
 

 

Machine Learning Application for Permeability Estimation of  

Three-Dimensional Rock Images  

Hongkyu Yoon1, Darryl Melander2, and Stephen J. Verzi2 
1Geomechanics Department, Sandia National Laboratories, Albuquerque, NM 87123 

2Complex System for National Security, Sandia National Laboratories, Albuquerque, NM 87123 
hyoon@sandia.gov 

 

 

 

Abstract 

Estimation of permeability in porous media is fundamental to 
understanding coupled multi-physics processes critical to 
various geoscience and environmental applications. Recent 
emerging machine learning methods with physics-based con-
straints and/or physical properties can provide a new means 
to improve computational efficiency while improving ma-
chine learning-based prediction by accounting for physical 
information during training. Here we first used three-dimen-
sional (3D) real rock images to estimate permeability of frac-
tured and porous media using 3D convolutional neural net-
works (CNNs) coupled with physics-informed pore topology 
characteristics (e.g., porosity, surface area, connectivity) dur-
ing the training stage. Training data of permeability were 
generated using lattice Boltzmann simulations of segmented 
real rock 3D images. Our preliminary results show that neural 
network architecture and usage of physical properties 
strongly impact the accuracy of permeability predictions. In 
the future we can adjust our methodology to other rock types 
by choosing the appropriate architecture and proper physical 
properties, and optimizing the hyperparameters. 

 Introduction   

Recent advances in multiscale imaging techniques for the 

analysis of complex pore structures and compositions have 

revolutionized our ability to characterize various porous me-

dia systems (Yoon and Dewers, 2013). Applications of im-

aging for porous media systems have been expanded for 

multi-interdisciplinary areas including fractured and porous 

natural media, biofilm, human bones/bodies, and various 

materials among many others. Flow and transport properties 

in porous media are very important to control and impact a 

variety of Earth science applications. Imaging methods have 

been tremendously advanced to produce 2D/3D structures 

and compositions of porous media over a range of scales, 

and numerical methods also have been advanced to fully 
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understand multiphysics behaviors in complex porous me-

dia (e.g., Yoon et al., 2013 and 2015). Although it is now 

largely possible to understand how pore topology, structure, 

and composition impact multiple processes affecting flow 

patterns, transport process, and evolution of porous media 

by combining a suite of imaging techniques and advanced 

numerical methods, integration of these techniques requires 

tremendous computational powers and expenses. 

 Recent advances in machine learning provide a great op-

portunity to enhance image-based property estimation and 

modeling capabilities (e.g., Raissi et al., 2018; Wu et al., 

2018). In addition, combination of image data with other nu-

meric and categorical data has improved the prediction of 

various quantities such as house prices (e.g., Rosebrock, 

2019) and image classification (Aimone and Severa, 2017). 

 In this work, we explore how machine learning can be 

used to predict the permeability of porous media with phys-

ical properties. An emerging challenge for machine learn-

ing/deep learning in engineering and scientific research is 

the ability to incorporate physics into machine learning pro-

cess. We used convolutional neural networks (CNNs) to es-

timate permeability by training a set of segmented data of 

carbonate chalk and physical properties such as porosity and 

surface area of fractured and porous media. We evaluated 

the effect of hyperparameters on permeability prediction.  

 Related work 

Convolutional neural networks (CNNs) have been very suc-

cessfully utilized for image classification and segmentation 

and have also been adopted for various scientific and engi-

neering problems including permeability estimation in net-

work systems (Wu et al., 2018), physics-informed reduced 
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order modeling combined with high fidelity turbulence sim-

ulations (Ling et al., 2016), and extraction of flow features 

(Ströfer et al., 2018). In particular, recent works (Ling et al., 

2016, Raissi et al., 2018) demonstrated that deep neural net-

work architectures have an ability to account for underlying 

physics behind the data. 

Dataset and Physical Properties 

First, 256 images representative of a three-dimensional frac-

tured and porous media system with binary phase were ex-

tracted from a larger, raw image of 3D segmented chalk, as 

shown in Figure 1. The raw image was obtained using fo-

cused-ion beam-scanning electron microscopy (FIB-SEM) 

and a corresponding segmented image (Figure 1a) con-

structed in Yoon and Dewers (2013) was used in this study. 

A total of 256 image sets were constructed from the original 

data of 930x520x962 by sampling a subset of 2563 images. 

Subsampling was performed with a regular moving volume 

in all three directions to represent the physical continuity of 

fracture features. For computational purpose, a size of 2563 

image was averaged to make a size of 1283 as shown in Fig-

ure 1b. Each voxel resolution of the training data is 31 na-

nometers. Each directional permeability was calculated us-

ing lattice Boltzmann simulations (Latt et al., 2020, Yoon et 

al., 2015) where simulated pressure drop over each dimen-

sion and flowrate are used to compute the directional 

Darcy’s permeability. In addition, porosity was computed 

by counting the number of void voxels and the surface area 

was computed using Minkowsky function (Legland and 

Grothausmann, 2020). All physical data (permeability, po-

rosity, and surface area) were normalized from 0 to 1. Since 

the logarithmic scale of the permeability is more correlated 

with porosity, we use a logarithmic permeability in this 

work. Figure 2 shows the relationship between permeability 

and porosity-surface area. As seen, the permeability has pos-

itive and negative correlations with porosity and surface 

area, respectively, however, due to the presence of fractures 

(Figure 1) the surface area does not have a good correlation 

with permeability. 

