
Motivating Interactive Self-Organisation

Sebastian von Mammen

Julius-Maximilians University, Würzburg
sebastian.von.mammen@uni-wuerzburg.de

Abstract

Understanding, engineering and controlling self-organising
systems, i.e. of large numbers of interwoven autonomous
agents, pose numerous scientific and practical challenges. A
considerable body of works aims at theoretical approaches
as well as empirically identified solutions to address them—
with a focus on interaction among the agents and resulting
emergent, global effects. However, only few works system-
atically consider the means of interaction of these systems
with the expert user. In this paper, we address this perspec-
tive by introducing the notion of interactive self-organisation.
To this end, we step through the development life cycle of a
self-organising system, we emphasise the need for accessible
software solutions for modelling and simulation, we present
a concrete application scenario, and highlight the great chal-
lenges on this path.

Swarms and Interactive Self-Organisation
Herds of social animals, schools of fish or insect colonies
host large populations of individuals1. Their strength lies
in accomplishments that no single individual could achieve
by itself. At the same time, this ability of the whole, some-
times referred to as swarm intelligence, does not necessarily
require complex agent behaviours equipped with deep in-
telligence(s). Rather, simple behaviours of reactive agents
suffice to yield helpful, system-wide emergent phenomena
including mass transport (Marras et al., 2015), foraging
(Czaczkes et al., 2015), defence (Parmentier et al., 2015)
and adaptive nest construction (Fouquet et al., 2014). As
a consequence, swarms have become a metaphor for self-
organising systems, i.e. systems without central control but
autonomous agents acting locally, and thus, contributing to
emergent effects. Looking a bit closer, this metaphor brings
along several perspectives. For once, it brings together
seemingly opposing perspectives such as the consideration
of homogeneous and diverse subpopulations of agents as
well as the connection of local interaction and global ef-
fect. As a result, it also hints at the notion of hierarchies

1The rationale presented in this paper was first published in the
author’s habilitation, von Mammen (2016a).

of abstraction. And at the same time, the term swarm trig-
gers a strong visual association—a spatial, observable, and
therefore, accessible outcome of the dynamics of complex
systems. Hence, swarms are not only a metaphor for self-
organising systems but they render it obvious as to why in-
teractivity is one of their seminal aspects. When consider-
ing interactivity in the context of self-organising systems,
the following definition may help to cover the various stages
of a self-organising system’s life cycle and opportunities to
interface with different humans involved in the process.

Definition. Interactive self-organisation describes the effort
to making large, self-organising technical systems transpar-
ent, malleable and controllable by human designers, deci-
sion makers and users (von Mammen, 2016a).

Development Life Cycle
Typically, the first step into developing a concrete self-
organising system is the design of a domain model. Next,
this domain model is translated to a platform model, which,
in turn, is implemented for a specific simulation environ-
ment to yield the results sought after (Andrews et al., 2010;
Polack, 2010). In the first steps, interactivity is rarely pro-
vided as the processes of modelling and implementation are
still largely manually driven. However, there are examples
of interactive exploration of the model spaces as part of the
simulation (Ritter et al., 2011). This may lead to insights
about the model specifics or further an iterative process of
model refinements. We want to stress that each step in the
development life cycle offers an opportunity for interactiv-
ity, and that in self-organising systems in particular, chal-
lenges arise when introducing means of interactions.

Performance is one of these challenges. It costs addi-
tional computational power to provide interactivity, espe-
cially when aiming at the short latency intervals that are
expected in interactive real-time systems (Gregory, 2009).
And the computational load of computing large numbers of
interacting agents poses a challenge in general (Parry and
Bithell, 2012), and enriching the inherently large state space
of the model by granting freedom to navigate and manip-
ulate the simulation makes it worse. It further costs a lot

Copyright c©2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



of effort to conceptualise and implement user interfaces that
can support each of the phases of the development life cy-
cle (discovery, development, exploration, see Figure 1) for
model definition, specification, testing, refinement and anal-
ysis. need to be made accessible to the developer/user as
he has to devise, implement, test and refine models. User
interfaces work are well-received, if they do not require the
user to climb steep learning curves or to invest great cogni-
tive efforts (Foley et al., 1984; Preim and Dachselt, 2015).
Designing an according language of interactions that link
the self-organising system’s details’ selection, its control, its
navigation to the users’ input queries and feedback signals
takes time.

Discovery

Development

Exploration

Application

Figure 1: The three development phases discovery, develop-
ment, exploration of the development life cycle of systems
of interactive self-organisation, as well as the application
phase (figure taken from von Mammen (2016a)).

