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Abstract
In the past years, the security of information systems has become more and more important. Threat modeling techniques
are applied during the design phase of the development, helping to find potential threats as early as possible. However,
assumptions made at this development step are often not considered in later steps or are not validated correctly, particularly
not during the concrete implementation of the system. To overcome this problem, we present cards, a security modeling
approach on the architectural level which utilizes code analyses to validate assumptions made during the threat modeling
phase. cards helps ensure a correct implementation but also allows one to determine which effect code vulnerabilities
can have on the overall architecture, as described through models. We implemented cards based on the Eclipse Modeling
Framework, for Java-based system implementations. We evaluated cards based on the CoCoME case study to show its
efficacy. The evaluation showed that cards can ease the validation of assumptions made during threat modeling and reduce
the overall analysis effort.
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1. Introduction
Security is an essential property when developing mod-
ern software-intensive systems. To ensure high security,
it is important to consider security not only during the
implementation but already when designing the system.
Especially dataflows are of high interest because con-
fidential data resembles important assets for every in-
formation system, and also because attacker-controlled
inputs need to be properly filtered before they are used.
For this reason, one uses threat modeling approaches to
reason about potential threats and corresponding coun-
termeasures in early development steps [1].

Current approaches, however, are limited because of
the lack of full traceability from threat model to the sys-
tem artifacts. In particular, due to a missing connection
of threat model artifacts and the implementation, this im-
plementation often differs from the specifications made
during threat modeling [2]. Hence, assumptions made
during the design or in the threat model are not cor-
rectly implemented or not even implemented at all, which
leaves the security state of the actual system unclear.

Static code analyses can help to validate these assump-
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tions and are used to ensure that specific dataflows are
prevented. For example, when paying in the super mar-
ket, such an assumption on the implementation of the
cash desk could be that customer credit card informa-
tion is only sent to system parts that have permission
to process it. Especially for large-scale systems this be-
comes a challenge because large code bases have to be
analyzed. Additionally, such systems consist of several
subsystems that are possibly developed by different par-
ties. Distributed systems, micro-services and “serverless”
architectures are just some prominent examples.

Particularly in these areas, model-based approaches
are promising for threat modeling and security by de-
sign [3]. However, most approaches are either fully
model-driven approaches that are quite heavy-weight
and usually hardly adaptable, e.g, UMLsec [4] or SEED [5],
or light-weight approaches such as STRIDE [1] that only
take threat modeling into account but do not consider
the connection to the implemented system. To make
threat modeling more effective for distributed systems,
the following challenges need to be met.

Security requirements are usually defined by several
disciplines and, therefore, should be specified on the ar-
chitectural or system level such that they can be dis-
cussed independently from—and in the best case already
before—the implementation phase. Countermeasures de-
fined during such a threat modeling phase are usually
assumptions made about the implementation. Hence, all
assumptions made on the architectural level have to be
made explicit in the model and have to be correctly re-
fined into source code [2]. Because this is a tedious and
error-prone task, one must validate these assumptions on
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Figure 1: Overview and main process steps of cards.

the source code level. An additional challenge is that the
implemented system is usually not completely under the
control of one development team. Static code analyses
are a suitable solution to this end because they validate
such assumptions on the source code and can be defined
for a specific subsystem regardless of who is responsible
for the implementation. However, if static code analyses
are used, the results are most useful if fed back to the
architecture and threat model. Unfortunately, current
solutions fall short in this regard.

We see two main concepts as essential here: Connec-
tion to the source code and making the requirements
and assumptions made during threat modeling explicit.
To address these challenges, we have developed cards
(Component-based Assumptions and Restrictions for
Dataflow Specifications), a security modeling approach
for dataflows in distributed systems. It provides a new
DSL which operates on a generic component model and,
therefore, can be adapted for existing component-based
approaches. cards can be used to specify security re-
quirements for dataflows, as well as assumptions made to
fulfill these restrictions on the architectural level. cards
further illustrates how static code analyses can be used
to validate the assumptions on the code level.

In particular, this paper makes the following original
contributions:

• cards: a concept and a domain-specific language
for the specification of dataflow restrictions and
assumptions on the architectural level,

• an analyzer checking the system for dataflow vi-
olations,

• a concept for generating the corresponding static
code analyses, and

• an implementation of these concepts based on
the Eclipse modeling framework and Sirius, pro-
viding a textual as well as graphical syntax.

