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Abstract
We propose a method for entity matching that takes into account the characteristic complex prop-
erties of decentralized cultural heritage data sources, where multiple data sources may contain du-
plicates within and between sources. We apply the proposed method to historical data from the
Amsterdam City Archives using several clustering algorithms and evaluate the results against a par-
tial ground truth. We also evaluate our method on a semi-synthetic data set for which we have a
complete ground truth. The results show that the proposed method for entity matching performs
well and is able to handle the complex properties of historical data sources.
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1. Introduction
The Golden Agents project1 is developing a sustainable research infrastructure to study rela-
tions and interactions between producers and consumers of creative goods during the Dutch
Golden Age. This requires integration of various heterogeneous datasets by using, among other
things, semantic web solutions. Due to the independent nature of the institutions that govern
these datasets, their respective knowledge graphs often use different URIs to refer to the same
real-world objects. To access the information that is present for an object in a set of knowledge
graphs, automated methods for identifying and linking duplicate entities within and among
knowledge graphs are required. Linking duplicate entities in the semantic web literature is
also known as entity matching.

In this work we focus on identifying duplicate entities in KGs that contain historical data.
We discuss various characteristic and complex properties of such data and argue that existing
entity matching approaches often use data that do not involve one or more of these complicating
properties. In particular, we aim to identify duplicate entities in data sources that have (some
of) the following properties:

1. The KGs contain internal duplicates, these can be either due to error (a record was
mistakenly duplicated) or not (the same person married twice).

2. There exist duplicate entities that occur between different KGs.
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3. Entities may have missing attributes.

4. Attributes, such as dates, can be approximate.

5. Attribute values can have errors, these can be in the original historical version or intro-
duced over time when the data is copied by hand, digitized, moved, etc. This is also a
potential source of duplicates within KGs.

6. There is no standard for names, e.g. there is no official way to spell a certain name. The
use of shorthands for patronyms is common, e.g. the last names ’Jans’, ’Jansz’, ’Janz’,
’Janssen’ can all refer to the same person.

7. Different KGs use different attributes to describe the same type of entities, e.g. persons.
These attributes can be highly correlated but not have identical meanings. For example,
one KG can use birth dates and another one baptism dates. We call these high correlated
attributes proxy variables.

8. There are many one-to-n and n-to-n relationships in the data, this makes the use of
a tabular structure very difficult. Our method is capable of handling these kinds of
relationships naturally.

The final output of our method is a set of clusters, each claimed to correspond to one and
the same real life object. Furthermore, we assume that these clusters are themselves used
in downstream tasks. The application of transitive closure can sometimes yield very poor
performance if this is not taken into account during the clustering stage.

Our contribution is the proposal of a comprehensive method that starts with a set of KGs
with the above mentioned characteristic properties. All relevant entities, such as all persons,
in the merged KGs are then embedded based on their local context. This context can also be
influenced by weights that are set in the configuration file to serve a specific task, such as entity
matching (e.g. names are more important than dates). When all entities are embedded, we
make use of an approximate nearest neighbor algorithm to efficiently find pairs of entities that
are likely duplicates. We call the pairs that pass a similarity threshold the candidate pairs.
Since ground truth is very limited, our method is unsupervised. Therefore, these candidate
pairs are then further refined with the use of unsupervised clustering algorithms, resulting in
a set of entity clusters, each predicted to represent a distinct object.

We experiment with a real life collection of KGs in the cultural heritage domain for which we
have a partial ground truth (gold standard), and a semi-synthetic KG that acts as an analog
that mirrors the graph structure and noise of the real-life data. We use the semi-synthetic
KG because it is much larger, and moreover since we have introduced duplicates ourselves,
we have a complete ground truth. For each case, we then embed all relevant nodes in a
50-dimensional Euclidean space. We chose reasonable values from Cochez et al. [11] for the
number of dimensions and the BCA hyperparamters to reduce the number of parameters that
need tuning. The settings used in the experiments can all be found in the repositories published
in section 6.0.1. Finally we apply several clustering algorithms, both heuristic and exact, and
compare their results to the transitive closure of the connected components formed by the
candidate pairs. We show that a correctly tuned embedding can achieve good performance,
even when no advanced clustering is used. However, in practice there is often no ground truth
available and therefore it is difficult to choose the similarity threshold that yields these good
results. To address this, we show that heuristic as well as exact clustering algorithms can be
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used to repair clusters that are too large and achieve high performance for a much larger range
of similarity thresholds.

