
Extended physics-informed neural networks (XPINNs) : A generalized space-time
domain decomposition based deep learning framework for nonlinear partial

differential equations

Ameya D. Jagtap∗ 1

George Em Karniadakis 1

1Division of Applied Mathematics, Brown University,
182 George Street,

Providence, RI 02912, USA.
ameyadjagtap@gmail.com, ameya jagtap@brown.edu

Abstract

We propose a generalized space-time domain decomposi-
tion framework for the physics-informed neural networks
(PINNs) to solve nonlinear partial differential equations
(PDEs) on arbitrary complex-geometry domains. The pro-
posed framework, named eXtended PINNs (XPINNs), further
pushes the boundaries of both PINNs as well as conserva-
tive PINNs (cPINNs), which is a recently proposed domain
decomposition approach in the PINN framework tailored to
conservation laws. Compared to PINN, the XPINN method
has large representation and parallelization capacity due to
the inherent property of deployment of multiple neural net-
works in the smaller subdomains. Unlike cPINN, XPINN can
be extended to any type of PDEs. Moreover, the domain can
be decomposed in any arbitrary way (in space and time),
which is not possible in cPINN. Thus, XPINN offers both
space and time parallelization, thereby reducing the training
cost more effectively. In each subdomain, a separate neural
network is employed with optimally selected hyperparame-
ters, e.g., depth/width of the network, number and location
of residual points, activation function, optimization method,
etc. A deep network can be employed in a subdomain with
complex solution, whereas a shallow neural network can be
used in a subdomain with relatively simple and smooth so-
lutions. We demonstrate the versatility of XPINN by solv-
ing both forward and inverse PDE problems, ranging from
one-dimensional to three-dimensional problems, from time-
dependent to time-independent problems, and from continu-
ous to discontinuous problems, which clearly shows that the
XPINN method is promising in many practical problems. The
proposed XPINN method is the generalization of PINN and
cPINN approaches, both in terms of applicability as well as
domain decomposition approach, which efficiently lends it-
self to parallelized computation. The XPINN code will be
available on https://github.com/AmeyaJagtap/XPINNs.

Introduction
Recently deep neural networks (DNNs) have gained a lot of
attention in the field of scientific machine learning (SciML).
Thanks to their universal approximation properties, they can

Copyright c© 2021, for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0)

be exploited to construct alternative approaches for solv-
ing PDEs. In particular, they offer nonlinear approximation
through the composition of hidden layers, which does not
limit the approximation to the linear spaces. The training of
a DNN based model (black-box surrogate model) usually
requires a large amount of labeled data, which are often un-
available in many scientific applications. However, when the
governing PDEs are known, their solutions can be learned in
a physics-informed fashion with relatively small amounts of
data. The physics-informed loss functions are constructed
based on PDE residuals and the DNN is trained by mini-
mizing this loss function, which, in turn, satisfies the gov-
erning physical laws. Recently, Raissi et al.(4) used auto-
matic differentiation and proposed physics-informed neural
networks (PINNs), where the PDE residual is incorporated
into the loss function of fully-connected neural networks
as a regularizer, thereby constraining the space of admis-
sible solutions. In this setting, the problem of inferring so-
lutions of PDEs is transformed into an optimization prob-
lem of the loss function. A major advantage of PINNs is
providing a mesh-free algorithm as the differential opera-
tors in the governing PDEs are approximated by automatic
differentiation (1). PINNs require a modest amount of data,
which can be properly enforced in the loss function. PINNs
can solve forward problems, where the solution of govern-
ing physical laws is inferred, as well as inverse problems,
where unknown coefficients or even differential operators in
the governing equations are identified. The PINNs has been
applied extensively to solve various PDEs, see (10; 5) for
more details.

