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Abstract
Content moderation (removing or limiting the distribution of posts based on their contents) is one tool social networks use
to fight problems such as harassment and disinformation. Manually screening all content is usually impractical given the
scale of social media data, and the need for nuanced human interpretations makes fully automated approaches infeasible. We
consider content moderation from the perspective of technology-assisted review (TAR): a human-in-the-loop active learning
approach developed for high recall retrieval problems in civil litigation and other fields. We show how TAR workflows, and a
TAR cost model, can be adapted to the content moderation problem. We then demonstrate on two publicly available content
moderation data sets that a TAR workflow can reduce moderation costs by 20% to 55% across a variety of conditions.
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1. Introduction
Online social networks are powerful platforms for per-
sonal communication, community building, and free ex-
pression. Unfortunately, they can also be powerful plat-
forms for harassment, disinformation, and perpetration
of criminal and terrorist activities. Organizations host-
ing social networks, such as Facebook, Twitter, Reddit,
and others, have deployed a range of techniques to coun-
teract these threats and maintain a safe and respectful
environment for their users.

One such approach is content moderation: removal
(hard moderation) or demoting (soft moderation) of
policy-violating posts [1, 2]. Despite recent progress in
machine learning, online content moderation still heav-
ily relies on human reviews [3]. Facebook’s CEO Mark
Zuckerberg stated that language nuances could get lost
when relying on automated detection approaches, empha-
sizing the necessities for human judgments. 1 Ongoing
changes in what is considered inappropriate content com-
plicates the use of machine learning [4]. Policy experts
have argued that complete automation of content mod-
eration is socially undesirable regardless of algorithmic
accuracy [5].

It is thus widely believed that both human moderation
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1https://www.businessinsider.com/zuckerberg-nuances-conte
nt-moderation-ai-misinformation-hearing-2021-3

and automated classification will be required for online
content moderation for the foreseeable future [1, 5, 6].
This has meant not just capital investments in machine
learning tools for moderation, but also massive ongoing
personnel expenses for teams of human reviewers [7].

Surprisingly, the challenge of reducing costs when
both machine learning and manual review are neces-
sary has been an active area of interest for almost two
decades, but in a completely different area: civil litiga-
tion. Electronic discovery (eDiscovery) projects involve
teams of attorneys, sometimes billing the equivalent of
hundreds of euros per person-hour, seeking to find docu-
ments responsive to a legal matter [8]. As the volume of
electronically produced documents grew, machine learn-
ing began to be integrated in eDiscovery workflows in
the early 2000s, a history we review elsewhere [9].

The result in the legal world has been technology-
assisted review (TAR): human-in-the-loop active learning
workflows that prioritize the most important documents
for review [10, 11]. One-phase (continuous model refine-
ment) and two-phase (with separate training and deploy-
ment phases) TAR workflows are both in use [9, 12].

Because of the need to find most or all relevant docu-
ments, eDiscovery has been referred to as a high recall
review (HRR) problem [13, 14, 15]. HRR problems also
arise in systematic reviews in medicine, sunshine law
requests, and other tasks [16, 17, 18]. Online content
moderation is an HRR problem as well, in that a very
high proportion of inappropriate content should be iden-
tified and removed.

Our contributions in this paper are two-fold. First, we
describe how to adapt TAR and its cost-based evaluation
framework to the content moderation problem. Second,
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we test this approach using two publicly available con-
tent moderation datasets. Our experiments show substan-
tial cost reductions using the proposed TAR framework
over both manual review of unprioritized documents and
training of prioritized models on random samples.

2. Background
Content moderation on online platforms is a neces-
sity [19, 20] and has been argued by some to be the defin-
ing feature of an online platform [6]. Despite terms of
service and community rules on each platform, users
produce inappropriate content, particularly when anony-
mous [21]. Inappropriate content includes toxic content
such as hate speech [22], offensive content [23], and mis
/ disinformation [4, 23]. It also includes content that is
inappropriate for legal or commercial reasons, such as
potential copyright violations [5, 24].