This paper is structured as follows: In Section 2, we
provide an overview of cards, describe our concept for
security restrictions and assumptions, explain our model
analyses on and the generation of code analyses. In Sec-
tion 3, we describe the implementation of the prototype
and present the evaluation of cards in Section 4. Sec-
tion 5 compares cards with related approaches and Sec-
tion 6 concludes this paper.

The source code for our implementation can be found
on https://github.com/secure-software-engineering/cards

2. CARDS: Security Modeling and
Validation

Effective threat modeling requires four basic steps: (1)
Finding security-relevant systems parts and functions, (2)
Finding potential threats with regard to these parts, (3)
Risk-assessment, i.e., prioritizing the threats, and (4) im-
plementing appropriate countermeasures. While threat
modeling in general targets all kind of threats, cards
focuses on dataflow-specific threats. We designed cards
in such a way that it’s concepts can be applied to existing
development processes. Figure 1 shows an overview of
the main steps.

At first, the system designer creates a component model
describing the basic architecture of the system (1). This
step is not necessarily part of cards since an existing
architectural model could also be adapted for the applica-
tion of cards. Based on the component model, security
and domain experts specify security-relevant informa-
tion, e.g., confidential data. Also, security restrictions and
security assumptions are specified explicitly. Security
restrictions describe security requirements for specific
data types of the system, e.g., data from the credit card
reader are always sanitized before being sent to other
components of the system. Dataflow-specific security
requirements for the system can be refined to security
restrictions. A security assumption makes an assumption
to the implementation explicit, e.g., that confidential data
will never be send to an external entity. Following this,
a restriction describes global requirements the system
should satisfy, an assumption contrarily describes what
the designer assumes to be implemented for each com-
ponent. The concept of both (1) and (2) are described in
more detail in Section 2.1.

Next, the system can be analyzed whether all security
restrictions are satisfied assuming that all assumptions
will be implemented correctly (3). If a violated restric-
tion is found, the security experts may add additional
assumptions to mitigate this security issue and re-apply
the analysis until all restrictions are satisfied. The as-
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Figure 2: Overview of the used generic component model.

sumptions can be useful for the actual implementation
of the system giving the developers guidelines for the
implementation. Concepts for the analyses and potential
use-cases in the development are explained in Section 2.2.

Finally, cards uses generated static code analyses to
validate if all assumptions are implemented correctly (4).
For this, we provide in Section 2.3 a concept for how
the assumptions can be mapped to static code analyses
automatically. If all generated analyses pass and no vio-
lation is found on source code, the restrictions made to
the system can be seen as satisfied on code-level, too.

2.1. Specifying Restrictions and
Assumptions

In this section, we explain our concepts of restrictions,
assumptions, and all concepts required. We developed a
DSL for specifying security-relevant information of the
system, security restrictions, and security assumptions.
Since it is essential to refer to the actual system model,
this DSL refers to a component model. For demonstra-
tion purposes, we are using a generic component model
which is described in Section 2.1.1. However, since we
use a generic component model, we see our concepts
not restricted to one component model but adaptable
to other component models. After that, we describe in
Section 2.1.2 how security-relevant information can be
formalized. Finally, we explain our concept of restrictions
and assumptions in more detail and describe our DSL for
this step.

2.1.1. Component Model

For demonstration purposes, we are using a generic com-
ponent model. We therefore expect that our concepts can
be applied to most other component-based system speci-
fications as well. Figure 2 depicts the main parts of the
underlying meta-model. A component model consists of
a set of components which can be either CompositeCom-

ponents or AtomicComponents. Composite components
can contain further components by defining Component-
Parts which allows for a hierarchical component model.
Atomic components cannot contain further components.
Components use Ports for communication with other
components. In our component model, we assume com-
munication to be asynchronous. Ports are connected
via PortConnectors which are embedded into the parent
composite component. For a better overview, we have
omitted several parts of the meta-model that are mainly
needed for technical reasons. The full meta-model can
be found in our provided implementation artifacts.