Figure 1 shows the aforementioned phases of the devel-
opment life cycle of an interactive self-organising system
as well as the application stage. The system itself is il-
lustrated by several ants that represent agents and relation-
ships between them are hinted at by pairwise connecting ar-
rows. In the discovery phase, the modeller of an artificial
self-organising system or the empiricist observing a natu-
ral self-organising system retrace the system’s and agents’
states and their interrelations (grey-dashed arrows in the dis-
covery phase, Fig. 1). In the development phase, these ob-
servations are cast into a model that features all the identified
properties, relationships and behaviours (blue arrows in the
figure). Considering real-world processes, this translation
pre-selects, simplifies and discretises. On the other hand,
relationships might be part of the computational model that
could not be directly observed in natural systems (red arrows
in the figure). In the exploration phase, aspects new to the
modeller/developer may be revealed that were not explicitly
modelled but emerge during the simulation. This is indi-
cated by the extension of the illustration by means of orange
and pink arrows. Finally, when transferring a self-organising

system to a real-world application, its user(s) can influence
it based on the insights gained from the preceding mod-
elling & simulation efforts. Example domains are sensor and
computing networks (Weiser, 1993; Satyanarayanan, 2001),
small-scale robots for medical procedures (Sitti et al., 2015),
or scouting quadcopter squadrons (Salmon and Meissner,
2015).

Individualised, Agent-based and Interactive
In general, interactive self-organisation aims at methods that
support n : m-relationships, of n users and m controlled ob-
jects or agents, whereas m >> n. That is few users, pos-
sibly even only one, need to supervise and interact with a
potentially very large number of agents. As briefly hinted
at above, it poses a veritable challenge to create according,
accessible, interactive modes of modelling, simulation, and
analysis. The analysis may also bring about new insights
about a crafted model of self-organising systems that sug-
gests the application of optimisation either to identify pa-
rameter sets that promise the best viable solutions of engi-
neered systems or that best retrace natural phenomena. In
this section, we pursue this insight a step further, by intro-
ducing the idea of individualised simulation, revisiting the
need for agent-based modelling, and highlighting the com-
ing about of interactive simulation.

Individualising Simulation

Arbitrary development phases of (software) engineering
tasks can benefit from simulation (Banks et al., 1998), as
it can validate a system’s design early on, its targeted (emer-
gent) functionality (Jakobi et al., 1995), as well as pertur-
bations at runtime (Tomforde, 2012). In computer science,
simulation has been an important driver from day one. How-
ever, private users have mostly only consumed simulation
results (e.g. weather broadcast and traffic predictions) and
been exposed to modelling and interactive simulation in the
context of computer games, frequently simulating flying air-
planes and driving cars (Williams, 2006; Backlund et al.,
2008). Yet, making simulation technology accessible to a
broader public bears great transformative potential, espe-
cially also in the context of the increasing level of digiti-
zation of our built and technological environment (Harper,
2003). Considering recent trends such as 3D printing that
propelled the wide-spread growth of the maker scene (Lip-
son and Kurman, 2013) as well as the digitization of medi-
cal records and the prospect of individualised medical treat-
ments (Topol, 2014) unfold a wide space for simulation-
driven transformation. With ease of access to simulation
technology and clear, high impact benefits, a wide-spread
uptake becomes more feasible. In order to get there, sup-
porting the development phases outlined above (Fig. 1),
we consider the following aspects crucial for individualis-
ing simulation:



1. Provision and (semi-)automated matching of template sit-
uations to fit the user’s challenges (von Mammen et al.,
2019).

2. A “natural” interface for parametric adjustments, intro-
ducing additional programming code where necessary,
navigating a simulation, as well as harnessing optimisa-
tion methods to improve one’s basis for decision making.

Consider, for example, that the user wants to gain insight
in his/her energy footprint (Nguyen and Aiello, 2013) and
to minimise it. There are several standard factors such as
heating, nutrition, clothing, and traveling that impact this
footprint, can be easily iterated, adjusted and extended. Nat-
ural means in this context that the user interface works as
expected without the need to think about it—by building on
top of established user interaction modalities and gestures,
such as swiping on touch devices (Foley et al., 1984; Preim
and Dachselt, 2015). Since adding programming code re-
quires the user to invest more cognitive efforts, following
an agent-based modelling paradigm can help, especially in
combination with visual programming interfaces, which we
discuss in more detail in the next paragraph.

