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Abstract

Learning the behavior of natural phenomena automatically
from the data has gained much traction these last years. How-
ever, in most real world scenarios, the environment in which
the data samples are acquired is varying and may not be the
same for each data sample. This is due to different circum-
stances e.g. acquisition in different spatial locations, or sim-
ply experimental settings which slightly differ. This severely
hinders the training process, and makes the standard learn-
ing framework inapplicable. In this work, we propose a novel
framework for modeling physical systems in this context,
where we are able to leverage the data across different envi-
ronments in order to learn the underlying dynamical systems,
ensuring generalization without compromising the model’s
expressiveness and predictive performance. We instantiate
our framework on two different families of dynamical sys-
tems, proving that our approach yields superior results over
the classical learning approach as well as against competitive
baselines. Finally, we also show that we are also able to ac-
celerate and improve the learning for environments that have
never been seen before.

Introduction
Often, natural phenomena may be difficult to understand
and comprehend due to the complex and nonlinear interac-
tions between composing elements, making it cumbersome
to derive a mathematical model describing it. In this con-
text, a data-driven approach arises as a powerful alternative
to classical modeling methods, as an unknown model can
be learned automatically from the data. Recently, much ef-
fort has been focused in this direction (Giannakis and Majda
2012; Mangan et al. 2017), with a particular emphasis on
using neural networks (Raissi, Perdikaris, and Karniadakis
2019; Chen et al. 2018; Ayed et al. 2019) for treating cases
where the underlying processes are largely unknown. De-
spite promising results, these methods usually postulate an
idealized setting where the data is abundant and the environ-
ment in which it is acquired is always the same. However,
in practice, this is never the case as obtaining real world
data samples may be expensive. Perhaps more importantly,
the environment in which they are acquired may vary. These
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changes can be caused by different factors: For example, in
climatic modeling, there are external forces such as the Cori-
olis force that varies in different spatial locations (Madec
et al. 2019), or in cardiac computational model parameters
need to be personalized for each patient (Neic et al. 2017).

The classical learning paradigm in this context is to treat
all the data as independent and identically distributed, thus
disregarding the discrepancies between the environments.
As this assumption is not valid, it leads to a biased solu-
tion and results in an average model that performs poorly.
Conversely, one may also choose to avoid making this as-
sumption by splitting the data from different environments
and learning one dynamical system per environment, sep-
arately. However, this ignores the similarities between en-
vironments and would severely affect generalization perfor-
mance, specifically in settings where per-environment data
is limited.

In this work, our goal is to take into account the differ-
ence between environments and make use of the similar-
ities across them. Thus, we propose the LEarning Across
Dynamical Systems (LEADS) framework, a novel learning
methodology where the dynamics are decomposed into two
components, one shared across all environments, and an-
other that takes into account the dynamics that cannot be
expressed by the shared component and only those. This al-
lows us to leverage the data from similar environments auto-
matically, without compromising the expressiveness of the
model. We demonstrate the effectiveness of our framework
on two standard examples of dynamics given by differen-
tial equations: the Lotka-Volterra predator-prey model, ex-
pressed as an ODE, and the Gray-Scott reaction-diffusion
equations, expressed as PDEs. Finally, we also show that our
method accelerates and improves learning for similar unseen
environments.

Approach
Problem Setting
We consider the problem of learning unknown physical pro-
cesses with data acquired from different environments. For
each environment e ∈ E, we assume that the data is gener-
ated from an unknown governing differential equation:

dXt

dt
= fe(Xt) (1)



defined over a finite time interval [0, T ] where the state X is
either vector-valued, i.e. we have Xt ∈ Rd (Lotka-Volterra
equations in the section Experiments) or is a d-dimensional
vector field over a bounded spatial domain Ω ∈ Rk, i.e. for
t ∈ [0, T ] and x ∈ Ω, Xt(x) ∈ Rd. As stated above, modi-
fications in the environment have an impact on dynamics of
the system and thus the evolution terms fe are expected to be
different. Nevertheless, we do assume they yield some form
of similarity between environments: as we will see in the fol-
lowing, this is not a necessary condition for our framework
to be applicable, but this is what will allow us to leverage the
data from the other environments.