2.1.2. Security-relevant Information

Based on the component model, cards utilizes several
security-relevant pieces of information that can be spec-
ified within our DSL. In the following, we give a short
overview of the supported language features and their
purpose.

DataTypes are representing the security-relevant
data. They are the data assets of the system be-
cause they represent the data that should be pro-
tected. We only consider data that are relevant
for the analyses. DataTypes can have attributes
for labels, e.g, to mark a datatype as external user
input, a security level, and a type which can be
interesting when mapping to the actual source
code base. Listing 1 shows an excerpt of the ex-
ample where three data types are defined (lines
1-5).
Data Groups are used to combine several Data-
Types, e.g., all data describing parts of credit card
information. DataGroups are mainly used when
defining Restrictions and Assumptions. In List-
ing 1, the data types CreditCardNumber and
CreditCardPIN are grouped (cf. line 11).
Component Groups are used similarly to com-
bine components that have something in com-
mon, e.g., (un)trusted components.
Component Kinds can be used to categorize
components, e.g., to mark components as external
entities, datastores, or processes (similar to DFD
threat modeling) [1].
Data Sources describe which components are the
sources for a specific DataType. In Listing 1, the
component CardReader is marked as source for
the types CredietCardPin and CreditCard-
Number.
Sanitzers are used to modify data making them
secure for further use, e.g., escaping bad char-
acters. At this stage, a sanitizer is only on con-
ceptual level and can be used in the security as-
sumptions (cf. Section 2.1.3). In the example, a



Listing 1: Example code of a cards-specification.
1 dataTypes {
2 DataType BarCode { },
3 DataType CreditCardNumber {securityLevel 3 },
4 DataType CreditCardPin {securityLevel 4 }
5 }
6 components {
7 AtomicComponent CardReader {
8 ports { INOUTPort cardReaderPort ( )}
9 sourceOf { CreditCardPin,CreditCardNumber }}

10 }
11 Groups {DataGroup CreditCardInfo {CreditCardPin,

CreditCardNumber}}
12 Sanitizer {CCSanitizer}

sanitizer is defined that should sanitize all confi-
dential credit card information, e.g., by replacing
it with asterisks.
Security Level can be used to assign a specific
level of security or trust to components.

2.1.3. Dataflow Restrictions and Assumptions

In the following, we describe our concepts for security
restrictions and corresponding assumptions and how
cards supports the security engineer specifying these.
Essentially, restrictions formally describe security re-
quirements regarding the dataflow within the system.
Assumptions are used to describe countermeasures that
are assumed to be in place in the source code.

Specifying Restrictions Restrictions are used to for-
mally describe security requirements for the data types
specified as assets. In essence, the security engineer has
to describe a security policy for each data type describing
which component is allowed to access the data. Basically,
there are two options: 1. Globally allow all components
to access a data type and define exceptions that are not
allowed to access the data type (deny-listing approach)
and 2. globally prevent components from accessing the
data type and define exceptions describing components
that are allowed to access the data type (allow-listing
approach).

Corresponding to this, we distinguish between two
kinds of restrictions, so-called Allow-Restrictions and
Prevent-Restrictions. For each datatype, the security en-
gineer has to specify such a restriction. One restriction
may cover more than one data type. Listing 2 shows an
example of a specified restriction. In particular, we de-
fine a prevent restriction describing, that the data types
CreditCardPin and CreditCardNumber should only
be accessed by the components CardReader, Bank, and
CashDeskPC by combining the prevent restriction and a
component refinement. Beside component refinements,
restrictions cards also supports refinements for compo-
nent parts and component groups. Without any knowl-
edge of the concrete behavior of the components, this

Listing 2: Example of a restriction using cards-
specification.

1 DataFlowRestrictions {
2 GloballyPREVENT CreditCardInfo {
3 Comp CreditCardPin , CreditCardNumber allow CardReader ,

Bank , CashDeskPC}}

Listing 3: Example code of security assumptions using
cards.

1 DataFlowAssumptions {
2 componentAssumptions {
3 Component CashDesk neverOut CreditCardInfo }
4 portAssumptions {
5 Port pcLightDisplay neverOut CreditCardInfo
6 Port pcCashBoxPort neverOut CreditCardInfo}
7 sanitizersAssumptions {
8 Component CashDeskPC sanitizes DataFlow

pcCardReaderPort -> pcPrinterPort of
CreditCardInfo using CCSanitizer}}

restrictions could not be validated. The security engineer
can therefore specify assumptions of the implemented be-
havior which must be met to achieve the restriction. We
next explain how to specify such assumptions in cards.