Modelling, Bottom-Up, Agent-Based
Software solutions such as Mathematica (Wolfram, 2003),
Matlab (Redfern and Campbell, 2012), GNU Octave (Eaton,
2006), Sage (The Sage Development Team, 2015), Magma
(Computational Algebra Group, 2015) or Maple (Redfern,
2012) allow the user to define, solve, analyse and optimse
mathematical models. This assumes, however, a deep un-
derstanding and mastery of mathematics and a considerable
amount of time. For specific application scenarios, spe-
cialised user interfaces, data import and export pipelines and
re-usable models can be plugged into the respective software
kernels, for instance plugins for EEG analysis (Dimigen and
Reinacher, 2012) or the display of volumetric data (Mikulka,
2014). Further adjustments in the code bases would again re-
quire expert knowledge in modelling and programming (Li
et al., 2013).

Mathematical models also assume that the modeller is
well-informed about the involved parameters that describe
a system and how they are intertwined. Bottom-up mod-
elling approaches (Tesfatsion, 2006; von Mammen and Ja-
cob, 2009; Epstein and Axtell, 1996) do not make this as-
sumption. Rather, they describe how in physical contexts
individual elements (Brenner and Carstensen, 2004) or parti-
cles (Müller et al., 2003; Hosseini and Feng, 2009), or more
generically, how numerous agents’ states and interactions
can be described (Wooldridge, 2008). Among the many def-
initions of the latter, the following one by Denzinger and Ko-
rdt (2000); Denzinger and Winder (2005) underlines its gen-
erality and still enforces a clear structure of data flow in an
agent-based model: Consider an agent Ag be expressed by a

quadruple (Sit,Dat,Act, f), whereas Sit is the set of pos-
sible situations, Dat the set of possible (internal) data states,
Act the set of possible actions and f = Sit × Dat → Act,
the agent’s decision function that informs it what to do based
on which situation and information. This definition also
suggests that due to the generic characterisation of agent-
based models, individual agents can become rather complex
model units. Hence, there are different classifications that
try to narrow down the deployed agents’ abilities consid-
ering for example reactive, reflective, or knowledge-based
agents. Beyond this classification of basic model agents, the
notion of super agents that recursively subsume other agents
has repeatedly been considered to flexibly build up (and dis-
solve) complex agent models (Parry and Bithell, 2012). This
perspective highlights the inherent modularity and flexibility
of agent-based models. In combination with simple trans-
fer of the target system’s components’ properties and de-
scriptions to model agents, agent-based models have been
rather popular in diverse scientific communities including
economics, social sciences, and the life sciences.

Analogous to the mathematics frameworks mentioned
above, the agent-based modelling approach is also supported
by a number of dedicated software systems, for a current
overview see Kravari and Bassiliades (2015); Abar et al.
(2017). As agent-based models often feature spatial rela-
tions, basically all of them provide a visualisation environ-
ment for showing the model and its evolution during the sim-
ulation runtime. Just to name a few examples: NetLogo is a
popular environment which makes modelling accessible by
means of a simple scripting language and a 2D lattice visual-
isation (Tisue and Wilensky, 2004). RePast further benefits
the modeller, for instance, by flowchart and state chart visu-
alisations and ports to different programming languages for
compatibility and performance reasons (North et al., 2013).
Relationships between the agents stand in the focus of the
Swarm simulation environment, which also allows for the
aforementioned hierarchical organisation of agents (Minar
et al., 1996).

Interactive Simulation & Self-Organisation
The history of interactive simulation dates at least back to
the 1960s—it can, for instance, be retraced by studying the
works by Jones (1967); Bell and O’keefe (1987); Rothrock
and Narayanan (2011). Compared to traditional modelling
& simulation approaches, interactive simulations allow the
user to model during runtime, to introduce changes and
see immediate effects. One might be tempted to consider
this a small technical improvement but it introduces funda-
mental changes to simulation and how it can be used. For
instance, consider simulation data to support a lively dis-
course among decision makers, simulation of emergency sit-
uations for training (Bucher et al., 2019), or simulation re-
sults to support clinical personell performing invasive oper-
ations (von Mammen et al., 2015). By providing the data



at interactive speed and in understandable formats, interac-
tive simulations allow us to synchronise computation results
with the human’s sensorimotor and cognitive systems, to en-
rich the user’s perspective, to provide feedback and to also
retrieve further data from the user to feed into the simulation
model. The consequences are multi-facetted: Systems can
be better understood, unaccounted aspects learned, incon-
sistencies determined, communication improved. In short,
interactive simulations put the user in charge of the compu-
tation and, thereby, achieve a far greater appeal and qualify
for far more cases of using simulation data than merely pre-
senting accomplished facts to the user.