As in Arjovsky et al. (2020), we choose to not discard the
information from where the data was collected. We construct
our training set with training sample (e, {Xe,i}i=1,...,Ne

) ∈
D. Each sample is thus composed of the environment identi-
fier e as well as a set of trajectories where each Xe,i, denot-
ing here the i-th trajectory in the environment e, is a function
verifying Equation 1.

Related Work
To make the prediction performance invariant across en-
vironments, IRM (Arjovsky et al. 2020) aims at finding a
classifier that retains the correlations independent of differ-
ent environments by excluding other spurious environment-
related ones. However, in the context of dynamical systems,
modeling bias in each environment is as important as mod-
eling the invariant information, as both of them are indis-
pensable for prediction. This makes IRM incompatible with
our setting. Spieckermann et al. (2015); Bird and Williams
(2019) use RNNs conditioned on an environment code to
perform biased learning in different environments. Nonethe-
less, the similarity between environments are not explicitly
exploited as common invariant dynamical information.

In terms of robustness at test time, our formulation with
common term is related to Multi-Task Learning (MTL) and
Distributionally Robust optimization (DRO). Baxter (2000)
suggests that jointly learning related tasks in MLT can po-
tentially result in better generalization than models learned
individually from each task. DRO approaches such as Bi-
etti et al. (2019); Staib and Jegelka (2019) suggest that, in
general loss minimization, imposing certain norm penalty
on neural networks (or other models) can encourage better
generalization.

The Proposed Framework: LEADS
As the dynamical systems in equation (1) are unknown, we
will learn them from the data by parametrizing the evolution
terms fe with neural networks as in Ayed et al. (2019); Chen
et al. (2018). The problem now lies in how these terms will
be instantiated. We consider decomposing the dynamics in
two components one g ∈ F shared across environments,
and another environment dependent component he ∈ F ,
such that if F is large enough, their should exist a couple
(g, he) ∈ F2 such that by their sum, we recover the dynam-
ics for environment e, i.e.

∀e ∈ E, fe = g + he (2)

The general idea here is that as g is the same for each
environment it can be learned using all data points, across
all environments. However, this decomposition yields a po-
tentially infinite number of solutions, and in particular the
trivial solution obtained by setting g to be the null function:
in this case, data across environments cannot be leveraged.

In order to avoid the aforementioned trivial solution, we
would like the shared function g to explain the dynamics
as much as possible, and in turn make the environment de-
pendent function he be as small as possible. The following
constrained optimization problem embeds this general idea:

min
g,he∈F

∑
e

‖he‖2 subject to

∀(e,Xe,i
t ) ∈ D, dXe,i

t

dt
= (g + he)(X

e,i
t ) (3)

Let us consider the limit case where the dynamics are the
same across environments, i.e. ∀e ∈ E, fe = f : this objec-
tive will then yield as solution the couple (g = f, h = 0),
meaning that the common information, which is all there is,
will entirely be captured by g as expected. This will benefit
its generalization performance as all the data will be used,
even those from different environments.

We will now instantiate our method, providing a practical
implementation to solve the previous objective. In practice,
we do not have access to the data trajectories at every instant
t but only to a finite number of snapshots {Xi

k∆t}0≤k≤T/∆t

at a temporal resolution ∆t. We consider the Lagrangian for-
mulation of the proposed objective as our training loss. In-
stead of comparing the evolution terms as in Equation 3, we
directly compare the trajectories induced by these instead12:

L(g, h, λ) =
∑
e∈E

(
1

λ
‖he‖2 +

Ne∑
i=1

K∑
k=1

∥∥∥Xe,i
k∆t − X̃

e,i
k∆t

∥∥∥2
)