The structure of this paper is as follows. First, we present other work related to our method
in section 2. Then in section 3, we give an overview of our methodology. Afterwards we present
the experimental setup in section 4, where we discuss the data and clustering algorithms. Next,
section 5 provides an analysis of the results of the experiments. Finally, we conclude the paper
with some future research directions.

2. Related Work
To position our work we make use of the taxonomy defined in the survey paper by Christophides
et al. [10]. Our method can best be placed in both the Multi-Source Entity Resolution (ER)
(there exist duplicates between data sources), and Dirty ER (data sources themselves contain
duplicates) categories. We therefore categorize our method as Multi-Dirty Source ER.

Much work has been done on the problem of identifying entities in the data that refer to the
same real-world object, often using related terms such as: entity linking, entity disambiguation,
entity resolution, entity deduplication, entity alignment and record linkage. Many of these
terms are used in different circumstances or for related problems, for example, record linkage
is usually used in the context of matching records in one dataset with records in other datasets.
These works can be rule-based [24, 31], make use of word embeddings of tokens that appear
in the descriptions of entities [13, 34], or focus on scalability [23, 29, 30]. Some of these works
make use of structured (tabular) data and exploit extra information such as duplicate free
sources. Furthermore, it is often assumed that entities can be neatly described using a fixed
number of attributes, and that all entities either use (different names for) the same attributes,
or use different attributes that can be easily mapped.

Most relevant to our setting are methods that make use of representation learning tech-
niques. In this case the term entity alignment is most often used. The key idea is to learn
embeddings of KGs, such that entities with similar neighbor structures in the KG have a
close representation in the embedding space. These techniques have their origins (for graphs
in general) in Node2Vec [15] and Deepwalk [26], and (for KGs) in TransE [7] and its many
extensions, such as [12, 32, 33]. Furthermore, several techniques exist for embedding nodes in
the case of mapping two KGs that are in different languages, e.g. [8, 9]. In that case one can
exploit the fact that there can be at most two duplicates entities per real world object.

In light of other work on cultural heritage data sources, Raad et al. [27] summarize their
efforts to create a certificate linking method for Dutch civil certificates from the Zeeland region,
based on efficient string similarity computations. Furthermore, they propose a contextual
identity link [28], as they observe that the owl:sameAs link is often misused. They note that
the notion of identity can change under different contexts. For example, two pharmaceuticals
may be judged as equivalent when their names match under some conditions, while under other
conditions their chemical structure needs to be identical as well. Their solution is an algorithm
which detects the specific global contexts in which two entities are identical. Similarly, Idrissou
et al. [20, 19] have proposed a contextual identity link based on the use of related entities to
construct evidence for likely duplicate pairs. An example of evidence is that two entities may
co-occur in multiple records under similar names. Their method requires the user to specify
beforehand what is considered evidence and how entities should be matched. Koho et al. [21]
reconcile military historical persons in three registers, and use similarity measures between
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attributes in both a deterministic rule-based method, based on a pre-defined handcrafted
formula, and a probabilistic method that makes use of supervised learning. In contrast to our
work, only precision is reported, as an exact recall cannot be calculated with a small manually
generated partial ground truth. Hendriks et al. [18] use data from the Amsterdam Notary
Archives and Dutch East India Company (VOC) and perform both named entity recognition
and record linkage with the help of supervised learning, where we use unsupervised learning.

To create the embedding, we build on the work of Cochez et al. [11] and Baas et al. [3], who
both use the Bookmark Coloring Algorithm (BCA) [5] to create a co-occurrence matrix from
the knowledge graph, and GloVe [25] to learn the embedding from the co-occurrence matrix.
Additionally, Baas et al. [2] introduce a mechanism for merging multiple KGs based on user set
similarity rules and focus on graph traversal strategies to create entity contexts. Afterwards
they apply supervised learning to create a classifier which is able to identify duplicate pairs
of entities. In more recent work [2], they introduce the cluster editing (also called correlation
clustering) algorithm to create clusters using the aforementioned classifier to generate input
weights.