The identification of toxic content can require subtle
human insight [4, 22], both due to attempts at obfuscation
by posters, and because the inappropriateness of the
content is often tied to its cultural, regional, and temporal
context [1, 3]. Mis- and disinformation often consists
of subtle mixtures of truthful and misleading content
that require human common sense inferences and other
background knowledge [4, 23].

Social media organizations have deployed numerous
techniques for implementing community policies, includ-
ing graph- and time-based analyses of communication
patterns, user profile information, and others [25]. Our
focus here, however, is on methods that use the content
of a post.

Content monitoring falls into three categories: man-
ual moderation, text classification, and human-in-the-
loop methods. The latter two approaches leverage ma-
chine learning models and are sometimes collectively
referred to as algorithmic content moderation in policy
research [5].

Manual moderation is the oldest approach, dating back
to email mailing lists. It is, however, extremely expensive
at the scale of large social networks and suffers potential
human biases. Additionally, mental health concerns are
an issue for moderators exposed to large volumes of toxic
content [25, 26, 27].

The simplest text classification approaches are key-
word filters, but these are susceptible to embarrass-
ing mistakes2 and countermeasures by content cre-
ators. More effective text classification approaches to
content moderation are based on supervised machine
learning [28, 29]. Content types that have been ad-
dressed include cyberbullying [29, 30, 31, 32], hate speech

2https://www.techdirt.com/articles/20200912/11133045288/p
aypal-blocks-purchases-tardigrade-merchandise-potentially-viol
ating-us-sanctions-laws.shtml

[22, 31, 33, 34, 35, 36] or offensive language in general
[23, 37, 38, 39, 40, 41, 42].

However, some moderation judgments are inevitably
too subtle for purely automated methods3, particularly
when content is generated with the intent of fooling au-
tomated systems [1, 25, 43]. Content that is recontextual-
ized from the original problematic context, for example,
through reposting, screenshotting, and embedding in
new contexts complicates moderation [2]. Additionally,
bias in automated systems can also arise both by learn-
ing from biased labels and from numerous other choices
in data preparation and algorithmic settings [27, 44, 45].
Biased models risk further marginalizing and dispropor-
tionately censoring groups that already face discrimina-
tion [1]. Differences in cultural and regulatory contexts
further complicate the definition of appropriateness, cre-
ating another dimension of complexity when deploying
automated content moderation [4].

Human-in-the-loop approaches, where AI systems ac-
tively manage which materials are brought to the at-
tention of human moderators, attempt to address the
weaknesses of both approaches while gathering training
data to support supervised learning components [25, 46].
Filtering mechanisms that proactively present only ap-
proved content (pre-moderation) and/or removal mecha-
nisms that passively take down inappropriate ones are
used by platforms depending on the intensity [4]. Re-
viewing protocols could shift from one to the other based
on the frequency of violations or during a specific event,
such as elections4. Regardless of the workflows, the core
and arguably the most critical components is reviews.
However, the primary research focus of human-in-the-
loop content moderation has been on classification algo-
rithm design and bias mitigation, rarely on the investiga-
tion of the overall workflow.

Like content moderation, eDiscovery is a high recall
retrieval task applied to large bodies of primarily tex-
tual content (typically enterprise documents, email, and
chat) [11, 12]. Both fixed data set and streaming task
structures have been explored, though the streaming
context tends to bursty (e.g., all data from a single person
arriving at once) rather than continuous. Since cost min-
imization is a primary rationale for TAR [47], research
on TAR has focused on training regimens and workflows
for minimizing the number, or more generally the cost,
of documents reviewed [9, 12]. A new TAR approach is
typically evaluated for its ability to meet an effectiveness
target while minimizing cost or a cost target while maxi-
mizing effectiveness [18, 48, 49]. This makes approaches
developed for TAR natural to consider for content mod-
eration.