Specifying Assumptions An assumption describes a
required behavior of a component. cards provides dif-
ferent kinds of assumptions. At first, we distinguish
between two major kinds of assumptions: neverOut-
assumptions and sanitzer-assumptions. A neverOut-as-
sumption specifies that a context element will never leak
the given data type, e.g., that a component will never
send private data to another component. A sanitizer-
assumption specifies that a context element will always
sanitize the data before leaking it using a specific san-
itizer, e.g., replacing some digits with asterisks when
sending credit card information to the printer.

We support three different context elements: compo-
nents, ports, and flows within a component. Assumptions
for component parts are not useful because all parts of a
specific component type will have the same implementa-
tion. In the example in Listing 3, we show four different
assumptions: 1. an assumption that the (composite) com-
ponent CashDesk will never leak the credit card info
(line 3). 2. an assumption that the pcLightDisplay
port will never leak the credit card info (line 6). 3. an
assumption that the pcCashBoxPort port will never
leak the credit card info (line 7). 4. an assumption that
the component CashDeskPc port will always sanitize
dataflows of credit card info from pcCardReaderPort
to pcPrinterPort, using the sanitizer CCSanitizer (line
10).

cards provides an analysis to check whether the spec-
ified restriction is satisfied on model level if all assump-
tions are implemented correctly. This analysis is ex-



plained in the next section. Section 2.3 describes our
concept how the correct implementation of the assump-
tions can be validated using static code analyses.

2.2. Analysis and Reporting
cards provides model-based analyses checking whether
all specified restrictions are satisfied and if all security
assumptions have been implemented correctly. This anal-
ysis should be part of the threat modeling activity dur-
ing system design and is also useful to find effects in
the system’s architecture when a problem in the actual
implementation is found. The analysis can help secu-
rity experts to find unintended dataflows and to specify
requirements for the implementation of a component
by creating security assumptions. Besides the analysis,
cards also provides several reporting features to assist
the security experts by exporting the analysis results in
useful formats. In this section, we describe how our anal-
ysis works at first and how the results can be reported
afterward.

In cards, we apply a two-step analysis. First, for each
component, all possible paths through the model are
determined. Second, for each component and compo-
nent parts respectively, all data types are determined that
might reach this component. For the first analysis, we
treat the component model as a directed graph where
components are the nodes and port connectors are the
edges. Conceptually, the analysis is as a basic depth-first
search. The output of the analysis is a mapping from
components to all (longest) paths through the model, i.e.,
for each component, we store which components it could
directly or indirectly communicate with. In the second
analysis, for every component, a set of available data
types is determined, i.e., data types that could possibly
be accessed by this component. In the beginning, the
set of available data types of all components that are a
source for a data type are set to these data types. Next,
the analysis recursively propagates data types through
the system. The analysis iterates through the paths and,
for each step in the path, adds all currently available data
types to an output set which is again propagated to the
next component in the path. In this step, we evaluate
given assumptions of the component to alter the set of
available data. If a sanitizer-assumption is specified for
this component and datatype, we add a flag to the data
type that it becomes sanitized by this component. If a
neverOut-assumption is specified, the data type is re-
moved from the output set. The output of this analysis is
a mapping of components to pairs of lists of paths and
data types, which are received on these paths. The advan-
tage of this two-step analysis is that the result does not
only show available data for each component but also
which path is the source for a given datatype.

To find violations of restrictions, we check for each

restriction if data types of the defined restriction are
illegally accessible at a component. Based on the anal-
ysis results, we can compare the list of available data
types and the list of data types specified in the restriction.
If a violation is found, it is essential to report it to the
engineers properly. For this, cards provides different
report features, e.g., visual feedback in the graphical edi-
tors, exported HTML and JSON reports, and an export to
attack-defense graphs [6].