Important differences with this work are that 1. We forego the supervised approach and
instead use an unsupervised method, as labeled examples are often very rare (or non-existent)
in historical research settings. 2. We apply a form of blocking and filtering to create clusters
without having to compute all pairwise similarities. 3. We modified GloVe to be more efficient
on large KGs, as explained in sections 3.2, and 3.3. 4. Since exact solution of the cluster
editing problem is computationally infeasible for large instances, we also applied three heuristic
clustering algorithms. 5. We use an additional dataset (DBLP) to show that our method works
in multiple settings.

3. Methodology
We will first briefly formalize the entity matching objective in our setting. Given a starting set
of knowledge graphs {KG1, ...,KGn} with KGi = (Vi, Ei), our objective is to find the subset
of pairs of duplicate entities L, where

V =
n
∪

i=1

Vi,

P = V × V , and
L ⊆ P.

It is understood in the field of entity matching that the quadratic growth of P presents a
major problem. Therefore most methods employ some sort of blocking and/or filtering methods
to reduce the number of pairs that have to be evaluated. We employ the embedding for this
purpose, as detailed in section 3.4. The workflow of our method is illustrated in figure 1, and
will be described in the rest of this section.

3.1. Merging KGs
We start with a set of KGs, as seen in panel a of Figure 1. In our setting, the only way the
graphs can be compared and connected is through identical or similar values in their literal
nodes. Therefore, we perform two steps:
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Figure 1: An overview of the entire process. First, a given set of KGs (a) is merged into a single graph (b),
then the nodes in this merged graph are embedded (c) and a set of candidate pairs (d) is computed using
approximate nearest neighbor search and a similarity threshold. Finally, the candidate pairs form connected
components, which are then clustered (e).

1. All literal nodes with identical values are merged based on their predicate. Merging on
solely the value of a literal node will cause ambiguity as to what the value of that literal
node represents.

2. Although graphs can be partly connected after applying the first step, we still face the
problem of noise present in the values of literal nodes, and, often predicates associated
with literal nodes may only occur in one of the graphs. However, these predicates can
still be related if one can act as a proxy variable for the other, e.g. one graph contains
the bornOn predicate and another the baptisedOn predicate. We connect such nodes if
they satisfy a similarity criterion, such as a preferred distance between certain dates.
This technique can be used to deal with noise as well, e.g. to connect literal nodes that
represent similar names by using, for instance, Jaro-Winkler string similarity.

The resulting merged graph, panel b in Figure 1, does not necessarily adhere to the RDF
standards, as we may have added edges between literal nodes. From this point on, we do not
treat the merged graph as a KG, but instead as an undirected weighted graph G = (V,E), where
the weights are either predefined (for predicates) or are created (for literal node similarities)
in step 2 above.

3.2. Generating Entity Contexts
We use an adaptation of the Bookmark Coloring Algorithm [5] (BCA) to generate a context for
each node in a graph. The general idea of BCA is to consider the context of a node in a graph
as an approximation of the personalized PageRank for that node, i.e., a set of probabilities
associated with nodes in the graph. A useful analogy is imagining dropping a unit amount of
paint on a given starting node. A fraction α of the paint remains on the node and the fraction
1 − α is distributed among neighboring nodes. When the amount of paint falls under ϵ the
paint is no longer distributed. This means that even in the case of loops, the algorithm will
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eventually terminate after running out of paint. The value for ϵ can be tuned to get a smaller
or larger neighborhood. The fraction of paint which continues to flow can be adjusted with α.

Instead of uniformly distributing paint over neighboring nodes, as standard BCA does, the
paint is distributed relative to the weight of edges. The weights on edges between literal
nodes are computed from the similarity of their values. All remaining weights are set in the
configuration file by the domain expert, or can be omitted, in which case they all equal 1.

As mentioned before, we treat the edges in the merged graph as undirected. This is because
the directed structure of the graph can curb the ‘flow of paint’, especially when information
about duplicate entities is dominated by literal nodes, which only have incoming edges by
default. This will cause otherwise related entities to have no or very small overlapping context,
something we wish to avoid.