One of the main limitations of PINNs is the large train-
ing cost, which can adversely affect their performance, es-
pecially for solving real-life applications, which require a
PINN model to run in real-time. Therefore, it is crucial to
accelerate the convergence of such models without sacrific-
ing the performance. This issue was first addressed in the
conservative PINN (cPINN) method for conservation laws
(11) by employing the domain decomposition approach in
PINN framework. Domain decomposition has been a funda-
mental development in standard numerical methods, e.g. fi-
nite elements, for solving the governing physical laws in the
form of PDEs on parallel computers. In particular, the com-

putational domain is partitioned into several subdomains and
these subdomains interact only through their shared bound-
aries where some appropriate continuity conditions are im-
posed. The global solution is recovered by a succession of
solutions of independent sub-problems associated with the
entire domain. The cPINN method can be extended to other
types of equations (and not necessarily conservation laws)
by employing properties of the solution/governing equa-
tion at hand. In this regard, we propose a generalized do-
main decomposition approach namely, the eXtended PINNs
(XPINNs) (7). Like PINNs, XPINN can be used to solve
any PDE. Also, it has all the advantages of cPINN like de-
ployment of separate neural networks in each subdomain,
efficient hyper-parameter adjustment for all networks, easy
parallelization capacity, large representation capacity (due
to multiple networks), etc. Moreover, it has the following
additional merits over cPINN.

• Generalized space-time domain decomposition : The
XPINN formulation offers highly irregular, convex/non-
convex space-time domain decomposition with C0 or
more regular boundaries. Such domain decomposition can
be useful in many applications like multi-physics/multi-
scale computations, simulation involving non-smooth fea-
tures such as cracks, shock waves, etc. Due to such de-
composition, the XPINN method easily lends itself for
space-time parallelization, thereby reducing training cost
more effectively.

• Extension to any differential equation(s) : Unlike
cPINN method, the XPINN based domain decomposition
approach can be extended to any type of PDE(s), irre-
spective of its physical nature. This way, any differential
equation can be solved efficiently and this makes XPINN
method a genuinely generalized domain decomposition
based PINN method, which can be easily parallelized.

• Simple interface conditions : Due to irregular do-
main decomposition, the interfaces form highly irregular
shapes, especially in higher dimensions. In the XPINN,
the interface conditions are very simple for any arbitrarily
shaped interfaces, which does not need normal direction
hence, the proposed approach can be easily extended to
any complex geometry, even in higher dimensions. More-
over, such a simple interface condition is very useful in
dynamic interface problems where the interface is mov-
ing.

Accurately solving complex systems of equations, espe-
cially in higher dimensions has become one of the biggest
challenges in scientific computing. The advantages of
XPINN makes it a suitable candidate for such complex sim-
ulations in higher dimensions, which in general require a
large training cost.

Problem Formulation
The general form of a parametrized PDE is given by

Lx(u;λ) = f(x), x ∈ Ω ⊂ Rd, (1)
Bk(u) = gk(x), x ∈ Γk ⊂ ∂Ω

for k = 1, 2, · · · , nb, where Lx(·) is the differential op-
erator, u is the solution, λ = {λ1, λ2, · · · } are the model
parameters, Bk(·) can be Dirichlet, Neumann, or mixed
boundary conditions and f(x) is the forcing term. Note
that for transient problems we consider time t as one of
the component of x, and the initial conditions can be sim-
ply treated as a particular type of boundary condition on
the given spatio-temporal domain. The above setup encapsu-
lates a wide range of problems in engineering and science.
For equation (1), we define the residual F(u) as F(u) :=
Lx(u;λ)− f(x).

Methodology
Mathematical setup for fully connected neural
networks
Let NL : RDi → RDo be a feed-forward neural network
of L layers and Nk neurons in kth layer (N0 = Di, and
NL = Do). The weight matrix and bias vector in the kth
layer (1 ≤ k ≤ L) are denoted by Wk ∈ RNk×Nk−1 and
bk ∈ RNk , respectively. The input vector is denoted by
z ∈ RDi and the output vector at kth layer is denoted by
N k(z) and N 0(z) = z. We denote the activation function
by Φ which is applied layer-wise along with the scalable pa-
rameters nak, where n is the scaling factor. Layer-wise in-
troduction of the additional parameters ak changes the slope
of activation function in each hidden-layer, thereby increas-
ing the training speed. Moreover, these activation slopes can
also contribute to the loss function through the slope recov-
ery term, see (8; 9) for more details. Such locally adaptive
activation functions enhance the learning capacity of the net-
work, especially during the early training period. In the re-
cent study, Jagtap et al. (3) proposed the Kronecker Neural
Networks, which is a general framework for the neural net-
work with adaptive activation functions. In particular, they
proposed rowdy activation functions, which allows faster
network training than the locally adaptive activation func-
tions. But in this paper we are employing the locally adap-
tive activation functions. Mathematically, one can prove this
by comparing the gradient dynamics of the adaptive acti-
vation function method against that of the fixed activation
method. The gradient dynamics of the adaptive activation
modifies the standard dynamics (fixed activation) by multi-
plying a conditioning matrix by the gradient and by adding
the approximate second-order term. In this paper, we used
scaling factor n = 5 for all hidden-layers and initialize
nak = 1, ∀k, see (9) for details.

