. These may be used as pointers
towards future work on tasks involving this dataset.

Our approach can be broken down into two parts - first, the
extraction of features from the audio data and second, processing
the extracted features to predict the moods/themes. Both these
parts could be potentially improved upon, and we mention a few
ways to do so below.

With respect to feature extraction:

e Using a wider range of features to aid the classification task
instead of using mel-spectrograms. For example, the LEAF
frontend proposed by [1] can be used for this approach.

e Using self-supervised approach to extract features, such
as wav2vec 2.0 [2]. This would also reduce reliance on
labelled data.

e Using temporal convolutional networks [15] to extract fea-
tures directly from audio instead of using mel-spectrograms.

With respect to the processing of extracted features:

e Using dual path processing inspired by [17] in order to
capture long-term dependencies while also reducing com-
putational load.

e Exploring ways of processing the raw audio data with more
powerful models, such as WaveNet [26] in order to obtain
better insights into the dataset, and theme recognition in
general.

ACKNOWLEDGMENTS
We thank Shell Xu Hu for helpful discussions.



Emotions and Themes in Music

REFERENCES

(1]

(2]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

Anonymous. 2021. A Universal Learnable Audio Frontend. In Sub-
mitted to International Conference on Learning Representations. https:
//openreview.net/forum?id=jM76BCb6F9m under review.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael
Auli. 2020. wav2vec 2.0: A Framework for Self-Supervised Learning
of Speech Representations. (2020). arXiv:cs.CL/2006.11477

Dmitry Bogdanov, Alastair Porter, Philip Tovstogan, and Minz Won.
2020. Emotion and Theme Recognition in Music Using Jamendo. In
Working Notes Proceedings of the MediaEval 2020 Workshop.

Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and
Xavier Serra. 2019. The MTG-Jamendo Dataset for Automatic Music
Tagging. In Machine Learning for Music Discovery Workshop, Interna-
tional Conference on Machine Learning (ICML 2019). Long Beach, CA,
United States. http://hdl.handle.net/10230/42015

Jingjing Chen, Qirong Mao, and Dong Liu. 2020. Dual-path transformer
network: Direct context-aware modeling for end-to-end monaural
speech separation. arXiv preprint arXiv:2007.13975 (2020).

Keunwoo Choi, George Fazekas, and Mark Sandler. 2016. Auto-
matic tagging using deep convolutional neural networks. (2016).
arXiv:cs.SD/1606.00298

Hauke Egermann, Nathalie Fernando, Lorraine Chuen, and Stephen
McAdams. 2015. Music induces universal emotion-related psychophys-
iological responses: comparing Canadian listeners to Congolese Pyg-
mies. Frontiers in psychology 5 (2015), 1341.

Thomas Fritz, Sebastian Jentschke, Nathalie Gosselin, Daniela Samm-
ler, Isabelle Peretz, Robert Turner, Angela D Friederici, and Stefan
Koelsch. 2009. Universal recognition of three basic emotions in music.
Current biology 19, 7 (2009), 573-576.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang,
Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu,
and Ruoming Pang. 2020. Conformer: Convolution-augmented Trans-
former for Speech Recognition. (2020). arXiv:eess.AS/2005.08100
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
2015. Deep Residual Learning for Image Recognition. (2015).
arXiv:cs.CV/1512.03385

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covariate Shift.
(2015). arXiv:cs.LG/1502.03167

Stéphanie Khalfa, Mathieu Roy, Pierre Rainville, Simone Dalla Bella,
and Isabelle Peretz. 2008. Role of tempo entrainment in psychophysi-
ological differentiation of happy and sad music? International Journal
of Psychophysiology 68, 1 (2008), 17-26.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Sto-
chastic Optimization. (2017). arXiv:cs.LG/1412.6980

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Ima-
genet classification with deep convolutional neural networks. Com-
mun. ACM 60, 6 (2017), 84-90.

Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. 2016. Tem-
poral convolutional networks: A unified approach to action segmen-
tation. In European Conference on Computer Vision. Springer, 47-54.
Xin Liu, Qingcai Chen, Xiangping Wu, Yan Liu, and Yang
Liu. 2017. CNN based music emotion classification.  (2017).
arXiv:cs.MM/1704.05665

Yi Luo, Zhuo Chen, and Takuya Yoshioka. 2020. Dual-path RNN: effi-
cient long sequence modeling for time-domain single-channel speech
separation. (2020). arXiv:eess.AS/1910.06379

Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. 2017. Vox-
Celeb: A Large-Scale Speaker Identification Dataset. Interspeech 2017
(Aug 2017). https://doi.org/10.21437/interspeech.2017-950

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret
Zoph, Ekin D. Cubuk, and Quoc V. Le. 2019. SpecAugment: A Simple

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

MediaEval’20, December 14-15 2020, Online

Data Augmentation Method for Automatic Speech Recognition. Inter-
speech 2019 (Sep 2019). https://doi.org/10.21437/interspeech.2019-2680
Mark Reybrouck and Tuomas Eerola. 2017. Music and its inductive
power: a psychobiological and evolutionary approach to musical emo-
tions. Frontiers in Psychology 8 (2017), 494.

Thomas Schifer, Peter Sedlmeier, Christine Stadtler, and David Huron.
2013. The psychological functions of music listening. Frontiers in
psychology 4 (2013), 511.

Roni Shifriss, Ehud Bodner, and Yuval Palgi. 2015. When you’re down
and troubled: Views on the regulatory power of music. Psychology of
Music 43, 6 (2015), 793-807.

John A Sloboda and Patrik N Juslin. 2001. Psychological perspectives
on music and emotion. Music and emotion: Theory and research (2001),
71-104.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine Learn-
ing Research 15, 56 (2014), 1929-1958. http://jmlr.org/papers/v15/
srivastaval4a.html

Manoj Sukhavasi and Sainath Adapa. 2019. Music theme recognition
using CNN and self-attention. (2019). arXiv:cs.SD/1911.07041

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu. 2016. WaveNet: A Generative Model for Raw
Audio. (2016). arXiv:cs.SD/1609.03499

Daniel Vistfjall. 2001. Emotion induction through music: A review of
the musical mood induction procedure. Musicae Scientiae 5, 1_suppl
(2001), 173-211.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention Is All You Need. (2017). arXiv:cs.CL/1706.03762

Minz Won, Sanghyuk Chun, and Xavier Serra. 2019. Toward
interpretable music tagging with self-attention. arXiv preprint
arXiv:1906.04972 (2019).

Jeroen Zegers and Hugo Van hamme. 2019. CNN-LSTM models for
Multi-Speaker Source Separation using Bayesian Hyper Parameter
Optimization. (2019). arXiv:cs.LG/1912.09254

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-
Paz. 2018. mixup: Beyond Empirical Risk Minimization. (2018).
arXiv:cs.LG/1710.09412

Yu Zhang, James Qin, Daniel S. Park, Wei Han, Chung-Cheng Chiu,
Ruoming Pang, Quoc V. Le, and Yonghui Wu. 2020. Pushing the
Limits of Semi-Supervised Learning for Automatic Speech Recognition.
(2020). arXiv:eess.AS/2010.10504


https://openreview.net/forum?id=jM76BCb6F9m
https://openreview.net/forum?id=jM76BCb6F9m
http://arxiv.org/abs/cs.CL/2006.11477
http://hdl.handle.net/10230/42015
http://arxiv.org/abs/cs.SD/1606.00298
http://arxiv.org/abs/eess.AS/2005.08100
http://arxiv.org/abs/cs.CV/1512.03385
http://arxiv.org/abs/cs.LG/1502.03167
http://arxiv.org/abs/cs.LG/1412.6980
http://arxiv.org/abs/cs.MM/1704.05665
http://arxiv.org/abs/eess.AS/1910.06379
https://doi.org/10.21437/interspeech.2017-950
https://doi.org/10.21437/interspeech.2019-2680
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/cs.SD/1911.07041
http://arxiv.org/abs/cs.SD/1609.03499
http://arxiv.org/abs/cs.CL/1706.03762
http://arxiv.org/abs/cs.LG/1912.09254
http://arxiv.org/abs/cs.LG/1710.09412
http://arxiv.org/abs/eess.AS/2010.10504

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 ResNet34
	3.2 Self-Attention
	3.3 Data Augmentation

	4 Training Details
	4.1 Data Preparation
	4.2 Architecture and Control Flow
	4.3 Hyperparameters and Other Details

	5 Results
	6 Future Work
	Acknowledgments
	References