Finally, we have increased the efficiency of calculating the entity contexts in two ways.
First, we perform early stopping by not processing nodes for which we know there will not be
enough paint to continue. This behaviour also introduces a limit on the minimum amount of
paint present on any given node reached by BCA, which increases numerical stability in the
embedding process. Secondly, we observe that we do not need to perform the BCA algorithm
for every single node. Instead, only the nodes we wish to embed have their context calculated,
where every node can potentially appear in a context, including those that are not embedded.
We call the nodes that have their context calculated focus nodes. This modification greatly
reduces the running time of the context generation stage, as usually only a fraction of the
nodes in the graph need to be embedded, e.g. only nodes of type person. Furthermore, by
still including each node in the potential context, we do not impair the context by removing
important co-occurrence information. This second modification does require us to modify the
GloVe algorithm slightly, detailed below.

3.3. Embedding nodes in the merged graph
GloVe [25] has been established as an effective method to use a text corpus for embedding
words in a vector space. We adapt it to embed nodes in a graph instead. GloVe takes as input
a co-occurrence matrix X, where in our case Xij signifies the amount of paint of BCA for node
j, when starting from node i. When BCA has not reached node j starting from node i, then
Xij = 0. Calculating node vectors can be achieved by minimizing the cost function

cost =
N
∑

i

|V |
∑

j

f(Xij)
(

bi + b̄j + wT
i w̄j − logXij

)2 (1)

where N is the number of focus nodes we wish to embed, wi is the vector for node i as a focus
node, and w̄j is the vector for node j as a context node. Likewise, bi and b̄j are the bias terms
of node i as a focus node, and node j as a context node respectively.

In the original specification of GloVe, X is assumed to be a square matrix. However, as
mentioned in section 3.2, we do not perform BCA for every node in the merged graph. Therefore
X is no longer a square matrix, instead, there are N rows and |V | columns. This also means
that there are N vectors w, and |V | vectors w̄, the same goes for the bias terms. When the
change between iterations in the cost function 1 falls below a user set threshold, we regard the
algorithm to be converged. The final embedded vector for each focus node i is the average
between vectors wi and w̄i. We use the term embedding for the set of all embedded vectors,
shown in panel c in Figure 1.
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3.4. Efficiently selecting likely duplicate pairs
As stated in the entity matching objective, we wish to determine the subset L ⊆ P that
contains the duplicate pairs. However, the vast majority of pairs in P do not link duplicate
entities, so duplicate pairs are very rare [1]. We reduce the degree of rarity by creating two
subsets P1 ⊆ P and P2 = P −P1, where P1 is expected to be much smaller in size and to have
a much higher proportion of duplicate pairs. We construct P1 by, for every embedded entity,
taking its approximate k nearest neighbors, where from experience we have learned that k = 2
is a good value for a range of cluster sizes. This effectively acts as a blocking mechanism, as
most pairs in P are never considered. The problem of approximate nearest neighbor (ANN)
search has been well researched [6, 16] and calculating the approximate k nearest neighbors
for all entities can be achieved in much less than quadratic time, depending on the level of
approximation one is willing to tolerate. We note that when a near neighbor j is omitted in
the approximate result for node i, i.e. we miss the pair (i, j), then the pair (j, i) can still be
found when considering the approximate neighbors for node j. This reduces the impact of
the errors returned in approximate search in our method. Next, all pairs in P1 are treated as
unordered, i.e. pairs (i, j) and (j, i) are merged. Finally, we calculate the cosine similarity sij
for all pairs in P1, and name all pairs where the similarity exceeds a threshold θ the candidate
pairs, shown in panel d in Figure 1.

3.5. Clustering
When the candidate pairs are treated as edges in an undirected graph, the resulting graph
typically consists of a number of connected components. Since only pairs of entities in the same
connected component are regarded as potential duplicates, further processing is performed
separately for each connected component C. First, C is modified by adding a weighted edge
for each possible pair of entities (i, j) ∈ C. We define the weight for the edge between entities i
and j as wij = sij − θ. Note that wij can be negative. We call the resulting weighted complete
graph C ′, which is then used as input for a clustering algorithm. Note that for high values of
θ ≈ 1, there are fewer candidate pairs (and thus smaller connected components) than for lower
values of θ. We elaborate on the specifics of each clustering algorithm in section 4.3.