The (L− 1)-hidden layer feed-forward neural network is
defined by

N k(z) = WkΦ(ak−1N k−1(z))+bk ∈ RNk , 2 ≤ k ≤ L
(2)

andN 1(z) = W1z + b1, where in the last layer, the activa-
tion function is identity. By letting Θ̃ = {Wk,bk, ak} ∈ V
as the collection of all weights, biases, and slopes, and tak-
ing V as the parameter space, we can write the output of the
neural network as

uΘ̃(z) = NL(z; Θ̃),

where NL(z; Θ̃) emphasizes the dependence of the neural
network output NL(z) on Θ̃.

Extended Physics-Informed Neural Networks
In this section we shall discuss the XPINN methodology,
which is basically a PINN method on the decomposed do-
mains. Here we describe the basic terminology used in the
follow up presentation.

• Subdomains: The subdomains Ωq, q = 1, 2, · · ·Nsd re-
fer to the non-overlapping subset of the whole computa-
tional domain Ω such that Ω =

⋃Nsd

q=1 Ωq and Ωi ∩ Ωj =
∂Ωij , i 6= j. Nsd represents the total number of subdo-
mains. In the non-overlapping domain decomposition, the
subdomains intersect only on their interface ∂Ωij .

• Interface: The interface is the common boundary be-
tween two or more subdomains, where the corresponding
Sub-Nets communicate with each other.

• Sub-Net: The sub-net also called as sub-PINNs refers to
the individual PINN with their own set of optimized hy-
perparameters employed in each subdomain.

• Interface Conditions: These conditions are used to stitch
the decomposed subdomains together in order to obtain
a solution of the governing PDEs over the complete do-
main. Based on the nature of the governing equations,
one or more interface conditions can be applied along the
common interface such as solution continuity, flux conti-
nuity, etc.

φ

φ

φ

φ

φ

φ

φ

φ

𝒕

𝒙
𝑩𝑪 ∶ 𝒖 𝒂, 𝒕 = 𝒖

Neural Network (W, 𝒃, 𝒂)

Total

Loss

Y
Done.

N

𝑢

𝜕𝑥

𝜕𝑡

𝐼

𝑷𝑫𝑬 ∶ 𝝏𝒕𝒖 + 𝒖𝝏𝒙𝒖 = ν𝝏𝒙𝒙𝒖

𝑰𝑪 ∶ 𝒖 𝒙, 𝟎 = 𝒖

𝑫𝒂𝒕𝒂 ∶ 𝒖 = 𝒖

𝐈𝐧𝐭𝐞𝐫𝐟𝐚𝐜𝐞 𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝐬

Physics-Informed Part

< 𝝐 𝒐𝒓
> 𝒎𝒂𝒙𝒊𝒕?

target

0

b

𝜕𝑥𝑥

Automatic
Differentiation

Measurement Loss

PDE + BC + IC
+ Interface Loss

Backpropagation
(Update W, 𝒃, 𝒂)

Sub-Net 1

Sub-Net 2 Sub-Net 5

Sub-Net 3Sub-Net 4

P I N N
Figure 1: The top figure is the schematic of XPINN sub-
net employed in a subdomain where neural network and
physics-informed part for viscous Burgers equation are
shown. The bottom figure shows the irregularly shaped sub-
domain divisions in ’X’-shaped domain, where sub-net is
employed in each subdomain and they are stitched together
using the interface conditions. In this case, the domain
boundary is shown by black continuous line, whereas the
interface is shown by black dash line.