3https://venturebeat.com/2020/05/23/ai-proves-its-a-poor-su
bstitute-for-human-content-checkers-during-lockdown/

4https://www.washingtonpost.com/technology/2020/11/07/f
acebook-groups-election/
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3. Applying TAR to Content
Moderation

In most TAR applications, at least a few documents of
the (usually rare) category of interest are available at
the start of the workflow. These are used to initialize an
iterative pool-based active learning workflow [50]. Re-
viewed documents are used to train a predictive model,
which in turn is used to select further documents based
on predicted relevance [51], uncertainty [52], or compos-
ite factors. Workflows may be batch-oriented (mimicking
pre-machine learning manual workflows common in the
law) or a stream of documents may be presented through
an interactive interface with training done in the back-
ground. These active learning workflows have almost
completely displaced training from random examples
when supervised learning is used in eDiscovery.

Two workflow styles can be distinguished [9]. In a
one-phase workflow, iterative review and training simply
continues until a stopping rule is triggered [49, 53, 54].
Stopping may be conditioned on estimated effectiveness
(usually recall), cost limits, and other factors [53, 55, 56].
Two-phase workflows stop training before review is fin-
ished, and deploy the final trained classifier to rank the
remaining documents for review. The reviewed docu-
ments are typically drawn from the top of the ranking,
with the depth in the ranking chosen so that an estimated
effectiveness target is reached [18, 48]. Two-phase work-
flows are favored when labeling of training data needs to
be done by more expensive personnel than are necessary
for routine review.

The cost of both one- and two-phase TAR workflows
can be captured by in a common cost model [9]. The
model defines the total cost of a one-phase review termi-
nated at a particular point as the cost incurred in review-
ing documents to that point, plus a penalty if the desired
effectiveness target (e.g., a minimum recall value) has not
been met. The penalty is simply the cost of continuing
on to an optimal second-phase review from that point,
i.e. the minimum number of prioritized documents is
reviewed to hit the effectiveness target. For a two-phase
workflow, we similarly define total cost to be the cost
of the training phase plus the cost of an optimal second
phase using the final trained model.

These costs in both cases are idealizations in that there
may be additional cost (e.g. a labeled random sample) to
choose a phase two cutoff citecikmpaper. However, the
model allows a wide range of workflows to be compared
on a common basis, as well as allowing differential costs
for review of positive vs. negative documents, or phase
one vs. phase two documents.

While developed for eDiscovery, the above cost model
is also a good fit for content moderation. As discussed
in the previous section, the human-in-the-loop modera-

shut up mind your own business and go f*** some one
else over

(a) Wikipedia collection.

: being in love with a girl you dont even know yours is
sadder
: f*** off you f***ing c***!

(b) ASKfm collection

Figure 1: Example content in the collections

tion approaches used in social media are complex, but in
the end reduce to some combination of machine-assisted
manual decisions (phase one) and automated decisions
based on deploying a trained model (phase two). Opera-
tional decisions such as flagging and screening all posts
from an account or massive reviewing of posts related
to certain events [4, 6] are all results of applying previ-
ously trained models, which is also a form of deployment.
Also, broadly applying the model to filter the content
vastly reduces moderation burden when similar content
is rapidly being published on the platform with the risk
of falsely removal [4]. We claim no optimal for this spe-
cific simplified model in evaluating content moderation,
but an initial effort for modeling the human-in-the-loop
moderation process.

When applying the model to content moderation, how-
ever, we assume uniform review costs for all documents.
This seems the best assumption given the short length
of texts reviewed and what is known publicly about the
cost structure of moderation [6].

In the next section, we describe our experimental set-
ting for adapting and evaluating TAR for content moder-
ation.

