
Graph Based Answer Set Programming Solver Systems *

Fang Li, Elmer Salazar, Gopal Gupta
University of Texas at Dallas

Richardson, USA
{fang.li, elmer.salazar, gupta}@utdallas.edu

1 Dependency Graph

A dependency graph [3] uses nodes and directed edges to represent dependency relationships of an ASP
rule.

Definition 1. The dependency graph of a program is defined on its literals s.t. there is a positive (resp.
negative) edge from p to q if p appears positively (resp. negatively) in the body of a rule with head q.

Conventional dependency graphs are not able to represent ASP programs uniquely. This is due to
the inability of dependency graphs to distinguish between non-determinism (multiple rules defining a
proposition) and conjunctions (multiple conjunctive sub-goals in the body of a rule) in logic programs.
For example, the following two programs have identical dependency graphs (Figure 1).

%% program 1
p : − q , not r , not p .

%% program 2
p : − q , not p . p : − not r .

To make conjunctive relationships representable by dependency graphs, we first transform it slightly
to come up with a novel representation method. This new representation method, called conjunction
node representation (CNR) graph, uses an artificial node to represent conjunction of sub-goals in the
body of a rule. This conjunctive node has a directed edge that points to the rule head (Figure 2).

Figure 1: Dep. Graph for Programs 1 & 2
(a) CNR for Program 1 (b) CNR for Program 2

Figure 2: CNRs for Program 1 & 2

The conjunction node, which is colored black, refers to the conjunctive relation between the in-
coming edges from nodes representing subogals in the body of a rule. Note that a CNR graph is not a
conventional dependency graph.

Converting CNR Graph to Dependency Graph Since CNR graph does not follow the dependency
graph convention, we need to convert it to a proper dependency graph in order to perform dependency

*Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0).



2 Graph Based Answer Set Programming Solver Systems

Figure 3: CNR-DG Transformation

(a) Program 3 (b) Program 4

Figure 4: Constraint DG

graph-based reasoning. We use a simple technique to convert a CNR graph to an equivalent conventional
dependency graph. We negate all in-edges and out-edges of the conjunction node. This process essen-
tially converts a conjunction into a disjunction. Once we do that we can treat the conjunction node as
a normal node in a dependency graph. As an example, Figure 3 shows the CNR graph to dependency
graph transformation for program p :- q, not r. This transformation is a simple application of De
Morgan’s law. The rule in this program represents p :- C. and C :- q, not r. The transformation
produces the equivalent rules p :- not C., C :- not q. and C :- r.

Since conjunction nodes are just helper nodes which allow us to perform dependency graph reasoning,
we don’t report them in the final answer set.

Constraint Representation ASP also allows for special types of rules called constraints. There are two
ways to encode constraints: (i) headed constraint where negated head is called directly or indirectly in
the body (e.g., Program 3), and (ii) headless constraints (e.g., Program 4).

%% program 3
p : − not q , not r , not p .

%% program 4
: − not q , not r .

Our algorithm models these constraint types separately. For the former one, we just need to apply the
CNR-DG transformation directly. Note that the head node connects to the conjunction node both with
an in-coming edge and an out-going edge (Figure 4a). For the headless constraint, we create a head node
with truth value as False.

The reason why we don’t treat a headless constraint the same way as a headed constraint is because in
the latter case, if head node (p in Program 3) is provable through another rule, then the headed constraint
is inapplicable. Therefore, we cannot simply assign a false value to its head.

2 grASP: A Bottom-up Approach

We have developed the grASP graph-based algorithm for finding answer sets. The philosophy of grASP
is to translate an ASP program into a dependency graph (via CNR conversion), then propagate truth
values from nodes whose values are known to other connected nodes, obeying the sign on the edge, until
the values of all the nodes are fixed. However, due to possible existence of a large number of cycles,
the propagation process is not straightforward. In grASP, we define a collection of rules for propagating
values among nodes involved in cycles. These assignment rules take non-monotonicity of answer set
program and the causal relationship among nodes in the dependency graph into account.

Unlike other SAT-solver based approaches, our graph based approach enables stratification of ASP
programs on the basis of dependence. The Splitting Theorem [2] can thus be used to link the various
levels, permitting values to be propagated among nodes more efficiently. Also, the existence of sub-



F. Li 3

structures (sub-graphs) makes an efficient recursive implementation algorithm possible.