Figure 1 (top) shows a schematic of the XPINN Sub-Net,
where along with DNN and PDE parts, additional interface
conditions are also contributing to the loss function. The in-
terface condition for XPINN includes the residual continu-
ity condition in strong form as well as enforcing the aver-
age solution given by different Sub-Net’s along the common
interface. As discussed in the cPINN framework (11), for
stability it is not necessary to enforce the average solution
along the common interface, but the computational experi-
ments reveal that it will drastically speed-up the convergence
rate. Figure 1 (bottom) shows the schematic representation
XPINNs where the ’X’-shaped domain is divided into irreg-
ular subdomains, and Sub-Net’s are employed in each sub-
domain with different network architecture to obtain the so-
lution of the same underlying PDE. Such domain decompo-
sition also offers easy parallelization of the network, which
is quite important in terms of achieving computational ef-
ficiency. XPINN has all the advantages of cPINN like par-
allelization capacity, large representation capacity, efficient
choice for hyper-parameters like optimization method, acti-
vation function, depth or width of the network depending
on some intuitive knowledge of the solution regularity in
each subdomain, etc. In case of smooth zones, we can use
a shallow network, whereas a deep neural network can be
employed in a region where a complex solution is expected.
Apart from this, there are various advantages of the XPINN
approach over the cPINN method. Unlike cPINN, XPINN
can be used to solve any type of PDEs and not necessarily
conservation laws. In case of XPINN, there is no need to
find the normal direction in order to apply normal flux con-
tinuity condition. This significantly reduces the complexity
of the algorithm, especially in the case of large-scale prob-
lems with complex domains as well as for moving interface
problems.

Consider the computational domain, which is divided
into Nsd number of non-overlapping regular/irregular sub-
domains. In the XPINN framework, the output of the neural
network in the qth subdomain is given by

uΘ̃q
(z) = NL(z; Θ̃q) ∈ Ωq, q = 1, 2, . . . , Nsd.

Then, the final solution is obtained as

uΘ̃(z) =

Nsd∑
q=1

uΘ̃q
(z) · 1Ωq (z), (3)

where the indicator function 1Ωq
(z) is defined as

1Ωq
(z) :=

0 If z /∈ Ωq,

1 If z ∈ Ωq\Common interface in Ωq,
1
S If z ∈ Common interface in Ωq,

where S represent the number of subdomains intersecting
along the common interface.

Subdomain loss function Let {x(i)
uq }

Nuq

i=1 , {x(i)
Fq
}NFq

i=1 and

{x(i)
Iq
}NIq

i=1 be the set of randomly selected training, resid-
ual, and the common interface points, respectively in the qth
subdomain. TheNuq

, NFq
, andNIq represent the number of

training data points, the number of residual points, and the
number of points on the common interface in the qth subdo-
main, respectively.

Similar to PINN, the XPINN algorithm aims to learn a
surrogate uq = uΘ̃q

, q = 1, 2, · · · , Nsd for predicting
the solution u = uΘ̃ of the given PDE over the entire
computational domain using equation (3). The loss function
of XPINN is defined subdomain-wise, which has a similar
structure as the PINN loss function in each subdomain but is
endowed with the interface conditions for stitching the sub-
domains together. For the forward problem, the loss function
in the qth subdomain is defined as

J (Θ̃q) = Wuq MSEuq (Θ̃q; {x(i)
uq
}Nuq

i=1)

+WFq
MSEFq

(Θ̃q; {x(i)
Fq
}NFq

i=1)

+WIq MSEuavg (Θ̃q; {x(i)
Iq
}NIq

i=1)︸ ︷︷ ︸
Interface condition

+WIFq
MSER(Θ̃q; {x(i)

Iq
}NIq

i=1)︸ ︷︷ ︸
Interface condition

+ Additional Interface Condition’s︸ ︷︷ ︸
Optional

, (4)

where q = 1, 2, · · · , Nsd. The Wuq ,WFq ,WIFq
and WIq

are the data mismatch, residual and interface (both, residual
as well as average solution continuity along the interface)
weights, respectively. The MSE is given for each term by

MSEuq
(Θ̃q; {x(i)

uq
}Nuq

i=1) =
1

Nuq

Nuq∑
i=1

∣∣∣u(i) − uΘ̃q
(x(i)

uq
)
∣∣∣2 ,

MSEFq (Θ̃q; {x(i)
Fq
}NFq

i=1) =
1

NFq

NFq∑
i=1

∣∣∣FΘ̃q
(x

(i)
Fq

)
∣∣∣2 ,

MSEuavg
(Θ̃q; {x(i)