(4)
where X̃e,i

k∆t = Xe,i
0 +

∫ k∆t

0
(g+ he)(X̃

i
s) ds, which are the

trajectory states starting from Xe,i
0 solved by a DE solver

with g + he up to t = k∆t. Note that λ is treated as divisor
under ‖he‖ rather than a multiplier of the constraints. This
is equivalent to optimize the original Lagrangian but more
friendly with the gradient-descent-based methods when λ is
very large. With an adequate algorithm in practice optimiz-
ing g, h and λ, we should arrive at the optimum g and he
when λ → +∞. However, solving such optimization prob-
lem is difficult as a varying λ changes constantly the loss
surface, which makes the learning difficult in the context
of dynamical system. We therefore treat the λ as a hyper-
parameter for each experiment, which should not affect the
non-nullity of g even though in this case the constraints in
Equation 3 will not be perfectly satisfied at optimum.

It is important to note that LEADS is actually independent
of the choice of the function space F . We choose here neu-
ral networks for its expressiveness, in order to validate our
framework. One can apply LEADS to any feasible function
space expressed by other data-driven methods.

1Note that both are equivalent when ∆t tends to 0.
2Directly comparing the (approximate) evolution terms is pos-

sible using finite differences, but led to worse results.



Method L-V (#E = 4) L-V (#E = 10) G-S (#E = 3)

MSE train MSE test MSE train MSE test MSE train MSE test

Env. Indep. 4.79e-1 7.00±1.71 e-1 4.57e-1 5.08±0.56 e-1 1.55e-2 1.43±0.15 e-2
Env. Dep. Sum 6.87e-6 1.26±1.21 e-2 7.32e-6 1.22±1.68 e-2 8.48e-5 6.43±3.42 e-3
LEADS no min. 4.89e-6 3.33±3.14 e-3 3.28e-6 3.07±2.58 e-3 7.65e-5 5.53±3.43 e-3

LEADS 8.15e-6 2.36±2.16 e-3 7.63e-6 1.77±1.58 e-3 8.60e-5 3.38±3.31 e-3

Table 1: Comparison between LEADS and baselines for Lotka-Volterra (in 4 and 10 envs.) and Gray-Scott equations (in 3 envs.).

(a) (b)

Figure 1: Comparison between test trajectories (blue) and ground truth (red), shown in phase space. Blue trajectories are
predicted by (a) Env. Dep. Sum and (b) LEADS for Lotka-Volterra in 4 environments (env. 1 to 4 from left to right).

Experiments
We conduct our experiments for two complex nonlinear dy-
namical systems. The first one is an ODE-driven biologi-
cal dynamical system, and the second one is a PDE-driven
reaction-diffusion model in which we find many complex
behaviors.

Lotka-Volterra Equation We consider this classical
model (Lotka 1926), frequently used for describing the dy-
namics of interaction between a pair of predator and prey in
an ecosystem. The dynamics follow the equations:

dx

dt
= αx− βxy, dy

dt
= δxy − γy

where x, y are the quantity of the predator and the prey,
α, β, γ, δ define how two species interact. In fact, by a
proper rescaling one can absorb β and δ into x and y. We
therefore leave β, δ constant by setting β = δ = 1 across
all environments and let α, γ depend on the environments.
The nonlinear interaction between two species are therefore
non-environment component and the linear terms are linked
to environments.

We thus define the parameter θe = (αe, γe) for each envi-
ronment e. Note that choosing θe determines consequently
the second fixed point of the system (γe, αe), around which
the trajectories orbit. The system state is Xt = (xt, yt).
The initial conditions are fixed across the environments, i.e.
∀e,Xe,i

0 = Xi
0. Starting from the same initial condition

Xi
0 = (xi0, y

i
0), we simulate only 1 trajectory per environ-

ment for training and 32 for test. Note that the test set is
much larger than the training one. The step size is ∆t = 0.5
and the dataset horizon is T = K∆t = 10. The experiments
are conducted in 4 and 10 environments.

