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Abstract. The design and maintenance of an aero-engine generates a
significant amount of documentation. When designing new engines, engi-
neers must obtain knowledge gained from maintenance of existing engines
to identify possible areas of concern. Firstly, this paper investigate the
use of advanced business intelligence tenchniques to solve the problem
of knowledge transfer from maintenance to design of aeroengines. Based
on data availability and quality, various models were deployed. An asso-
ciation model was used to uncover hidden trends among parts involved
in maintenance events. Classification techniques comprising of various
algorithms was employed to determine severity of events. Causes of high
severity events that lead to major financial loss was traced with the help
of summarization techniques. Secondly this paper compares and evalu-
ates the business intelligence approach to solve the problem of knowl-
edge transfer with solutions available from the Semantic Web. The re-
sults obtained provide a compelling need to have data mining support
on RDF/OWL-based warehoused data.

1 Introduction

The design and maintenance of large and complex engineering systems requires a
significant amount of documentation, particularly if the system being considered
is a turbofan engine used on the current generation of aircraft. These engines are
amongst the most complex machine ever designed, incorporating a wide range
technologies including high temperature materials, complex fluid dynamics and
high speed rotating components.

A fundamental shift is currently occurring in the aerospace industry away
from selling products to providing services. Companies such as Rolls-Royce aim
to make an increasing number of its engine fleet subject to long-term mainte-
nance service agreements [1]. Essential to the success of this market shift is to
design new products with lower and more predictable maintenance costs. To
minimize maintenance costs throughout the engine’s life cycle, engineers must
obtain knowledge gained from maintenance histories of similar products during
the design phase of new products. This will help engineers identify parts most
likely to be problematic throughout the engine’s entire life cycle. It should be



noted that engine design is typically undertaken by a number of teams who are
responsible for individual engine modules, e.g compressor or turbine. Therefore
it is impossible for any single member of a design team to access more than
a fraction of the available documentation. As is widely recognized, information
systems usually develop over time into a set of heterogeneous resources with ill-
defined metadata. As a result, it becomes difficult for engineers to follow a trail
through the resources [2]. The challenge for organizations is therefore to develop
an information system that is both comprehensive and will satisfy the increasing
demands from industry for up-to-date and easily accessible information.

In response to these challenges, the Integrated Products and Services (IPAS)
project is developing a Semantic Web based document repository to support
engineers to design for the aftermarket [3]. Semantic Web technologies are used
for this project because of their ability to easily integrate distributed resources.
In the aerospace industry, maintenance documents are created by service teams
located all over the world, at airports and overhaul facilities. Design documents
are created by multiple design teams, which can also be based at multiple sites.
In this paper, we compare business intelligence techniques with solutions from
the Semantic Web in answering maintenance related questions raised by design
engineers.

The paper is organized as follows. Section 2 explains the motivation behind
our document repository project, and the objectives we are trying to achieve.
Section 3 describes the type of knowledge design engineers specifically sought
from our document repository. Section 4 describes the system we use for data
mining using the business intelligence approach, and the result we obtained from
such system. Section 5 explains the Semantic Web approach, and the kind of
knowledge you can harvest from Semantic Web queries. The paper finishes with
discussion in Section 6 and conclusions in Section 7.

2 Motivation

As is well recognized in engineering design, the use of past experiences and
previously acquired knowledge, either from the designer’s own experiences or
from resources within their organization forms an important part of the design
process. It has been estimated that 90% of industrial design activity is based on
variant design [4], while during a redesign activity up to 70% of the information
is taken from previous solutions [5]. A cursory consideration of these figures
identifies two immediate challenges — how to capture knowledge, and how to
retrieve it. The purpose of our document repository is thus to enable the transfer
and retrieval of knowledge across the organization to support design activities.
Figure 1 shows the key information flow for the different stages in the life of
an engine. Concept design is the first stage of an engine’s life cycle. Given a set
of broad requirements, such as thrust, range of the target aircraft and fuel burn,
engineers determine the approximate dimensions, weight, power and other phys-
ical characteristics for the engine design. The engineers also make estimates of
the manufacturing costs of the engine. In the design stage, engineers transform



the preliminary abstract design into a set of concrete plans that can be used
in production. In production, engines are built according to the design plans.
Traditionally, after production and sales, responsibility for the engine passes
from the manufacturer, to the airlines, who own the engines. The airlines are
responsible for maintaining the engines. This maintenance activity is supported
by the manufacturer’s technical support and operations team. To assist main-
tenance engineers to identify problems before a breakdown occurs, engines are
commonly equipped with sensors for engine monitoring. This monitoring infor-
mation can be analysed for abnormal operating conditions, such as temperature
or pressure. However until fairly recently, the monitoring data was only used to
support maintenance activities, even though it is a rich source of information for
the designers of future engines.
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Fig. 1. Information flow between the different stages in the life of an aero-engine. The
vertical line between production and operation represents the transfer of the engine
from its manufacturer to an airline. Operations is the generic term for maintenance
and aftersale support.