Iq
}NIq

i=1) =

∑
∀q+

 1

NIq

NIq∑
i=1

∣∣∣uΘ̃q
(x

(i)
Iq

)−
{{
uΘ̃q

(x
(i)
Iq

)
}}∣∣∣2

 ,

MSER(Θ̃q; {x(i)
Iq
}NIq

i=1) =

∑
∀q+

 1

NIq

NIq∑
i=1

∣∣∣FΘ̃q
(x

(i)
Iq

)−FΘ̃q+
(x

(i)
Iq

)
∣∣∣2
 ,

where the terms MSEuq
and MSEFq

are the data mismatch
and residual losses, andFΘ̃q

:= F(uΘ̃q
) represent the resid-

ual of the governing PDEs in the qth subdomain. The MSER
is the residual continuity condition on the common inter-
face given by two different neural networks on subdomains
q and q+, respectively; the superscript + over q represents
the neighbouring subdomain(s). Both MSER and MSEuavg

terms are defined for all neighbouring subdomain(s) q+,
which is shown in their respective expressions by the sum-
mation sign over all q+. The average value of u along
the common interface is given by

{{
uΘ̃q

}}
= uavg :=

uΘ̃q
+uΘ̃

q+

2 (assuming that along the common interface only
two subdomains intersect). The interface conditions ensures
the information from the one subdomain can be propagated
throughout the neighboring subdomains. These conditions
also play an important role in the convergence of subdo-
mains where no training data is available.

Remark 3: In any domain decomposition method, in-
terface conditions play an important role not only to stitch
the subdomains together but also in terms of convergence.
More specifically, the type of interface conditions decides
the solution regularity across the interface, which can af-
fect the convergence rate. In the proposed XPINN method,
the enforcement of the average solution gives C0 solution
continuity across interface. Moreover, the residual continu-
ity property can theoretically enforce the solution regularity
in the classical sense, i.e., the solution across the interface
is sufficiently continuous such that it satisfies its governing
PDE, which is computed using AD. Therefore, XPINN can
be used to solve any differential equations on decomposed
domains. Apart from these conditions, additional interface
conditions such as flux continuity, Ck solution continuity
(k > 0) etc can be imposed depending on the type of the
PDEs and the interface orientation. As an example, for con-
servation laws, both normal spatial flux and residual conti-
nuity conditions can be imposed on spatially divided subdo-
mains, which makes the XPINN method a generalized do-
main decomposition method.

Remark 4: The weights Wuq ,WFq ,WIFq
and WIq play

an important role in the convergence of the minimizer. These
weights can be chosen dynamically, leading to faster conver-
gence compared to static weights. However, such dynamic
weights put additional computational burden, which can be
significant in case of multiple loss functions based methods
like cPINN and XPINN.

Remark 5: In case of a smooth solution, the enforcement
of the average solution is similar to the solution continu-
ity condition. However, in case of discontinuous solution,
which we can expect in case of the hyperbolic conservation
laws, such enforcement imposes the adjacent networks to
satisfy the average value of the discontinuous solution along
the interface.

Remark 6: A sufficient number of interface points (NIq)
must be taken while stitching the subdomains together. This
is important for faster convergence of the algorithm, espe-
cially for the internal subdomains, which does not have any
training data points. We can also use the knowledge of so-
lutions along the interface lines obtained from each sub-
network to properly select the locations of interface points.

Optimization Method We seek to find Θ̃
∗
q that mini-

mizes the loss function J (Θ̃q) in each subdomain. Even
though there is no theoretical guarantee that the above men-
tioned procedure converges to a global minimum, our ex-
periments indicate that as long as the given PDE is well-
posed and has a unique solution, the XPINN formulation
is capable of achieving an accurate solution provided that
a sufficiently expressive network and a sufficient number of
residual points are used. There are several optimization algo-

rithms available to minimize the loss function. The stochas-
tic gradient descent (SGD) method is the widely used op-
timization method. In SGD, a small set of points are ran-
domly sampled to find the direction of the gradient in every
iteration. The SGD algorithm works well to avoid bad local
minima during training of DNN under one point convexity
property. In particular, we shall use the ADAM optimizer
which is one version of SGD (6).