4. Experimental Setup
For our experiments we have used two datasets, one is a set of KGs containing real historical
data from the cultural heritage domain, the other is a semi-synthetic KG designed to have
similar structural properties as the merge of the KGs from the cultural heritage domain. The
main reason to design and use a semi-synthetic KG is to have a complete ground truth to
validate the performance of the proposed approach. As mentioned in the introduction section,
the KGs from the cultural heritage domain in our project have only a partial ground truth,
obtained with manual validation by domain experts [22]. In this section, we first explain the
used datasets, i.e. SAA and DBLP. We then explain how the combined KGs of the SAA, and the
DBLP KG are then processed according to the methodology explained in section 3.5. Without
getting into the technical details of the application of our methodology in this experimental
setup, we only note that these knowledge graphs are embedded into a separate 50-dimensional
space. Finally, we explain the clustering methods used are explained in the rest of this section.
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4.1. City Archives of Amsterdam
The City Archives of Amsterdam2 (in Dutch Stadsarchief Amsterdam, abbreviated SAA) is a
collection of registers, acts and books from the 16th century up to modern times. The original
data are in the form of handwritten books that have been scanned and digitised by hand.
Often more information is stored in the original form than was transcribed. Fully digitising
all information is an ongoing process, performed mostly by volunteers. For this project we
made use of a subset collected from three different registers: Burial, Prenuptial Marriage and
Baptism. The burial register does not describe who was buried where, but simply records the
act of someone declaring a deceased person. To this end, it mentions the date and place of
declaration and references two persons, one of whom is dead. Sadly, it does not tell us which
one of the two has died. The prenuptial marriage records tell us the church, religion and
names of those who are planning to get married. It also mentions names of persons involved in
previous marriages if applicable. The baptism register mentions the place and date of where a
child was baptised. It does not tell us the name of the child, only the names of the father and
mother. Lastly the above records were combined with a subset from the Ecartico 3 data set,
which is a comprehensive collection of biographical data from more well-known people from the
Dutch golden age. Figure 2 shows the graph representations of a record in each register. Note
that these records can be linked to each other by sharing a literal node, in this case a name
or a date field, where the name of an individual is often written in different ways and many
dates are approximate. For our experiments we use a subset containing 12,517 (non-unique)
persons, and a partial ground truth of 1073 clusters.

4.2. Semi-synthetic DBLP-based KG
Since we have only a partial ground truth available for the SAA dataset, and to validate
the performance of our approach, we have created a KG based on a 2017 RDF release4 of
DBLP,5 a well-known dataset among computer scientists, containing publication and author
information. This version of DBLP has already been disambiguated, that is, different persons
with the same name have unique URIs. We have reversed this by first taking a random sample
of persons and then creating new anonymous URIs for each author listed per publication.
In total there are 76,397 new URIs created for disambiguation into 51,515 clusters. These
anonymous author nodes are then assigned their original name, with the further introduction
of noise. Every character in each name instance has a 1% chance of deletions, random character
swaps and replacing a character with a random character. Certain characters (é becomes e)
have a 25% chance of alteration, and middle names are shortened to their initials with a 50%
probability. There are never more than 3 alterations per name instance. We chose these
particular percentages to create enough noise such that names can have multiple different,
but not unrecognisable, versions, as is the case in the SAA dataset. This type of attribute
error, if large enough, can decrease precision as identical entities will have very dissimilar
attributes. The final result is a KG with publication nodes, each with a title attribute and
one or more authors, each of which has a name attribute. The clustering objective is to group
together all author URIs that represent the same real life person, where we only use noisy

2https://archief.amsterdam/indexen
3http://www.vondel.humanities.uva.nl/ecartico
4http://data.linkeddatafragments.org/dblp
5https://dblp.uni-trier.de
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R1