As can be seen in Figure 1, there are interactions and information flow be-
tween neighbouring stages in the production maintenance process. This is due to
the iterative nature of engineering processes. Design knowledge is also passed to
operations in the form of ‘owner’s manuals’. Sometimes, information also passes
between unconnected stages, for example, between operations and engine con-
cept. However, the flow is weak and may take the form of informal and personal
networking between engineers.

While the process works very well, it does have significant disadvantages. In
particular, design engineers are remote from the problems experienced in the
field by operations. Due to the importance of increasing operational reliabil-
ity and minimizing maintenance costs in the new market paradigm of product
support, information gained in the operation of a fleet of engines needs to be
fed back to the designers of subsequent engines. However, the current infor-
mation infrastructure makes this difficult as concept design engineers do not
have access to maintenance knowledge. Similarly, design engineers should con-



sult existing maintenance documents to help design parts with more predictable
maintenance costs.

As a result, we need to strengthen and help formalize the information flow
between the company’s aftermarket operations and the design teams. Figure 2
shows the information and knowledge flows our research aims to build. This
would allow the knowledge gained during the design, production and operation
of an engine to advise the design of the next variant.
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Fig. 2. We aim to facilitate the flow of information gained during the life-cycle of one
engine variant to inform the design of the next variant. The dotted arrows indicate
the flow of design rationale and similar knowledge. The solid arrows represent all other
information flows including real time engine information and design documentation.

The following scenario! illustrates the potential use and benefit from such a
document repository. The scenario involves three separate and different groups of
users that are involved in the life of a jet engine. Front-line maintenance engineers
are involved in the day to day servicing of the engines, and thus responsible for
populating the document repository with maintenance reports and other similar
documents.

During the regular pre-flight checks, a flight crew reported a prob-
lem with a leak from an engine’s bleed air system. Subsequent inspection
which required the removal of the engine revealed that a duct had failed at
a joint due to vibration. After repair, the engine was returned to service,
and a full maintenance event report submitted to the document reposi-
tory.

The document repository can then be used by technical support and oper-
ation engineers, who are responsible for improving the performance of existing

! The scenario is entirely fictitious and does not derive from any real event.



engines. They can use information collected in the repository to monitor trends
that develop over a fleet of engines. Modification can then be designed to miti-
gate any problems found:

Following a review of the maintenance events relating to a specific
engine fleet, a trend was noticed in the high than expected number of
failure of an air duct joint due vibration. To maintain the reliability of
the engine fleet, a modification was developed and implemented.

The same information in the repository will also be used by design engineers
working on a new engine:

The design team for the next variant of this engine reviews the per-
formance of the air bleed system across the fleet to learn from previous
design rationale and operational history. Finite element analysis showed
that a joint failure could occur due to wvibration if certain operational
conditions were met. It was therefore decided that the future variant of
the engine would both eliminate the joint and reroute the duct work. The
revised design costs 50% more than the original. However, the saving
over the life of the engine will be substantial due to lower likelihood of
in-service failure.

The goal of our work can thus be summarized as follows: To feedback and har-
vest knowledge gained from the aftermarket operations documents to help (a) op-
erations engineers in designing modifications to existing engines, and (b) design
engineers in designing the next variant engine for the aftermarket.

3 User Requirements

To understand the scope of knowledge our users want to gain from an engine’s
service history, a questionnaire-based study was conducted with design engineers
from Rolls-Royce [6]. In the questionnaire, engineers were presented a list of ques-
tions relating to maintenance experience with a product. They were asked how
often they might ask them when designing a new product. They were also asked
what other questions they might want to ask. The result of this questionnaire
tells us what are the most important and most common life cycle information
design engineers seek from maintenance documents.