Remark 7: Note that due to highly non-convex nature of
the XPINN loss function, it is very challenging to locate its
global minimum. However, for several local minima, values
of the loss function are comparable and the accuracy of the
corresponding predicted solutions is similar. These are the
instances of the so-called operator mimicking phenomenon,
where the strong non-convexity of the loss function may lead
to equally good multiple local minima.

Remark 8: In terms of coding, we can employ the same
XPINN code to solve both forward as well as inverse prob-
lems, since for an inverse problem code we only need to
add the additional model parameters involved in the gov-
erning PDEs to the list of the parameters to be optimized
without modifying the other parts of forward problem code.
The XPINN codes are written in Python, and the deep learn-
ing framework Tensorflow is used to take advantage of its
inbuilt automatic differentiation capability.

Computational Results and Discussion
Viscous Burgers Equation
The one-dimensional viscous Burgers equation is given by

ut + uux = νuxx, x ∈ Ω ⊂ R, t > 0

with initial condition u(x, 0) = − sin(πx), boundary condi-
tions u(−1, t) = u(1, t) = 0 and ν = 0.01/π. The analyt-
ical solution can be obtained using the Hopf-Cole transfor-
mation, see Basdevant et al., (2) for more details. The non-
linearity in the convection term develops a very steep solu-
tion due to the small value of diffusion coefficient ν.

The computational space-time domain is divided into two
subdomains as shown in figure 2, where the internal subdo-
main boundary is in the shape of a dolphin. Table 1 shows
the network architecture in both subdomains. Two different
activation functions are used in the two subdomains. The
learning rate is 0.0008. The values of data mismatch, resid-
ual and interface terms weights are Wuq

= 20,WFq
=

1,WIFq
= 1 and WIq = 20, respectively, and the num-

ber of interface points on the interface is 310. The number
of boundary and initial training data points is 300.

Subdomain number 1 2
Layers 6 7
Neurons 20 25

Residual points 7000 3000
Adaptive Activation function tanh sin

Table 1: One-dimensional viscous Burgers equation: Neural
network architecture in each subdomain.

0.0 0.2 0.4 0.6 0.8 1.0
t

−1.0

−0.5

0.0

0.5

1.0

x

Figure 2: One-dimensional viscous Burgers equation: Resid-
ual points in subdomain 1 (blue stars) and subdomain 2 (yel-
low circles). Red line represent the dolphin shaped interface,
which separates the two subdomains, and black cross repre-
sents the training data points from initial and boundary con-
ditions.

0.0 0.2 0.4 0.6 0.8
t

−1.0

−0.5

0.0

0.5

1.0

x

u (Exact)

−0.88

−0.66

−0.44

−0.22

0.00

0.22

0.44

0.66

0.88

0.2 0.4 0.6 0.8
t

−0.5

0.0

0.5

x

u (Predicted)

−0.88

−0.66

−0.44

−0.22

0.00

0.22

0.44

0.66

0.88

Figure 3: One-dimensional viscous Burgers equation: Con-
tour plot of the exact (left) and predicted (right) solutions
over the space-time domain. The white line in the predicted
solution represents the dolphin shaped space-time interface.

0 20000 40000 60000 80000 100000

iterations

10−4

10−2

100

L
os

s

Subdomain 1

Subdomain 2

Interface

Figure 4: One-dimensional viscous Burgers equation: Loss
value for two subdomains as well as for the interface.

Figure 2 shows the location of 300 training data points
from initial and boundary conditions. The exact and pre-
dicted solutions are shown in the figure 3. After 100k it-
erations, the relative L2 error in the solution is 8.93265e-3.
Figure 4 shows the convergence history of two subdomains
and the interface loss functions, which is given by the fol-
lowing expressions

J (Θ̃1) = Wu1
MSEu1

+WF1
MSEF1

, (Subdomain 1),

J (Θ̃2) = WF2
MSEF2

, (Subdomain 2),

J (Θ̃Interface) = WIF1
MSER +WI1MSEuavg , (Interface).

From the figure we see that both the subdomain and inter-
face losses converge together due to residual continuity con-
dition. We can also observe that initially the subdomain 2
loss is very small due to unavailability of the training data
points from the actual computational boundary, thus, it com-
pletely depends on the subdomain 1 for the convergence. As
the subdomain 1 loss started converging, the subdomain 2
follows the same path, i.e., we see a sudden increase of the
loss value and then the convergence. The interface loss is
converging faster than subdomains loss and is still decreas-
ing even after 100k iterations. The relative L2 error in the
predicted solution along the interface is 5.92672e-3.