2.3. Using Code Analyses for Validation
When all violations of dataflow restrictions are elimi-
nated by specifying assumptions, these assumptions must
also be met through correctly implemented source code.
To validate this, we propose to use static code analysis
(cf. Step 4 in Figure 1). We provide a general concept for
creating static code analyses for the given model assump-
tions. Since these analyses base on a common structure,
it is reasonable to generate them and, thus, automating
this step. However, to generate the analysis, some man-
ual prerequisites must be met, i.e., a connection between
the model and the code base has to be created. In the
following, we explain how we propose to create such a
connection first and how the analyses can be generated
automatically in a second step.

2.3.1. Connection to Source Code

For connecting the (secured) component model to a given
code base, we propose to use a so-called mapping model.
This mapping model is used to describe the connections
between model artifacts and parts of the source code. All
required mappings are shown in Table 1. All mappings
have to specify the model element, class and a method.

Since creating all mappings by hand is a tedious task,
we provide a source code generator that generates source
code skeletons for a given composite component and also
creates an appropriate mapping model containing all re-
quired mappings. As proof of concept, we implemented a
generator for Java which is explained in Section 3 in more
detail. Supporting the engineers in creating a mapping
model for an existing code base is not in the scope of this
paper but we see potential by applying semi-automatic
approaches like done by Peldszus et al. [7]. However, both
the mapping model itself and the generator are concep-
tually not restricted to one programming language but
can be easily adapted for other programming languages.

2.3.2. Generating Static Analyses

After creating the mapping model, we use this informa-
tion to create a suitable static code analysis. Since we
tend to analyze the flow of information, we use a taint
analysis to validate the flow of data through the program.



Table 1
Mappings defined in the mapping model.

Model Element Description
Component In general, a component is mapped

to a class. However, this mapping is

also used to specify a method that

describes the main entry point of the

component, e.g., a method that exe-

cutes the behavior of the component.

Port This mapping is used to specify a

method for writing to or reading from

a component port. We therefore

distinguish between IN-port map-

pings and OUT-port mappings. If an

INOUT-port is used, both mappings

have to be specified.

Data Source This mapping is used to specify a

method that returns a specific data

type if a component is specified as a

source for a data type.

Sanitizer This mapping is used to specify a

method that executes the sanitiza-

tion of a data type.

Instead of generating full analyses, we use the informa-
tion stored in assumptions and the mapping model to
configure taint analyses provided by mature frameworks
such as Boomerang [8, 9].

Since assumptions are always specified for a specific
component, the analyses are restricted to the correspond-
ing implementation for this component as well. In gen-
eral, both the read-messages for all IN-ports of the com-
ponent that receive a specific datatype and (if the com-
ponent is a source) the source-method for data type are
potential sources for the taint analysis. Similarly, all
OUT-ports are potential sinks for the taint analysis. In
the following, we describe how a taint analysis can be
specified for each assumption based on our models.

We assume that the mapping model is fully specified
and, therefore, provides methods for reading a data type
from a IN-port, writing a data type to an OUT-port, sani-
tizing data types for each sanitizer, and for executing the
component’s behavior. The last method can be used as
an entry-point for the code analyses. If not specified, all
public accessible methods have to be considered as poten-
tial entry points, e.g., public methods in Java. Methods
for ports and sanitizer are used to configure the taint
analyses. Both methods for reading IN-ports of all ports
that are capable of handling the data type to be analyzed,
and a method if the component is a source for the data
type are considered as sources for in taint analysis. Cor-
respondingly, methods for OUT-ports are considered as
sinks in the taint analysis. In the case of a flow assump-
tion that explicitly defines a flow from one to another
port, only methods for these two ports are considered.

When generating the analyses, we can reduce the search
space by considering the information of the component
model. In particular, we only take methods for ports into
account that are capable of handling the data types un-
der investigation. For example, let us assume that the
component of the card reader (cf. Listing 1) is connected
to the cash desk. When analyzing the implementation of
the cash desk on the flow of credit card information, it is
sufficient to take the port of this connection as a source
for the credit card information.

After executing the analyses, the result shows if the
assumptions are correctly implemented in the given im-
plementation. An advantage is that not all analyses have
to be re-evaluated if the source code for a component
changes but only the analyses that are relevant for this
component. Also, the security engineer can use this infor-
mation to either consider this fact in the security model,
e.g., by adding additional assumptions to other compo-
nents, or by contacting the developer of the components
that do not comply with the assumptions.