Gray-Scott Equation This reaction-diffusion model is fa-
mous for its Turing patterns and complex behaviors w.r.t its

simplistic equation (Pearson 1993). The governing PDE is:

∂u

∂t
= Du∆u− uv2 + F (1− u)

∂v

∂t
= Dv∆v + uv2 − (F + k)v

where Xe
t = (uet , v

e
t ) is state in a given spatial domain Ω,

with periodic boundary conditions. Du, Dv denotes respec-
tively the diffusion coefficient for u and v, which are con-
stant (Pearson 1993).F and k together define the type of cor-
responding patterns and behaviors. This means that the dif-
fusion and reaction terms are respectively non-environment
and environment component.

We therefore choose parameters θe = (Fe, ke) for each
environment e to simulate data. Same as the Lotka-Volterra
Equation, the initial conditions are shared across environ-
ments and we simulate one trajectory per environment for
training and 32 trajectories for test. The step size is ∆t = 20
and the horizon is T = K∆t = 200. The experiments are
conducted in 3 environments.

Training Details Within the experiments for each equa-
tion, functions g, h are NNs with the same architecture. We
use 4-layer MLPs for Lotka-Volterra and 4-layer ConvNets
for Gray-Scott. We apply Swish as the default activation
function (Ramachandran, Zoph, and Le 2017). These net-
works are integrated in time using the differentiable solver
implemented by Chen et al. (2018). The basic backpropa-
gation through the internals of the solver is used instead.
We apply an exponential Scheduled Sampling (Lamb et al.
2016) with exponent at 0.99 to stabilize the training. We
use across all experiments Adam optimizer (Kingma and
Ba 2015) with the same learning rate of 1 × 10−3 and
(β1, β2) = (0.9, 0.999). For the operator norm acting on

he, we opt for maxi,k

∥∥∥he(Xe,i
k∆t)

∥∥∥2

/
∥∥∥Xe,i

k∆t

∥∥∥2

, where the

Xe,i correspond to training sample trajectories. In order for
the estimation of the norm on the test data to not deviate



(a) (b) (c) (d) (e)

Figure 2: Comparison of trajectories from (a) Env. Dep. Sum and (b) LEADS with (c) the ground truth for Grey-Scott equation.
Each row represents an environment. We show the state of channel u at t = 0, . . . , 5∆T . They are accompanied by the maps
of prediction error at the rightmost timestep by (d) Env. Dep. Sum and (e) LEADS. The larger the error, the brighter the pixel at
the corresponding coordinates.

too much from its norm of the training data, we also penal-
ize the sum of spectral norms of the weight at each layer∑L

l=1 ‖W
he

l ‖2, an upper bound on the associated Lipshitz
constant, as suggested in Bietti et al. (2019).

Baselines We introduce following baselines to compare
with the proposed formulation:

• Env. Indep.: the sum of two environment-independent
neural networks g + h, learned with the standard ERM
learning principle, as in Ayed et al. (2019)3,

• Env. Dep. Sum: the sum of two environment-dependent
NNs ge + he.

• LEADS no min.: our proposal without norm penalty,
equivalent to LEADS with λ = +∞.

We show the results in Table 1. For Lotka-Volterra sys-
tems, we confirm at first that the entire dataset cannot be
fit with a single pair of NNs (Env. Indep.). Comparing with
other baselines, our method LEADS reduces nearly 4/5 of
the test MSE by Env. Dep. Sum and 1/3 of the test MSE
by LEADS no min. when there are #E = 4 environments.
Figure 1 shows the samples of predicted trajectories in test,
LEADS almost overlaps the ground true trajectory, while
Env. Dep. Sum underperforms in most environments. When
the number of environments is increased to #E = 10, the
error cut is over 85% w.r.t Env. Dep. Sum and over 40% w.r.t
LEADS no min.