2.1 The grASP Algorithm

The grASP algorithm is recursive in nature. Since a dependency graph represents the causal relationships
among nodes, the reasoning should follow a topological order. We don’t need to do topological sorting
to obtain the order, instead, for each iteration, we just pick those nodes which have no in-coming edges.
We call this kind of node a root node. After picking the root nodes, the algorithm checks their values.
If a root node’s value has not been fixed (no value yet), we assign False to it. Otherwise, the root node
will keep its value as is. Once all root nodes’ values are fixed, we will propagate the values along their
out-going edges in accordance with the sign on each edge (the propagation rules will be discussed in
Section ??). At the end of this iteration, we remove all root nodes from the graph, then pass the rest of
the graph to the recursive call for the next iteration.

The input graph may contain cycles, and, of course, there will be no root nodes in a cycle. Therefore,
this recursive process will leave a cycle unchanged. To cope with this issue, we proposed a novel solution,
which wraps all nodes in the same cycles together, and treat the wrapped nodes as a single virtual node.
All the in-coming and out-going edges connecting the wrapped nodes to other nodes will be incident
on or emanate from the virtual node. Thus, the graph is rendered acyclic and ready for the root-finding
procedure.

For each iteration of the recursive procedure, we have to treat regular root nodes and virtual root
nodes differently. If the node is a regular node, we do the value assignment, but if it is a virtual node, we
will have to break the cycles. Cycle breaking means that we will remove the appropriate cycle edges by
assigning truth values to the nodes involved (cycle breaking will be discussed in this section later). After
cycle breaking, we will pass the nodes and edges in this virtual node to another recursive call, because
the virtual node can be seen as a substructure of the program. The returned value of the recursive call
will be the answer set of the program constituting the virtual node. When all regular and virtual root
nodes are processed, we will have to merge the values for propagation.

The value propagation in each iteration makes use of the splitting theorem [2] (details omitted due
to lack of space). After removing root nodes, rest of the graph acts as the top strata and all of the
predecessors constitute the bottom strata, using the terminology of [2]. Thus, when we reach the last
node in the topological order, we will get the whole answer set.

The cycle breaking procedure may return multiple results, because a negative even cycle generates
two worlds. Therefore, the merging of solution for the root nodes may possibly result in exponential
number of solutions. For example, if the root nodes consists of one regular node and two virtual nodes,
each virtual node generates two worlds & the merging process will return four worlds. Of course, this
exponential behavior is inherent to ASP.

More details about grASP can be found at arXiv [1].

3 igASP: A Top-down Approach

Our top-down approach is called igASP, which stands for incremental graph-based ASP solver. The
philosophy of igASP is to translate an ASP program into a CNR dependency graph, which is always
constrained by some constraint rules, then try to satisfy the constraints by assigning presumed truth
values to the related nodes, until all constraints have been satisfied. At the same time, igASP will
propagate truth values of the nodes whose truth value has already been determined.



4 Graph Based Answer Set Programming Solver Systems

Figure 5: Satisfiability Example

Our graph-based approach performs reasoning in an incremental manner. It starts from the con-
straints in the answer set program and traces along causal nodes until it find support through facts (well-
founded case) or it detects a cycle through negation (cyclic case). Our algorithm can be thought of as
a more general form of the Galliwasp algorithm for query-driven execution of answer set programs [4].
The igASP approach is constraint-driven and thus significantly reduces the search space by avoiding
exploration of worlds that are inconsistent with the constraints. Furthermore, the incremental reasoning
from constraints allows igASP to perform query-driven execution.

3.1 The igASP Algorithm

The igASP algorithm is a recursive algorithm. Since a CNR dependency graph represents the causal re-
lationships among nodes, a topological order would indicate the truth values flow along edges from one
node to another starting from the leaves. By their nature, the constraint nodes (labeled False, discussed
in Section 1) will be at the end of such flows in the CNR dependency graph. Therefore, we can incre-
mentally establish the satisfiability relationships across all the nodes starting from the constraint nodes.
This incremental establishment of satisfiability starting from the constraint nodes amounts to developing
a proof tree. An example (Program 5) is shown in Figure 5 where the graph is to the left and proof tree
to the right. To falsify the constraint node, i.e., to ensure it is False, node m must be True and n must
be False. For node m to be True, at least one of the three must hold: p is True, q is False, or r is True.
When every node’s presumed truth value has been found to be consistent with all the dependencies, the
algorithm will return the answers.