3. Implementation
We implemented a prototype of our DSL and analyses
using the Eclipse Modeling Framework (EMF). We chose
to add a textual representation of the DSL using Xtext
[10] and implemented a graphical editor using Sirius [11].

The source code for our implementation can be found
on https://github.com/secure-software-engineering/cards

In the following, we describe all parts of our imple-
mentation shortly.

Textual and Graphical Editor The graphical editor
for cards was implemented using Sirius. Figure 3 shows
an example of the graphical editor. In addition, we pro-
vide a textual editor implemented using the Xtext frame-
work. All changes made to the model in the graphical
editor are also reflected on the underlying Xtext model.
Hence, developers can switch at any time to the repre-
sentation they prefer. Using the graphical editor, we can
easily model systems or create representations for exist-
ing models. The diagram representation can be analyzed
using Sirius’ own tool to verify diagrams, which invokes
our analyses, using EMF validation and are shown in the
model and the Eclipse problems view.

Analyses The analysis explained in Section 2.2 is im-
plemented as a basic depth-first search. We treat the
model as a directed graph and recursively propagate data
types, which a component is source for, over outgoing
edges. Output of this analysis is a mapping from compo-
nents to all paths through the model. The assumption
analysis explained in Section 2.2 iterates through the
paths determines the processed data per component. The

https://github.com/secure-software-engineering/cards


output of this analysis is a mapping of components to
pairs of lists of paths and data types, which are received
on these paths. To resolve restrictions, we check for each
restriction, if data types of the defined restriction are
illegally accessible at a component.

Mapping Model As explained in 2.3, we created a
mapping model, which maps model parts to Java code to
ease the generation of static code analyses. This mapping
is implemented as a EMF model. Empty mappings for new
model parts are automatically added to this model when
using our graphical editor suite. Instead of providing
an additional DSL for the mapping model, we provide
a properties view for relevant parts of the model in our
graphical editor, where mappings can be edited.

Generation of Glue Code Using the Xtend frame-
work, we implemented a code generation, whose output
can serve as glue code for Java implementations of a given
model. Components are implemented as Java threads and
all connections and mappings between component parts
are implemented using the observer pattern. Commu-
nication is restricted to strings, but can be extended to
arbitrary objects. Similar to our DSL, composite com-
ponents handle the inter-component communication by
instantiating connections. Additionally, all assumptions
are added as documentation for the developer using Java
annotations. Upon code generation, the mapping model
is also created automatically.

Static CodeAnalyses Based on the concepts described
in Section 2.3.2, we generate the configuration code for
the static code analysis automatically using the Xtend
framework. The generator takes the component model
and the mapping model as input. All assumptions can
be validated using taint analysis. Since we are focusing
on Java code in our implementation, we decided to use
the established analysis framework Boomerang [9, 8] for
the specification and execution of the taint analyses. We
generate the required taint analyses for each assumption.
The generator can be adapted to any other framework
that enables the specification and execution of taint anal-
yses. This also allows one to use different languages for
the implementation of the system’s components.

4. Case Study
We evaluated cards using a case study based on CoCoME
[12]. CoCoME is an established example for component
modeling commonly used in research. The example sys-
tem is a model of a store which is part of an enterprise. An
enterprise consists of a server, client and several stores,
each store consists of a server, client and several cash
desks. A cash desk consists of a bar code scanner, a card

reader, a cash box, a printer and a light display, all of
which are connected to a cash desk pc, which also con-
nects to a bank. Figure 3 shows the component model
using our graphical editor. For our evaluation, we chose
to base our model on CoCoME’s first proposed use case,
the sale. A sale is an interaction between a customer and
a cashier. We model the complete cash desk, a bank and
the store infrastructure. We adapted the data types pro-
vided in the reference implementation of CoCoME [13],
as they are not part of the original definition. We used
the case study as a proof of concept of cards itself. For
our example, we defined a restriction that the credit card
number and pin may only be accessed by the card reader,
bank and cash desk pc. In the real world, the credit card
number may be printed if partly replaced with asterisks,
so a sanitization is a sensible approach.