4. Experiment Design
Here we review the data sets, evaluation metric, and
implementation details for our experiment.

4.1. Data Sets
We used two fully labeled and publicly available con-
tent moderation data sets with a focus on inappropriate
user-generated content. The Wikipedia personal attack
data set [32] consists of 115,737 Wikipedia discussion
comments with labels obtained via crowdsourcing. An
example of the comment is presented in Figure 1(a) Eight



annotators assigned one of five mutually exclusive la-
bels to each document: Recipient Target, Third Party
Target, Quotation Attack, Other Attack, and No Attack
(our names). We defined three binary classification tasks
corresponding to distinguishing Recipient Target, Third
Party Target, or Other Attack from all other classes. (Quo-
tation Attack had too low a prevalence.) A fourth binary
classification task distinguished the union of all attacks
from No Attack. A document was a positive example if 5
or more annotators put it in the positive class. Proportion
of the positive class ranged from 13.44% to 0.18%.

The ASKfm cyberbullying dataset [29] contains 61,232
English utterance/response pairs, each of which we
treated as a single document. An example of the con-
versation is presented in Figure 1(b). Linguists annotated
both the poster and responder with zero or one of four
mutually exclusive cyberbullying roles, as well as an-
notating the pair as a whole for any combination of 15
types of textual expressions related to cyberbullying. We
treated these annotations as defining 23 binary classifica-
tions for a pair, with prevalence of the positive examples
ranging from 4.63% to 0.04%.

For both data sets we refer to the binary classification
tasks as topics and the units being classified as documents.
Documents were tokenized by separating at punctuation
and whitespace. Each distinct term became a feature. We
used log tf weighting as the features for the underlying
classification model. The value of a feature was 0 if not
present, and else 1+ 𝑙𝑜𝑔(𝑡𝑓), where 𝑡𝑓 is the number of
occurrences of that term in the document.

4.2. Algorithms and Workflow
Our experiments simulated a typical TAR workflow. The
first training round is a seed set consisting of one ran-
dom positive example (simulating manual input) and one
random negative example. At the end of each round, a
logistic regression model was trained and applied to the
unlabeled documents. The training batch for the next
round was then selected by one of three methods: a ran-
dom sampling baseline, uncertainty sampling [52], or
relevance feedback (top scoring documents) [51]. Vari-
ants of the latter two are widely used in eDiscovery [57].
Labels for the training batch were looked up, the batch
was added to the training set, and a new model trained to
repeat the cycle. Batches of size 100 and 200 were used
and training continued for 80 and 40 iterations respec-
tively, resulting in 8002 coded training documents at the
end.

We implemented the TAR workflow in libact5 [58],
an open-source framework for active learning experi-
ments. We fit logistic regression models using Vowpal
Wabbit6 with default parameter settings. Our experiment

5https://github.com/ntucllab/libact
6https://vowpalwabbit.org/

framework is available on GitHub7.

4.3. Evaluation
Our metric was total cost to reach 80% recall as described
in Section 3. This was computed at the end of each train-
ing round as the sum of the number of training doc-
uments, plus the ideal second phase review cost as a
penalty, which is the number of additional top-ranked
documents (if any) needed to bring recall up to 80%. Rank-
ing was based on sorting the non-training documents by
probability of relevance using the most recent trained
model. Note that we experimented with 80% recall as
an example. However, the TAR workflow is capable of
running with arbitrary recall target, such as 95% for sys-
tematic review [18, 56].

In actual TAR workflows, recall would be estimated
from a labeled random sample. Since the cost of this sam-
ple would be constant across our experimental conditions
we used an oracle for recall instead.

5. Results and Analysis
Our core finding was that, as in eDiscovery, active selec-
tion of which documents to review reduces costs over
random selection. Figure 2 shows mean cost to reach
80% recall over 20 replications (different seed sets and
random samples) for six representative categories. On all
six categories, all TAR workflows within a few iterations
beat the baseline of reviewing a random 80% of the data
set (horizontal line labeled Manual Review).

The Wikipedia Attack category is typical of low to
moderate prevalence categories (𝑝 = 0.1344). Uncer-
tainty sampling strongly dominates both random sam-
pling (too few positives chosen) and relevance feedback
(too many redundant positives chosen for good training).
Costs decrease uniformly with additional training. We
plot 99% confidence intervals under the assumption that
costs are normally distributed across replicates. Costs
are not only higher for relevance feedback, but less pre-
dictable.