We observe the same improving tendency for Gray-Scott
systems. The error by LEADS is around 1/2 of Env. Dep.
Sum test MSE and 60% of LEADS no min. test MSE. In
Figure 2(a)-(c), the states obtained with our method is quali-
tatively closer to the ground truth. With the help of the error
maps in Figure 2(d) and (e), we see that at the rightmost end-
time frames, the errors are systematically reduced across all
environments. This shows that LEADS accumulates less er-
rors through the integration, which suggests that LEADS al-
leviates the overfitting on the support.

3We have opted for the sum as it allows for a proper comparison
with our method.

Adaptation MSE test at iteration

50 250 500 10000

No adapt. — 0.36 —
Env. Dep. Sum
from scratch 0.23 5.02e-2 0.25 3.05e-3

Env. Dep. Single
from scratch 1.65 18.3 8.87e-2 4.13e-3

LEADS boosted
Env. Dep. Single 0.73 2.06e-3 1.84e-3 1.11e-3

Table 2: Comparison of different adaptation strategies in 2
new environments of Lotka-Volterra at different iterations.

Learning in Unknown Environments
We demonstrate how the learned invariant dynamics can
boost the fitting in new similar environments. We suppose
now that we have an invariant function ĝ learned with
LEADS from L-V (#E = 4). We then generate another
Lotka-Volterra dataset in new environments Enew, still 1 tra-
jectory per environment in training set and 32 in test.

Let us consider the following adaptation strategies:

• No adapt.: a sanity check to ensure that the new dynamics
cannot be predicted by ĝ without further adaptation.

• Env. Dep. Sum from scratch: the sum of two environment
dependent NNs, trained from scratch with

• Env. Dep. Single from scratch: an environment dependent
NN, trained from scratch, no boosting by ĝ.

• LEADS boosted Env. Dep. Single: train environment de-
pendent NN he boosted by learned ĝ.

Table 2 contains the adaptation results at training itera-
tions from 50 to 10000. With No adapt., we firstly show that
ĝ alone is not able to predict in any of these new environ-
ments, even if they are closely related to the original ones.
At the iteration 50, we observe that three last adaptations
perform poorly as expected since they are at early stage of
training. As soon as iteration 250, LEADS boosted Env. Dep.
Single surpasses already the best performance of the training
from scratch methods (Env. Dep. Sum and Env. Dep. Single
from scratch) at iteration 10000. This clearly shows that the



learned shared dynamics improves and accelerates the learn-
ing in new environments.

Conclusion
We introduce a data-driven framework LEADS to learn dy-
namics from the data that is collected from a set of simi-
lar yet different dynamical systems. Demonstrated with two
complex families of systems, our framework can signifi-
cantly improve the test performance in every environment,
especially when the number of available trajectories is lim-
ited. We finally show that the extracted dynamics by LEADS
can boost the learning in similar new environments, which
leads us towards a more flexible framework for prediction
and generalization in new environments.
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Bell, M.; and Samson, G. 2019. NEMO ocean engine. Add
SI3 and TOP reference manuals.
Mangan, N. M.; Kutz, J. N.; Brunton, S. L.; and Proctor, J. L.
2017. Model selection for dynamical systems via sparse re-
gression and information criteria. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ences 473(2204): 20170009. doi:10.1098/rspa.2017.0009.
Neic, A.; Campos, F. O.; Prassl, A. J.; Niederer, S. A.;
Bishop, M. J.; Vigmond, E. J.; and Plank, G. 2017. Efficient
computation of electrograms and ECGs in human whole
heart simulations using a reaction-eikonal model. Journal of
Computational Physics 346: 191 – 211. ISSN 0021-9991.
Pearson, J. E. 1993. Complex Patterns in a Simple Sys-
tem. Science 261(5118): 189–192. ISSN 0036-8075. doi:
10.1126/science.261.5118.189.
Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2019.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Compu-
tational Physics 378: 686–707.
Ramachandran, P.; Zoph, B.; and Le, Q. V. 2017. Searching
for Activation Functions. CoRR abs/1710.05941.
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