When considering self-organising systems at the centre
of one’s modelling and simulation efforts, interactivity be-
comes all the more crucial to cope with phase transitions in
technical systems and to generally master the complex dy-
namics that may arise in real-world contexts.

Wetlab Application Scenario
The following description of an ideal application scenario
of interactive self-organisation is directly taken from von
Mammen (2016a): In an ideal, unbound interactive self-
organisation scenario, the user could quickly prototype a
comprehensive simulation model, fleshing out spatial de-
tails and behaviours of hundreds of thousands of involved
agents. Next, he would be given the opportunity to wit-
ness the emergence of system behaviours such as cyclic
process patterns, branching points, or the convergence of
the system state into global attractors (Nicolis and Rouvas-
Nicolis, 2007). He would also be given the opportunity to
automatically repeat and evaluate the simulation within pre-
defined parameter ranges, to extract novel insights by learn-
ing hypotheses that maximise the information gain (Schmidt
and Lipson, 2009), and to consider any modelling efforts
as only a small, sub-model part of a grander, multi-scale
system (Magnenat-Thalmann et al., 2014; Nickerson et al.,
2014). The user’s efforts would be supported by meaningful,
rich visualisation techniques (Vaquero et al., 2014; Cebulla
et al., 2014) and multi-modal, natural user interaction tech-
niques (Turk, 2014)—in this way, he would be empowered
to interact, hone and explore the system model in any de-
sirable ways, posing as little cognitive and motor-sensory
challenges as possible (Foley et al., 1984). Novel aug-
mented reality technology including head-mounted devices,
eye and finger tracking sensors would bridge the gap be-
tween simulated predictions and real-world systems, provid-
ing invaluable data for learning, decision making and guid-
ing the user’s actions (Dunleavy and Dede, 2014; Azuma
et al., 1997).

In the context of biological developmental processes
(Slack, 2009; Gilbert, 2013), for instance, the ideal simu-
lation workbench would allow a modelling entry at the in-
tercellular level, offering the means to model layers of mes-
enchymal and epithelial tissues, empower individual cells

with the capabilities to adhere to each other, to divide, to mi-
grate, to produce and emit morphogens etc. (Salazar-Ciudad
et al., 2003). The model would relate these foundational op-
erations to time, to biochemical or biophysical signals such
as the diffusion of homeobox gene concentration (Duboule,
1995) or mechanical forces (Théry and Bornens, 2006).
Based on such intercellular interactions, morphological pro-
cesses would emerge, shaping anatomy and physiological
infrastructure of developing organisms (Xu et al., 2015).
Fast forwarding in time, the obvious effects of morphology-
affecting developmental processes would wane, a metabolic
equilibrium would establish itself. The model could be ex-
tended to provide more facts at different levels of scale (Eiss-
ing et al., 2011), for instance by detailing the production
pathways of signalling molecules or by introducing mate-
rials that define the cell’s structural properties (Dror et al.,
2012). Similarly, empirically identified emergent proper-
ties such as the cell’s surface tension, or its adhesion coef-
ficient, could be superimposed, the parameters of the lower
modelling levels be automatically adjusted top-down, result-
ing in a consistent, self-adapting middle-out model (Noble,
2006). At any point in time, disruptions of the developmen-
tal processes could be explored, the formation of anoma-
lies could be traced and countered with minimally invasive
treatments, without loosing sight of side-effects at all con-
ceivable scales of the organism’s definition.

The tandem of in-vitro and in-silico experiments would
ensure the validation of each component of the model and
the simulation, respectively, resulting in a profoundly ac-
curate model and providing clear perimeters of the experi-
ments’ outcomes and the simulations’ predictive powers. A
sophisticated, accessible and flexible augmented reality in-
terface could mediate between in-vitro and in-silico models,
allowing developmental biologists to setup and experiment
relying on standard assay procedures. The scientist’s activ-
ities would be supported and guided by the augmentation
of in-vitro experiments and the projection of in-silico sim-
ulations, imparting all the benefits of computing technolo-
gies, including virtually limitless resources, the possibility
to go back and forward in time and to venture into new ex-
ploratory directions. Depending on the application domain,
the wide-spread adoption of swarm-based modelling and
simulation could also lead to far-reaching model improve-
ments that could accelerate overcoming the gap between in-
vitro and in-vivo predictions.