Model Architecture and Training 

Additional physical information can provide physical con-

straints for training the model. The combination of image 

and numerical data allows us to build and train a hybrid 

physics-constrained machine learning model. To handle 

processing of the porous media images, we have developed 

convolutional neural networks (CNNs) whose input consists 

of binary phase images. We started with a general notion of 

a desired learning model architecture that takes 3D image 

data and pore topology metrics as input, but wanted to ex-

plore potential permutations within that notional 

architecture. We developed a general framework to perform 

optimization of hyperparameters for convolutional neural 

network architectures. A concrete learning model can be 

generated by  

Figure 1. (a) original segmented image (white: fractures and 

pores; dark gray: solid matrix), (b) an example of the subset with 

a size of 128x128x128 voxels, (c) directional velocity profiles 

from lattice Boltzmann simulations.  

Figure 2. Normalized permeability in x-direction (ln kx) vs. nor-

malized porosity (left) and surface area (right) for all 256 data.  

choosing specific values for architectural options and hy-

perparameter variables as shown in Figure 3, including: 

• The number of convolutional layers 

• The size, stride, and number of filters in the convolutional 

layers 

• Whether to use batch normalization, max pooling, or both 

• Which activation function to use 

• The size and number of fully-connected dense layers at 

certain locations in the model. 

 

In this work, as a basis we use a 3D CNN (conv3D) layer 

for 3D image data and a multilayer perception for physical 

numeric data. 256 3D datasets and corresponding porosity 

and surface area data split into training, validation, and test-

ing data consisting of 164, 41, and 51 samples, respectively. 

The training set was also increased through data augmenta-

tion by rotating each image along the x-axis by 90°, 180°, 

and 270°.  When rotating along the x-axis, the permeability 



in the x-direction is the same for all rotations. The resulting 

size of the training set is 656 images. Mean squared error 

(MSE) was used as loss function and early stopping with 35 

epochs as patience was used.  

 

Figure 3. Schematic of convolutional neural network structure 

and additional information stream to optimize network architec-

ture and hyperparameters.  

Results and Discussion 

In our preliminary results, the learning model that gave the 

best results had the following architecture: 

• 5 convolutional layers 

• 16 3x3 filters per convolutional layer 

• 2 dense layers dedicated to physical properties 

• 2 dense layers that operate on both image and physical 

quantities together 

 

The mean squared error (MSE) and mean absolute error 

(MAE) values for models with and without physical data 

(porosity and surface area) are reported in Table 1. Results 

with testing data sets are shown in Figure 4 with a linear  

 

Figure 4.  The permeability prediction against test set without 

(left) and with (right) physical data. The linear regression fitting 

is also shown. The black line represents the 1 to 1 line.  

 

regression fitting (dotted blue line) and an associated R2 

value.  As a reference, the single perfect black line is also 

shown. The slope shows the overall performance of each 

model with a better performance closer to one, while the R2 

value shows the proximity of predicted data along the linear 

regression line. 

Table 1 shows that addition of physical quantities (porosity 

and surface area) during training reduced the MAE by ~10% 

and MSE by ~20%, compared to the model without physical 

data. As shown in Figure 2, the porosity and surface area are 

correlated with the permeability, so both sources of infor-

mation would provide additional physical constraints that 

are combined with features extracted from image data. Alt-

hough there is a need to study what features are extracted 

from image and how two input data can be used to learn the 

underlying feature to the permeability, Figure 4 shows that 

the model architecture with both types of physical data tend 

to predict the permeability with a smaller scattered pattern. 

More interestingly, the regression lines of both results are 

well aligned with the 1-to-1 line, indicating that both trained 

models tend to converge to the perfect predictive model, but 

this needs to be evaluated further with more training data.  

 Another important aspect is that the improvement with 

physical data in this work was lower, compared to our pre-

vious study with synthetic 2D bead packing cases (Yoon et 

al., 2019) where training and testing results were improved 

with two physical data by more than 300 % and 30%, re-

spectively. This may imply that the physical constraints 

from the numeric data would be not greatly informative or 

the amount of training data with the 3D CNN architectures 

may be not big enough to extract 3D features. In fact, the 

impact of including physical quantities varied significantly 

from run to run, and between model architectures.  This ob-

servation may be related to the relation between the surface 

area and permeability (Figure 2) which is strongly influ-

enced by the features of original chalk data. As seen in Fig-

ure 1, the chalk has strong microfracture networks, hence 

instead of surface area other physical quantities such as mul-

tipoint statistics including percolation length, connectivity 

length, and Euler number may represent the permeability 

property better. For 3D CNN architectures the amount and 

types of 3D data used in this study may not be enough as  

 

Table 1. Summary of results with and without physical data for 

model training.  

 MAE MSE 

No physical data 0.0622 0.00576 

Physical data (po-

rosity and SA) 
0.00547 0.00461 

MSE with normalized permeability values.  

 



seen in image segmentation of 3D data. In the future it will 

be pursued with comprehensive 2D architectures to explore 

hyperparameters more computationally efficiently. 

Conclusions 

We evaluated how additional physical information can en-

hance the permeability prediction with CNN models. As it 

is now well accepted in the community that a physics-in-

formed and/or physics-constrained machine learning model 

can overcome overfitting to the training data and improve 

the features underlying the physical processes, there is a 

strong need to improve how the physical constraints and/or 

additional information (e.g., equations and theory) can en-

hance the learning process in machine learning. Our results 

clearly show that the optimal neural network architecture 

and implementation of physics-informed constraints are im-

portant to properly improve the model prediction of perme-

ability. The analysis of the features learned by each layer 

and the output data from the MLP will reveal a better mech-

anistic understanding of the machine learning processes. A 

comprehensive analysis of hyperparameters with different 

CNN architectures and the data implementation scheme of 

the physical properties will be performed to optimize our 

learning system for various porous media system.  
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