Using the provided models of CoCoME, this restric-
tion is not directly clear, as dataflows are not part of their
modeling. With cards, we can already provide a formal
restriction for this use case. Listing 2 shows the textual
representation of this restriction. Upon validating the
model, our analyses provide the developer with feedback
that the current model violates the restriction because
the credit card information may be accessed at every com-
ponent, including the printer. To address this violation,
we chose to define several dataflow assumptions for our
model. Listing 3 shows a representation of the assump-
tions we made to resolve the violations. In particular,
we assume that the credit card information will never be
leaked to the light display, cash box and anything out-
side the cash desk component. Additionally, dataflows
between pcCardReaderPort and pcPrinterPort of
the cash desk pc component will be sanitized using the
CCSanitizer. With these assumptions in place, the analy-
sis does not show any violations for the restriction. De-
velopers might find major security flaws in their archi-
tecture based on restriction violations, which may lead
to architectural refactorings that resolve the violation.
We used cards to generated a Java project for the cash
desk application and implemented the behavior code for
the relevant components based on the documentation of
CoCoME. Also, the corresponding mapping model and
the static code analyses were created automatically.

For the evaluation of the analyses, we created two ver-
sions of the implementation: one version violating the
assumptions which should therefore lead to a report by
the analysis, and one version that respects the dataflow
assumptions, e.g. by preventing dataflows or using the
desired sanitizer. The analyses were able to find the in-
correct dataflows. However, it showed that in the current
implementation false positives might get reported if one
specifies different policies for data of the same port. To
solve this problem, the developer needs to either adjust
the implementation making sure that the data are filtered
and correctly sanitized, or the result is fed back into the



Figure 3: Component diagram based on the CoCoME case study.

component model where the security engineer can split
the dataflows such that the flows are analyzed separately.

The evaluation showed one major advantage of the
approach. When the source of one component changes,
only the analyses for this component have to be re-evalu-
ated instead of analyzing the whole source code again.
For example, assuming that the implementation of the
component CashDeskPC changes, only the analyses for
this component have to be executed. If the implementa-
tion of other components changes, no re-evaluation is
required. Especially for large-scale systems, this compo-
sitional approach can help to reduce the overall time for
threat modeling and risk analysis.

5. Related Work
There are two major areas to which cards is related:
Threat Modeling and Model-based security testing. Threat
modeling because cards enables threat modeling and
analyses based on the created threat model. Security
testing since cards aims to automate validating the im-
plemented security assumptions.

Threat Modeling For threat modeling, often dataflow
diagram based approaches are applied because of the
simplicity and technology-agnostic modeling [2]. Most
prominent examples are the STRIDE approach [14] or
LINDDUNN[15] for privacy-focused threat modeling.
cards is related to these approaches since it also uti-
lizes an architectural description of the system. However,
in contrast, cards focuses on seamless threat modeling
by combining threat modeling and analyses on the actual
implementation. Currently, cards does support finding
known threats automatically but we plan to implement
this in future work.

Several approaches enhanced the use of data-flow di-
agrams to improve threat modeling and risk analysis.

Extended dataflow diagrams Berger et al. present an
approach using extended DFDs [16] which are a more
formal version of classical dataflow diagrams. Since these
DFDs allow for formal analyses and hierarchical system
specification, it allows for more precise threat modeling.
In contrast, we base our threat modeling approach on
established modeling artifacts enabling the integration of
our concepts into existing approaches. Peldszus et al. [17]
providing an approach that aims at the connection from
dataflow diagrams to source code and is therefore also
highly related to our approach. This approach enables
more precise threat modeling because the actual imple-
mentation is respected in the threat model. In contrast,
cards focuses on a top-down approach enabling early
analyses without a code-base.

Also, model-driven and model-based security grew to
a large research area in the last years [18]. An overview
of approaches in general can be found in the mapping
study by Nguyen et al. [19]. Several approaches integrate
security modeling into existing modeling approaches,
e.g. SEED [5] or UMLsec [4]. SEED [5] is an approach
that aims at building a bridge between embedded system
experts and security experts. In SEED, security experts
can define security solutions that can be used during the
system design and to validate the system based on the in-
tegrated security solutions. In contrast, cards focuses on
the definition of assumptions at design time and the vali-
dation on source code level instead of defining concrete
security solutions that are integrated into the system
design. UMLsec [4] provides a UML profile providing
modeling concepts and analyses for security-relevant sys-
tem properties. In contrast to UMLsec, cards focuses
on the connection of design-time assumptions and the
source code implementation, leaving model-driven con-
cepts like concrete behavior modeling out.