The study identified 39 questions commonly asked by design engineers. Only
a small number of the 39 questions involve complex mathematical and numerical
simulations, which cannot be answered from semantic analysis of maintenance
documents. Most of the questions are concerned with textual and semantic in-
formation stored within the documents. However, to answer even these textual
based questions requires some degree of simple arithmetical manipulation, as
demonstrated by the following examples:

1. What are the common deterioration mechanisms associated with this part?



2. How critical is it if and when this part fails?

3. Are there any other mechanisms, which only occur rarely?

4. How many engine removals have been caused by a deterioration of this part?
5. Which parts dominate the reliability and cost drivers in this engine?

The first two questions in this list is picked for the studies carried out in
this paper. Criticality of an event is ranked using a scoring system provided by
Rolls-Royce.

4 Business Intelligence

Our document repository is based on a collection of web services for processing,
and a web portal for user access [3]. In order to predict a suitable pattern among
the data and to provide statistical analysis and visualisation, we implemented our
data mining models as a web service which can be invoked as an independent
service as shown in 3. This helps design engineers analyze maintenance data
efficiently. The data mining model used comprises of various techniques like
statistical, classification and clustering models. These models are used to answer
the questions posed by the design team in Section 3. By providing a data mining
facet, there can be a definite measure of support and confidence that can be put
forth for each query answered. It can help solve complex queries that involves
calculation of statistics over different attributes to uncover hidden patterns in
maintenance events. Inputs to the model are complex queries which is processed
using the currently available data and the output in the form of XML. The web
service further provide the response in the form of SOAP object.
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Fig. 3. Architecture for data mining via business intelligence.

The Oracle Data Miner 10.2 is used for our study. This data mining tool
requires data to be warehoused in the Oracle 10g database. For our model, we
considered two data sets — Dataset 1 is the largest available subset of data that is
clean and has well-defined, distinct values for the selected mandatory attributes;
Dataset 2 comprises of an outer join of all the important attributes required
for data mining. To raise the quality of existing data, cleaner subsets of data



was retrieved by discarding missing value records from database tables. Data was
then integrated from all the tables by performing join queries. For the association
model, dataset 2 is used, as the focus is to have maximum events comprising of
number of parts. Since few attributes are involved, the possibility of extracting
clean data is high. For the classification model, dataset 1 is used instead. This
is because dataset 1 is the largest available subset of data that is clean and has
well-defined values for mandatory attributes.

Figure 4 shows the result of the association model implemented. It summa-
rizes the parts that are installed or repaired during a given event. In market
basket analysis, 711 rules were observed. After thresholding support and confi-
dence with high values more significant rules were extracted. For instance, Rule
498 (row 2 in Figure 4) suggests that whenever a link (antecedent) is installed or
removed, a Support:Assy (precedent) is always installed or removed everytime,
that is the conditional probability of Support:Assy getting repaired given that
a link has been repaired is 1.0.(P(Support:Assy / Link) = 1) A support of 6.91
suggests the frequency of occurrence of these two events together. The model
was implemented for rules having 3 and 4 as the length of attributes (number of
antecedents).

Rule Id__|If {condition) [Then (association) Confidence (%) |Support (%)
538|MODULE: COMPRESSOR: INTER= 1 |NOT LISTED= 100 6916579
455 |LINK= 1 SUPPORT ASSY=1 100] B.3357973
584|MODULE:IP & LP TURBINE= 1 WOT LISTED= 26471]  7AZFIT.
626 LINK:ASSY= 1 SUPPORTASSY=1 B699] B 44139
149[BRACKETASSY= 1 SUPPORT.ASSY=1 8033 6.3895956]
123|BRACKET-ASSY= 1 LINKCASSY= 1 8033] B.386595¢
207|DED GEN ROTOR= HP BLEED WALWE=1 BEBG4| 6282999
241|DED GEN ROTOR= WMALVE= 1 BBBG: 282999
213|DED GEN ROTOR= LINKCASSY= 1 BEEE4| 6282999
209)| DEI ROTOR= IGNTION UNIT= 1 BBEE: 282999
233| DE ROTOR= SUPPORT ASSY=1 BEEE4| 6282999
108|DED GEN ROTOR= BRACKET.ASSY=1 BBEE: 282999
S00) LINK= 1 WALVE= 1 BEBB4| B 282993

99|DED GEN ROTOR= 1 DED GEN STATOR= 1 GEEG: 202939
85|CO0LER= OIL LOW PRES Siv= 1 98 14192
83|CO0LER= OIL LOW PRES DIFF Stw= 1 Zl 14192
57 |COOLER= DETECTOR=1 i} 14192

B|COOLER= BLADE-ASSY= 1 i) 14192
A LINK.ASSY= 1 HF BLEED VALWE= 1 98.373986| B 36085956
528 LINK:ASSY= 1 ALVE= 1 98.373985| E.3885958|
124|LINKIASSY= 1 BRACKET.ASSY=1 98.373985] B.3685956

Fig. 4. Results of the association model.