P1a

P1b

Claesz, Jan

Crijnen, Aeltje

07/09/1645

mentions

mentions

date

name

name

(a) Burial Record

R2

P2a

P2b

Claasz, Jan

Crijnen, Aeltje

01/05/1646

P2c

P2d

groom

bride

date

name

name

prevHusband

prevWife

(b) Prenuptial Marriage Record

R3

P3a

P3b

Claeszoon, Jan

Crijnen, Aaltje

19/11/1650

father

mother

date

name

name

(c) Baptism Record

R4

P4a

P4b

Jan Claes

Jan Claesz

Aeltje Crijnen

01/06/1646

groom

bride

date

name
name

name

(d) Ecartico Marriage Record

Figure 2: Each registry in the City Archives of Amsterdam has a number of records (R1, . . . , Rn), all
of which are associated with two or more persons (P1a, . . . , P1z). These persons can have attributes for
themselves, in this simplified example we only use their full name. Dotted lines are optional relationships.
Dates are often approximate.

name information, the co-occurrence of other authors and their co-authors (who again only
have a name), and publication titles. This makes the DBLP KG share properties that are
analogous to the merged KGs of SAA, such as n-to-n relationships, noise in literal values, the
way entities can be related (through literal nodes) and similar cluster size distribution. Note
that the clustering objective, where we try to cluster together person nodes in records, remains
similar to that of SAA. Finally, we note that since we have a complete ground truth for DBLP,
we can compute reliable precision and recall values in our experiments.

4.3. Clustering Algorithms
We perform our experiments by first constructing the weighted complete graphs C ′, explained
in Section 3.5, for both SAA and DBLP knowledge graphs. Then, four different clustering
algorithms are applied and compared, with transitive closure method as the baseline.

4.3.1. Transitive Closure:

This method, which is used as the baseline, generates the transitive closure of the set of entities
involved in a connected component. In this case, each connected component C ′ is treated as
a single cluster, regardless of weights. For small similarity thresholds of θ ≈ 0.5, this results
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in fewer but larger components, and thus clusters, while a large θ ≈ 1 results in many small
(singleton) clusters.

4.3.2. Center Clustering [17]:

This method first sorts all entity pairs in C ′ in descending order by their weights. Then, for
each entity pair, both nodes are clustered according to the following rules: 1) If neither node
is assigned to a cluster, then assign one of the nodes as the center of a new cluster and add
the other node to that cluster. 2) If one of the nodes is the center of a cluster, and the other
node has no cluster, then add the other node to that cluster. 3) Otherwise, do nothing. The
center clustering algorithm has a tendency to create many small clusters based on strong links,
as the pairs with highest similarity are treated first, yielding a high precision but often at the
expense of recall. For each (sub)component, all possible entity pairs are calculated to supply
the algorithm with maximum information.

4.3.3. Merge-Center Clustering [17]:

This method adds another step to the center clustering algorithm where if one of the nodes
is a center node, and the other node is already assigned to a different cluster, then the two
clusters are merged. This tends to result in fewer and larger clusters than center clustering.

4.3.4. Vote Clustering [14]:

This algorithm processes the nodes in C ′ in arbitrary order. Each node i is assigned to the
cluster with the largest positive sum of weights with regard to i. If there are no clusters yet,
or no cluster has a positive sum, then a new cluster is created for i. For high values of θ ≈ 1,
this will cause most sums to be negative, thereby creating more clusters. Vote clustering has
been suggested as a heuristic alternative to the exact correlation clustering, explained next.

4.3.5. Correlation Clustering [4]:

This method partitions the nodes of C ′ = (V,E) into a number of disjoint subsets (clusters)
such that the sum of the inter-cluster positive weights minus the sum of the intra-cluster
negative weights is minimized. More formally, let Γ = {V1, V2, . . .} denote a partitioning of V
into disjoint subsets (clusters). Furthermore, let E+ = {(i, j) ∈ E : wij > 0} denote the edges
with positive weight, and let E− = E \E+ denote the edges with non-positive weight. Finally,
let intra(Γ) denote the collection of edges with both endpoints in the same partition (cluster),
and inter(Γ) the collection of edges with both endpoints in a different partition (cluster). The
objective is to find the clustering Γ that minimizes the cost:

cost(C ′,Γ) =
∑

(i,j)∈inter(Γ)∩E+

wij −
∑

(i,j)∈intra(Γ)∩E−

wij

The intuition behind minimizing the cost function is to discourage the situation where nodes
with positive similarity are assigned to different clusters and nodes with negative similarity are
assigned to the same cluster. Note that high values of θ will cause most weights to be negative
and to have an associated cost of putting the corresponding nodes in the same cluster. This
will yield an optimal solution with smaller clusters. Low values of θ will results in fewer
but larger clusters. Due to the NP-hardness of the correlation clustering problem, we only
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Table 1
The maximum F- 1