Conclusions
We have proposed a generalized domain decomposition ap-
proach, namely the eXtended PINN (XPINN) method. Like
the PINN method, the proposed method can be employed
to solve any differential equation. This is achieved by en-
forcing the residual continuity condition along the common
interfaces of neighboring subdomains. The residual continu-
ity condition can theoretically enforce the solution regular-
ity across the interface in the classical sense, i.e., the solu-
tion across the interface is sufficiently smooth such that it
satisfies its governing PDE. We also enforce the average so-
lution (C0 solution continuity) given by two different neural
networks along the common interface between two subdo-
mains, which can increase the convergence rate. The XPINN
has all the advantages of its predecessor, the conservative
PINN (cPINN) method like deployment of separate neu-
ral network in each subdomain, efficient hyper-parameter
adjustment (like depth, width, activation function, penaliz-
ing points, optimization method etc) for all networks, paral-
lelization capacity, large representation capacity etc. More-
over, a key factor in the XPINN formulation is the flexibility
in the division of subdomains for any type of differential
equations. The major advantage of the XPINN is that it can
be easily employed for any complex simulations involving
complex domains, especially in higher dimensions. Overall,
the proposed XPINN method is the generalization of PINN
and cPINN approaches, both in terms of applicability as well
as domain decomposition technique, which efficiently lends
itself to parallelized computation.

Acknowledgement
This work was supported by the Department of En-
ergy PhILMs grant DE-SC0019453, the DARPA-AIRA

grant HR00111990025, and the DARPA CompMods grant
HR00112090062.

References
[1] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M.

Siskind, Automatic differentiation in machine learn-
ing: a survey, Journal of Machine Learning Research,
18 (2018) 1-43.

[2] C. Basdevant, et al., Spectral and finite difference so-
lution of the Burgers equation, Comput. Fluids, 14
(1986) 23-41.

[3] A.D. Jagtap, Y. Shin, K. Kawaguchi, G.E. Karniadakis,
Kronecker neural networks: A general framework for
neural networks with adaptive activation functions (In
preparation).

[4] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-
informed neural network: A deep learning framework
for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput.
Phys., 378, 686-707, 2019.

[5] K. Shukla, P. C. D. Leoni, J. Blackshire, D. Spark-
man, G.E. Karniadakis, Physics-informed neural net-
work for ultrasound nondestructive quantification of
surface breaking cracks, arXiv:2005.03596v1, 2020.

[6] D. P. Kingma, J. L. Ba, ADAM: A method for stochas-
tic optimization, arXiv:1412.6980v9, 2017.

[7] A.D. Jagtap and G.E. Karniadakis, Extended physics-
informed neural networks (XPINNs) : A general-
ized space-time domain decomposition based deep
learning framework for nonlinear partial differential
equations, Communications in Computational Physics,
28(5), 2002-2041 (2020).

[8] A.D. Jagtap, K. Kawaguchi and G.E. Karniadakis,
Adaptive activation functions accelerate convergence
in deep and physics-informed neural networks, J. Com-
put. Phys., 404 (2020) 109136.

[9] A.D. Jagtap, K. Kawaguchi and G.E. Karniadakis,
Locally adaptive activation functions with slope re-
covery for deep and physics-informed neural net-
works, Proc. R. Soc. A 476: 20200334 (2020).
http://dx.doi.org/10.1098/rspa.2020.0334

[10] Z. Mao, A.D. Jagtap and G.E. Karniadakis, Physics-
informed neural network for high-speed flows, Com-
puter Methods in Applied Mechanics and Engineering,
360 (2020) 112789.

[11] A. D. Jagtap, E. Kharazmi, G.E.Karniadakis, Conser-
vative physics-informed neural networks on discrete
domains for conservation laws: Applications to for-
ward and inverse problems, Computer Methods in Ap-
plied Mechanics and Engineering 365 (2020) 113028.

	Introduction
	Problem Formulation
	Methodology
	Mathematical setup for fully connected neural networks
	Extended Physics-Informed Neural Networks

	Computational Results and Discussion
	Viscous Burgers Equation

	Conclusions
	Acknowledgement