The ASKfm Curse Exclusion (𝑝 = 0.0169) and
Wikipedia Other attack (𝑝 = 0.0019) category are typi-
cal low prevalence categories. Uncertainty sampling and
relevance feedback act similarly in such circumstances:
even top scoring documents are at best uncertainly posi-
tive. Average cost across replicates levels off and starts to
increase after 44 iterations for uncertainty sampling and
45 iterations for relevance feedback. This is the point at
which additional training no longer pays for itself by im-
proving the ranking of documents. For this category (and
typically) this occurs shortly before 80% recall is reached

7https://github.com/eugene-yang/TAR-Content-Moderation
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Figure 2: Total cost for TAR alternatives to identify 80% of positive documents for Wikipedia Attack, Other Attack, and
Recipient Attack, and ASKfm Curse Exclusion, General Insult, and Sexism classifications. Values are averaged over 20 replicates,
and a 99% confidence interval on costs is shown as shading around each curve. Horizontal line is cost to review a random
80% of the data set.

on the training data alone (iteration 48 for uncertainty
sampling and iteration 52 for relevance feedback).

Task such as the ASKfm Sexism category (𝑝 = 0.0030)
that deals with nuances in human languages requires
more training data to produce a stable classifier. While
obtaining training data by random sampling stops reduc-
ing the cost after the first iteration, uncertainty sampling
and relevance feedback continue to take advantage of
additional training data to minimize the cost and become
more predictable.

Note that the general relationship between the preva-
lence of the task and the cost of reaching a certain recall
target using TAR workflows is discussed Yang et al. [9].

Table 1 looks more broadly at the two datasets, averag-
ing costs both over all topics and over 20 replicate runs
for each topic for batch sizes of both 100 and 200 . By
20 iterations with batch size of 100 (2002 training doc-
uments), TAR workflows with both relevance feedback
and uncertainty sampling significantly reduce costs ver-
sus TAR with random sampling. (Significance is based on
paired t-tests assuming non-identical variances and mak-
ing a Bonferroni correction for 72 tests.) All three TAR
methods in turn dominate reviewing a random 80% of
the dataset, which costs 92,590 for Wikipedia and 90,958
for ASKfm.

The improvement over cost plateaued after the train-

ing sets reached 5000 documents for ASKfm but continue
for Wikipedia. Categories in Wikipedia (𝑝 = 0.1344
to 0.0018) are generally more frequent comparing to
ASKfm (𝑝 = 0.0463 to 0.001), providing more advan-
tage for training to identify more positive documents.
Larger batch size slightly reduce the improvement as the
underlying classifiers are retrained less frequently. In
practice, the sizes are depending on the cost structure of
reviewing and specific workflows in each organization.
However, as the classifiers are frequently updated with
more coded documents, the total cost would be reduced
over the iterations.

Besides the overall cost reduction, Figure 3 shows
a heatmap of mean precision across 20 replicates for
batches 1 to 81 with batch size of 100, to give insight
into the moderator experience of TAR workflows. Pre-
cision for relevance feedback starts high and declines
very gradually. Uncertainty sampling maintains rela-
tively constant precision. For the very low prevalence
category Curse Exclusion we cut off the heatmap at 52
iterations for relevance feedback and 48 iterations for
uncertainty sampling since on average 80% recall is ob-
tained on training data alone by those iterations. For
both categories, even applying uncertainty sampling that
is intended to improve the quality of the classifier im-
proves the batch precision over the random sampling be



Table 1
Total review cost to reach 80% recall. Values are averaged over all topics for a data set and 20 replicates. Percentages show
relative cost reduction over the random sample training baseline. A * indicates that the difference is statistically significant
over the random sample training baseline with 99% confidence by conducting paired t-test with Bonferroni correction.