Some of the aeroengine parts are installed or replaced along with other parts
as a part of planned maintenance. But there can be parts that would be a result
of unplanned maintenance. This can highlight hidden sequences of parts that
are repaired simultaneously and thus, can be attributed to a design fault in the
mechanics of these parts. It can help the design engineers to build a strategy that
would help prevent such issues in the future events. Therefore, the association
model supports question one in Section 3 by finding the association of parts
involved in a failure event using data mining.

A classification model comprised of Adaptive Nave Bayes Network was trained
using 60% of data and then was made to predict criticality values (in the form of



high, low and medium) on the remaining 40% of data. The models performance,
accuracy and cost was evaluated and is shown in Figure 5. Out of 136 High target
cases, 90.44% of the values was predicted correctly. The cost of predicting the
remaining 10% of False Positive cases is 58.25. The overall predictive confidence

of the model is 92.53%.

Target |Total Actual{Correctly Predicted % |Cost Cost %

High 136| 2044117647 | 58 25906| 6612573
L 428] 5462616822 29.6445) 3387427
Medium 4] 100 0 [1]

Fig. 5. Model Performance for Adaptive Nave Bayes.

Events with high criticality and low cycles and hours range are considered
to be probable design faults and were filtered from dataset 2. Histogram tools
were run on each of the attributes to find the conditions, reactions, symptoms,
part names, cycles and hours associated with a high severity design fault event

as depicted. Figure 6.
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Fig. 6. Common Symptoms for high criticality events.

5 Semantic Web

To answer the two questions selected from Section 3, two SPARQL queries were
run against the triplestore. Figure 7 shows a segment of the output formated as



HTML table. The outputs obtained as a result of the two queries directly answers
the questions posed by the design engineers. Since the data is structured in the
form of knowledge in a knowledge-based repository, it is well-organised.
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Fig. 7. Result of SPARQL Query for question one.

However, the following issues are found. (1) There is no mechanism to ob-
tain statistics and measure of support and confidence involved with the output.
(2) Aggregate functions, count, minimum and maximum cannot be found using
SPARQL queries and hence special characteristics of events cannot be studied.

6 Discussion

Using only Semantic Web tools, it is not possible to obtain statistical measure
associated with the occurrence of the aeroengine parts. There is no mechanism
to visualize the distribution of aeroengine parts in the data graphically. As a
result, understanding the frequency of each part becomes difficult. Further, this
impairs the ability to concentrate on single part or a particular type of incident
for instance, high, low, medium criticality events. In comparison, the business
intelligence approach has definite statistical measures associated with each aero-
engine part and each attribute of the data. Thus one can easily concentrate on
a particular attribute of interest. The data presented is extremely user friendly
and presented using various visualisation and summarisation methods. However,
the data in Semantic Web is intelligent and has an inherent association property
between its attributes in the form of child and parent class. This can be used to
advantage if we can apply data mining techniques using this property. For in-
stance, features of the aeroengine part can be studied as an individual part or as
a part of the parent part and its distribution can be well understood. It can help
to find the problems associated with an aeroengine part by traversing back to
the root or parent class or traversing in the front to the child class given a part.



Currently, in data mining each aeroengine part and attribute is considered to
be separate. For understanding the features of the aeroengine part or an event,
complex nested queries need to be run.

7 Conclusions

In this paper, we studied the problem of knowledge transfer from maintenance
to design in an aeroengine manufacturer. A document repository is created to
provide an access point to a wide array of documents. The problem of knowledge
discovery is studied using the tradition data mining approach in business intelli-
gence and the Semantic Web. It is found that while the tools from the business
intelligence community is more mature and can provide statistical confidence,
the Semantic Web can be used to assist data mining techniques with ontological
rules about the underlying dataset.
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