%% program 5
m : − p . m : − not q . m : − r . : − not m. : − n .

Effective Edge: An effective edge in a CNR dependency graph refers to any edge that propagates True
value to the node it is incident on. There are two type of effective edges: (i) positive edge emanating
from a True node; (ii) negative edge emanating from a False node. An effective edge only points to a
True node.

Satisfying Conjunction vs. Disjunction: There are two kinds of dependencies that may arise for a
node in the CNR dependency graph: conjunctive and disjunctive. A conjunctive dependency refers to
the situation where a node is presumed to be False. In this case, none of the edges incident into the node
should be effective edges. A disjunctive dependency indicates that when a node is presumed to be True,
at least one of the in-coming edges should be effective. Since igASP works in a reverse manner (from
constraints to facts), we may get multiple partial models before we can validate the True/False label of
the current node. For both conjunction and disjunction, these partial models need to be merged for the
sake of integrity as well as efficiency. The merging process is discussed later.



F. Li 5

Proof Branch: In the igASP algorithm, we start from the constraints that have to be shown to be false,
and incrementally construct a proof tree obeying the constraints imposed by the CNR dependency graph.
In this incremental reasoning process, we will pursue various paths in the CNR dependency graph. Our
proof will have multiple branches, corresponding to various paths in the CNR dependency graph. Traver-
sal of a branch stops when we reach a fact node whose value has already been given by the ASP program
(i.e., known to be a true due to being a fact or known to be false because the atom does not have a rule
with that atom as head), or sense that the branch contains a cycle.

Cycle Handling: For positive cycles, we need to ensure that any models computed are consistent with
ASP semantics. Suppose we have a program p :- q. q :- p., under ASP semantics, it will have
only one answer set: {p/False, q/False}. The other model ({p/True, q/True}) has to be rejected, as it
is not well-founded per ASP semantics. Thus, positive cycles have to be handled properly so that only
correct answer sets are reported.

To detect a cycle, igASP keeps track of the presumed nodes along the branch, when the current node
has been seen previously, we will check whether there exist any False node between these two nodes.
If so, it is an even cycle, otherwise, it is a positive cycle and only the falsifying assignment should be
computed.

Model Merging As mentioned previously, for each presumed node n (i.e., a node assigned a truth value),
its dependencies will be either conjunctive (if n is presumed False) or disjunctive. (if n is presumed
True). For both conditions, we need to merge the partial models that have been computed so far while
assigning a truth value to the dependent nodes. For the conjunctive condition, the merging process only
takes successfully merged models, each of which are the union of two non-conflicting sub-models. For
example, consider a node n that is presumed to be False. Suppose it has two predecessors p and q, both
p and q connect to n via negative edges. So that n will only be False when both p and q will be True. We
need a conjunctive merge here. Suppose we have sub-models {p1:{a/True, d/True, b/False}, p2:{a/False,
b/True}} that hold for p to be True, and sub-models {q1:{a/True, c/True, b/False}} for q to be True. The
conjunction merging of sub-models between p and q will only accept the union of p1 and q1, because
p2 conflicts with q1. Therefore, there will only be one model to satisfy for n being False, that is {a/True,
c/True, d/True, b/False}.

For a disjunctive merging, we will keep the conflicted sub-models along with successfully merged
ones. Let’s modify the above example a little bit by presuming the value of node n to be True, and keep
everything else unchanged. Now the merging condition became disjunctive, because one of p or q being
False will still make n True. Since p1 and q1 can be merged without conflict, we replace them by their
union {a/True, c/True, d/True, b/False}. But this time we don’t discard p2, because p2 is also a valid
model that makes n True. Therefore, after this merging, we will have two sub-models for n being True:
{{a/True, c/True, d/True, b/False}, {a/False, b/True}}.

Forward Propagation: Since nodes are assigned values is in a backward chaining manner, where we
compute the truth assignment of the predecessors before that of the current node, the sub-models needs to
cover as much information as possible. If some nodes’ value can be inferred from the proven nodes, they
must also be added into the sub-model. For example, suppose we have a sub-model {a/True, b/False}
for making node n True. Suppose there are two additional rules related to node a and b: (i) c :- a.