Challenges
To realise the ambitious perspectives touched upon in the
application scenario outlined in the previous section, the in-
terplay of three major research directions needs to be pro-
moted. The computational core, i.e. the model representa-
tion needs to be standardised, novel perspectives need to be
found to create natural user interfaces to access, select, ma-
nipulate, supervise or even directly control self-organising



systems. And finally, efforts must be made to further scale
up the number of simulated agents to create models of self-
organising processes that have great relevance for applica-
tions and still run at realtime speeds.

Standardising Representations
The principle of re-using well-established, well-researched
building blocks underlies many engineering tasks. This
principle might also solve one of the issues of standardi-
sation in self-organising systems. Currently, arbitrary al-
gorithmic designs of individual agents, documented in sci-
entific writings, possibly accompanied by the source code,
are the default way to modelling self-organising systems,
see for instance Klein (2008); Klopfer et al. (2009). Al-
though this freedom is warmly welcome by an expert mod-
eller, it comes with two drawbacks. The first is the need
for programming expertise, the second the difficult compa-
rability of a model and its results. Both drawbacks may, in
turn, result in limited dissemination and uptake. Said prim-
itives, i.e. building blocks to combine and further config-
ure to arrive at the desired agent behaviours could mitigate
the standardisation problem. However, they do not provide
an answer to the question yet, how these building blocks
may be combined—for instance as conditional rules (Mota
et al., 2013), condition-action pairs (Davison and Denzinger,
2012), subject-predicate-object triples (Whalley, 2006), or
numeric decision functions (Spector et al., 2005). Finally,
numeric data representation and the order and method of in-
tegration may als heavily impact complex system simula-
tions (Derényi and Vicsek, 1994). While a general lack of
standardisation yields great problems (Müller et al., 2014),
following formal protocols quickly becomes unwieldy, even
in conceptually rather simple models (Winikoff et al., 2018).
We, therefore, consider algorithmic routines of the formal
description of agent-based, self-organising systems and their
analyses absolutely necessary.

Innovating User Interfaces
In self-organising systems, the agents’ states and interaction
topologies can change over time. These dynamic properties
need to be considered when crafting user interfaces. In par-
ticular, this raises questions about the definition or selection
of specific subpopulations, creation or tracing of specific re-
lationships, also considering chains or cycles of interdepen-
dencies, as well as emerging patterns in the agents’ states.
An according interaction infrastructure featuring appropri-
ate, helpful, efficient visualisations and required, natural and
equally efficient interaction routines needs to be developed
to stimulate, recognise, trace, or interfere with phase transi-
tions alongside of emergent effects that may not be directly
captured in individual parameter spaces but need to be iden-
tified algorithmically (Müller-Schloer et al., 2011). Some of
these challenges have already been recognised and several
explorations in this direction have been undertaken. It sug-

gests itself to think of applications of swarm robotics when
considering real-world self-organising systems. Therefore,
according human-swarm interfaces have been explored in
the robotics context, see for instance (McLurkin et al., 2006;
Naghsh et al., 2008; Pollini et al., 2009; Kolling et al., 2012).

Next to obvious challenges such as the selection and man-
agement of large numbers of agents, problems in user inter-
faces for self-organising systems consider other perspectives
as well such as the translation between lower and higher lev-
els of abstraction (Sycara et al., 2015), the inference of the
agents’ individual behaviours from high-level goals (Taran-
tola, 2005; Aster et al., 2011), or balancing the agents’ de-
grees of autonomy von Mammen (2016b).

In general, informative (all that needs to be shown), effi-
cient (quickly discernible), attractive (e.g. by means of use-
ful alignments, symmetries, and consistent design decisions
throughout) make for successful user interfaces (Steele and
Iliinsky, 2010). In order to capture the structure and dy-
namics of self-organising systems, graph visualisations are
apt—representing agents as nodes, possibly hierarchically
embedding further nodes as in super agents and representing
vertical relationships as edges (Beck et al., 2014). While vi-
sualisations are important to convey the desired information
and to provide feedback about any user input, effective inter-
faces have to offer a simple, consistent “language” to com-
municate the user’s goals to the self-organising system or the
modelling and simulation environment across different con-
texts. With a growing degree of input specificity, the interac-
tion sequences need to carry greater information gain by ne-
cessity. This is especially true, when specifying the agents’
properties and behaviours. Even if adhering to the afore-
mentioned behavioural representations, such as situation-
action pairs, behavioural definitions provide great freedom
to the modeller. Here, visual programming approaches can
help to keep the learning curve low for non-programmers, to
ensure that standard primitives (as described in the last sec-
tion) are used and that well-phrased agent descriptions are
encoded.