Model-based Security Testing Following the clas-
sifications discussed in a survey by Felderer et. al [20],
for security testing two principal approaches are distin-
guished in general: Testing to find vulnerabilities and
unknown threats in the system and testing if the security
mechanisms are implemented correctly [21]. The first
category does not fit to cards since we are using threat
modeling techniques to define security requirements and
threats in the initial steps but cards does not contribute
to finding new threats or vulnerabilities by itself.

Following Schieferdecker et al. [22], models that are
used for model-based security testing can be categorized
into three major categories: First, Architectural and func-
tional models which “are concerned with system require-
ments regarding the general behavior and setup of a
software-based system” [22]. Second, Threat, fault and
risk models that “focus on what can go wrong” [22] and
are used to determine potential threats, corresponding
risk factors, and their relationships, e.g., STRIDE [1].
Third, Weakness and vulnerabilities models describing
“the weakness and vulnerabilities itself” [22], e.g., models
referring to CVE or CWE but also catalogs for generating
threat lists like in the Microsoft Threat Modeling Tool [1].
cards provides a combination of the approaches of the
first and second category because it utilizes architectural
models for describing a secure system architecture but
also concepts and analyses for reasoning about dataflow
threats in the system. In contrast to existing approaches
cards combines a light-weighted threat modeling ap-
proach on abstract design models with concrete analyses
on the implemented system and, therefore, enables seam-
less threat modeling of a system. Providing vulnerability
and attack catalogs or the integration of CVEs is currently
not supported and left for future work.

6. Conclusion
Modern information systems require development tech-
niques that ensure security-by-design. Especially, dataflows
within a system are of high interest since data is often
a sensitive asset of the system. The early creation of
a threat model but also the seamless integration of the
threat model into all development steps of the system
are essential to this extent. In this paper, we have pre-
sented cards, a model-based threat modeling approach
for dataflows in distributed systems. We discussed our
concepts based on a generic component model. cards
allows to formally specify security requirements for sensi-
tive data of the system and to validate these requirements
on architectural level by defining assumptions for the
system’s components that need to be fulfilled in the imple-
mentation. For this, we provide a DSL that allows defin-
ing both requirements and assumptions for a component-
based system specification. Using this systematic ap-

proach helps designers identify required dataflow rules
for the implementation at early development steps. These
rules (assumptions) can be useful in different ways: On
the one hand, when implementing a new system, they
can be used as requirements for the later implementa-
tion. On the other hand, they can be used to validate if
an already implemented system does comply with the
security assumptions.

Furthermore, we provide a concept of how these as-
sumptions can be expressed by static code analyses, al-
lowing to automatically validate the assumptions on a
given implementation. The advantage of this modular
approach compared to approaches that validate security
requirements is that assumptions are defined component-
wise and, therefore, only the code for affected compo-
nents has to be analyzed. This is especially important if
the source code for only one component changes and the
requirements has to be re-evaluated. Also, connecting
a threat model on the architectural level with concrete
analyses on the source code level helps feed back analysis
results into the threat model. This simplifies reasoning
about the effects of the analysis results.

We provide a prototypical implementation of cards
containing a graphical and textual editor for component
model and our DSL for describing assumptions and re-
strictions and evaluated our concepts based on a use
case of the CoCoME case study. To ease the process of
connecting threat model and code, we provide a gener-
ator to Java code that automatically creates a mapping
model describing the connections from model elements
to dedicated Java methods. For existing system imple-
mentations, the approach is currently limited in efficacy
because the mapping model that connects the component
model used for threat modeling and the source code has
to be created manually. However, we see potential to
automate this step in future work. We also plan to extend
the approach by taking the kind and security level of data
types and components into account when analyzing the
model. This would enable the security engineers to apply
concepts of DFD-threat modeling (like in STRIDE) on the
component model and to search for required restrictions
and corresponding assumptions automatically.

We see cards as a promising combination of light-
weighted threat modeling and concrete security analyses
on source code which can help system developers to
create more secure large-scaled distributed systems.
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