ASKfm Wikipedia
batch # Train Random Relevance Uncertainty Random Relevance Uncertainty

100 202 47685.53 *49833.73 (-4.50) *50273.21 (-5.43) 52948.45 *60751.69 (-14.74) 52210.00 ( 1.39)
1002 46327.93 *43329.31 ( 6.47) *42723.12 ( 7.78) 49010.71 52931.28 ( -8.00) *39879.78 (18.63)
2002 45139.15 *38179.79 (15.42) *37938.19 (15.95) 47805.25 46673.34 ( 2.37) *29387.06 (38.53)
3002 44148.28 *34909.72 (20.93) *34719.50 (21.36) 47065.66 *38964.91 ( 17.21) *25676.82 (45.44)
4002 43731.25 *33439.69 (23.53) *32795.05 (25.01) 47234.75 *34408.14 ( 27.16) *24202.29 (48.76)
5002 43469.91 *32261.33 (25.78) *31957.57 (26.48) 47125.79 *31267.88 ( 33.65) *22746.94 (51.73)
6002 42973.85 *31767.73 (26.08) *31384.51 (26.97) 47300.02 *28945.59 ( 38.80) *21922.42 (53.65)
7002 42563.09 *30567.00 (28.18) *30502.95 (28.33) 47086.42 *27356.89 ( 41.90) *21301.92 (54.76)
8002 42385.43 *30708.85 (27.55) *30441.77 (28.18) 47106.34 *25949.51 ( 44.91) *21144.28 (55.11)

200 202 47685.53 *49302.36 (-3.39) *49339.93 (-3.47) 52948.45 *58866.41 (-11.18) 55747.35 (-5.29)
1002 46327.93 45014.51 ( 2.84) 44733.10 ( 3.44) 49010.71 *55302.14 (-12.84) *42896.71 (12.47)
2002 45139.15 *40473.12 (10.34) *39894.98 (11.62) 47805.25 49968.88 ( -4.53) *33981.56 (28.92)
3002 44148.28 *37050.02 (16.08) *36902.63 (16.41) 47065.66 42521.55 ( 9.65) *28332.55 (39.80)
4002 43731.25 *35310.13 (19.26) *34888.22 (20.22) 47234.75 *37492.98 ( 20.62) *25667.95 (45.66)
5002 43469.91 *33690.33 (22.50) *33519.15 (22.89) 47125.79 *34933.90 ( 25.87) *24070.44 (48.92)
6002 42973.85 *32425.25 (24.55) *32612.13 (24.11) 47300.02 *33004.90 ( 30.22) *22839.39 (51.71)
7002 42563.09 *31488.77 (26.02) *31813.08 (25.26) 47086.42 *31664.04 ( 32.75) *22084.88 (53.10)
8002 42385.43 *31198.75 (26.39) *31171.80 (26.46) 47106.34 *29346.76 ( 37.70) *21837.84 (53.64)

Figure 3: Precision in each batch for TAR workflows on Wikipedia Attack(𝑝 = 0.1344) and ASKfm Curse Exclusion(𝑝 =
0.0169) classifications. The x-axis shows the iteration number. A lighter color in an iteration block indicates higher precision.

a significant amount.

6. Summary and Future Work
Our results suggest that TAR workflows developed for
legal review tasks may substantially reduce costs for
content moderation tasks. Other legal workflow tech-
niques, such as routing near duplicates and conversa-
tional threads in batches to the same reviewer, may be
worth testing as well.

This preliminary experiment omitted complexities that
should be explored in more detailed studies. Both con-
tent moderation and legal cases involve (at different time

scales) streaming collection of data, and concomitant con-
straints on the time available to make a review decision.
Batching and prioritization must reflect these constraints.
Moderation in addition must deal with temporal variation
in both textual content and the definitions of sensitive
content, as well as scaling across many languages and
cultures. As litigation and investigations become more
international, these challenges may be faced in the law as
well, providing opportunity for the legal and moderation
fields to learn from each other.
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