(ii) d :- not b. In this case, we know that c and d must also be True.
igASP propagates truth values every time a presumed node value has been established, by using a

causal map which covers all of the causal relationships for each node/value. When a presumed node/value
is established, igASP will check whether there is any other node whose value can be inferred from current



6 Graph Based Answer Set Programming Solver Systems

node assignments. If there are any, the inferred value is assigned to that node and propagation continues
until the model does not change.

Query Handling: A query w.r.t. an ASP program amounts to checking whether a literal is in one of
the models of the program. For instance, ASP program p :- not q. q :- not p. :- p, q. has
two models {{p/True, q/False}, {p/False, q/True}}. If we query p, we should get the model {p}.

For query handling, igASP negates the query literal and append it to the ASP program as an additional
constraint. So for the above example, the query p/True will be converted to a constraint rule :- not

p. and added to the original program. So the program will now be p :- not q. q :- not p. :-

p, q. :- not p.

Non-constrained (Non-headless-rules) Program Handling: igASP begins its reasoning from a con-
straint node (typically, the query represented as a constraint), then searches for a partial answer set to
satisfy the constraint.

This may raise a concern: How about an ASP program that has no global constraints (headless rules)
at all? To solve this problem, igASP performs a conversion on the original dependency graph.

Since all original facts in an ASP program should never be False. It means that we can take all
negated facts as global constraints. Therefore, for any ASP program has default facts, we will generate
global constraints accordingly. What if there is no fact in the program? In this case, igASP picks one
node, and links it to the “Constraint” node with both positive and negative edges (via a conjunction
node). The reason is simple, a node will either be True or False. For a program whose dependency graph
is disconnected, igASP picks one node from each separated sub-graph, and links them to the “Constraint”
node with both positive and negative edges. For picking which node to connect with the “Constraint”
node, we use a heuristic which chooses the node with most in-coming edges. Since in-coming edges
represent dependencies, and each sub-graph is connected, the heuristic is admissible.

4 Causal Justification

A major advantage of our graph approaches is that they provides justification as to why a literal is in
an answer set for free. Providing justification is a major problem for implementations of ASP that are
based on SAT solvers. In contrast to SAT-based ASP solvers, our graph representation maintains the
information about structure of an ASP program while computing stable models. Indeed, the resulting
graph itself is a justification tree. Since the truth values of all vertices are propagated along edges, we
are able to find a justification by looking at the effective out-going edges and their ending nodes. Here
the effective out-going edge refer to an edge that actually propagated True value to its ending node.
According to propagation rules that are discussed in Section ??, there are only two type of effective
out-going edges: (i) positive edge coming from a True node; (ii) negative edge coming from a False
node. Every effective out-going edge should point to a True node. Therefore, the justification first picks
effective out-going edges, then check each edge’s ending node. If all those ending nodes are True, the
answer set is justified.

References

[1] Fang Li, Huaduo Wang & Gopal Gupta (2021): grASP: A Graph Based ASP-Solver and Justification System.
CoRR abs/2104.01190. Available at https://arxiv.org/abs/2104.01190.

https://arxiv.org/abs/2104.01190


F. Li 7

[2] Vladimir Lifschitz & Hudson Turner (1994): Splitting a Logic Program. In Pascal Van Hentenryck, editor:
Logic Programming, Proceedings of the Eleventh International Conference on Logic Programming, Santa
Marherita Ligure, Italy, June 13-18, 1994, MIT Press, pp. 23–37.

[3] Thomas Linke & Vladimir Sarsakov (2005): Suitable graphs for answer set programming. In: Interna-
tional Conference on Logic for Programming Artificial Intelligence and Reasoning, Springer, pp. 154–168,
doi:10.1007/978-3-540-24609-1 26.

[4] Kyle Marple, Ajay Bansal, Richard Min & Gopal Gupta (2012): Goal-directed execution of answer set pro-
grams. In: Proc. PPDP’12, ACM, pp. 35–44, doi:10.1145/2370776.2370782.

http://dx.doi.org/10.1007/978-3-540-24609-1_26
http://dx.doi.org/10.1145/2370776.2370782

	Dependency Graph
	grASP: A Bottom-up Approach
	The grASP Algorithm

	igASP: A Top-down Approach
	The igASP Algorithm

	Causal Justification