2
and F-1 Scores and associated similarity threshold θ for the SAA KGs and DBLP KG

SAA DBLP
F- 1

2
score F-1 score F- 1

2
score F-1 score

θ max θ max θ max θ max
closure 0.80 0.81 0.72 0.73 0.83 0.82 0.79 0.72
center 0.63 0.72 0.60 0.54 0.74 0.61 0.65 0.43

merge-center 0.78 0.73 0.66 0.58 0.80 0.68 0.76 0.53
vote 0.79 0.81 0.69 0.73 0.80 0.82 0.72 0.73

corr. clust. & vote 0.75 0.81 0.63 0.73 0.79 0.82 0.71 0.73

perform correlation clustering on components no larger than 50 nodes. Larger components are
processed with the vote algorithm.

5. Results
Table 1 together with Figures 3 and 4 show the results of the experiments for both the SAA and
DBLP data sources. For a range of values for θ (in steps of 0.01) we generate precision, recall
and associated F-scores. Table 1 reports the similarity threshold θ that yields the maximum
F-scores for each clustering method. It is our experience that precision is more important for
minimizing errors than recall, when the clusters are used in downstream tasks, such as to be
used by a SPARQL reasoner. This reasoner will conclude the transitive closure of all sameAs
links it is given and may therefore return unwanted results when precision is low, i.e. there
are many false positive links. Furthermore, domain experts tend to prefer fewer correct results
over many unreliable ones. Therefore we also report the F-12 score, which weighs precision
twice as heavily as recall.

We first observe that the performance of the proposed clustering methods applied to SAA
is similar to those applied to DBLP. Furthermore, the maximum F-scores of the baseline are
as good as the maxima of the correlation clustering and vote algorithms. However, in practice
the optimal similarity threshold cannot be known in advance, as there is only partial ground
truth available (or none at all). It is therefore important to use a method that does not depend
strongly on the choice of threshold, and preferably has a high overall precision (and F-score).
Figure 3 presents the overall scores of the clustering methods for various similarity thresholds
applied to SAA, while figure 4 does the same, but with respect to the DBLP dataset. The center
clustering algorithm has good precision, but suffers from very low recall, as seen in Figures 3c,
3d, 4c and 4d. Note that both center and merge-center have a much lower maximum F-score
than the other methods. From Figures 3b and 4b we can see that the correlation clustering
and vote combination performs best by a slight margin, with good precision while not suffering
too much in recall. The vote algorithm by itself is nearly as good and much more efficient.
Both are a good choice when it comes to overall performance over a range of thresholds.

6. Conclusion
The domain of cultural heritage often makes use of KGs that have characteristics which make
them difficult to process, such as noise (misspelling of names), proxy variables and n-to-n
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Figure 3: Results for a range of similarity thresholds (horizontal axis) for the SAA KGs.

relationships. Furthermore, most of the time there is either no or a very limited ground truth
available.

We have shown that our method can handle the complexities of real KGs from the cultural
heritage domain and is able to yield a result with high precision while still having good recall.
The experiment with the DBLP KG shows that the results can be replicated on a different KG
with similar structural properties. Furthermore, we have shown that several different clustering
algorithms can be applied in our method.

The use of an unsupervised method can be most appropriate when there is no or very limited
ground truth available. Moreover, in case of limited ground truth a supervised learner can work
if only a few features are used. Therefore, in the future we will experiment with introducing
supervised learning in combination with additional symbolic features, such as logical rules
about how certain properties relate, to create a system that combines both symbolic and
sub-symbolic information.

6.0.1. Reproducibility

We have published the source code6 for creating the embeddings and the scripts for running
the experiments online7, including the instructions on how to build the source code into a
standalone executable, the configuration files that were used to create the embeddings, and
the KGs used in the experiments.

6http://www.github.com/jurian/graph-embeddings
7http://www.github.com/jurian/chr2021
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Figure 4: Results for a range of similarity thresholds (horizontal axis) for the DBLP KG.
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