In fact, two distinct views have usually been used—one
for definition of individuals and another one for observa-
tion at the system level. Various additional views may
have been offered for simulation navigation and analysis.
To our knowledge, we were the first to merge these views
into one context, introspecting individuals and establishing
inter-agent relations in one global context (von Mammen
et al., 2016). This approach also has to blend visualisation
(2D/3D) and input (symbolic/textual) modes. And if need
be, it has to tightly integrate them with visual programming
facilities. It promotes a close link between visual objects and
programming logic that had been discussed several times be-
fore, e.g. by Burnett et al. (1995) and Citrin et al. (1995), and
which had also been considered in visual modelling environ-
ments for agent-based systems by linking inspection views
to simulated agents and using iconic references for formu-



lating behaviours (Repenning, 1993; Mota et al., 2013). The
convergence of modelling and simulation spaces is becom-
ing increasingly important as digital models grow closer to
inform real-world situations, e.g. in (Wahby et al., 2015).

Reaching Application-Relevant Scales
Self-organising systems quickly tap into complex regimes
due to the large numbers of agents and their incessant poten-
tial of interaction. In addition to the agents’ state-changes,
the neighbourhood topologies within the agent populations
can continuously change. This class of dynamic systems
with dynamic structures, or D2S, has been identified as
most challenging within the domain of complex system rep-
resentations (Spicher et al., 2004, 2011). Hence, search for
optimal system configurations does not only have to con-
sider the overall system’s state but also the path to get there
(von Mammen and Jacob, 2008)—topology-altering effects
in certain states may open up new state spaces. The ensu-
ing self-referential fitness landscape (Müller-Schloer et al.,
2011) might emerge from an interplay of a complex state
space paired with a complex topological continuum. Yet,
the actual complexities of D2S are often less costly due to
quasi-steady states of subpopulations of agents’ states and
topologies. Nevertheless, the computational complexity of
O(n2) of a simple boids model, in which flocking agents co-
ordinate their flight in accordance with their neighbourhood
(Reynolds, 1987) can only be brought down to O(nlogn)
by applying acceleration algorithms deploying hierarchical
spatial data structures to reduce the impact of the topological
variance (Husselmann and Hawick, 2012).

Without consideration of biological behaviours, one can
draw an analogy to the problem of detecting collisions
among rigid bodies or of calculating the celestial trajecto-
ries of n bodies gravitating toward each other (Wang et al.,
1990). Again, the costs of O(n2) have to be taken into ac-
count for accurately calculating mutual influences, whereas
pruning less significant influences based on spatial data
structures can yield efficient approximations of gravitational
influences (Trenti and Hut, 2008) or conservative results in
case of collision detection (Lin and Gottschalk, 1998). In
all three examples—boids, collision detection and n-body
problem—the spatial topological arrangement, despite be-
ing dynamic, yields an opportunity for optimisation. We as-
sume that other patterns in the variable dimensions of D2S
that, for instance, might consider the iteration numbers of
cycles of biological cells, adhesive forces among them, or
their proteomic configurations, might be exploited for opti-
misation purposes in similar ways.

Computational swarms can be defined as great numbers of
agents with great degrees of freedom. Clearly, these attribu-
tions result in potentially equally great computational costs.
At the same time, interesting simulation results which, for
instance, lead to quasi-static or attractor states, have the po-
tential to be used for model optimisation (von Mammen and

Steghöfer, 2014). Such model optimisations can restrain the
originally granted degrees of freedom—making the model
more rigid but only in ways that do not affect its expres-
siveness and thereby reducing its computational costs. If the
boundary conditions change, the original, high-cost model
can be re-activated and the model patterns be refined. An
according automated approach of model compression and
relaxation could play an important role in ensuring efficient
model representations and simulation.

Summary
Based on the swarm metaphor, we motivated and defined
the term interactive self-organisation. It captures the no-
tion of a process to tackle the development and work with
self-organising systems in an interactive manner. Accord-
ingly, we stepped through the development life cycle of self-
organising systems, highlighting the conceptual intricacies
held by self-organising system models and their link to ap-
plication scenarios. Next, we stressed the need for and the
value of accessible simulation. Here, we pointed out that
like individualised medical treatment, the use of modelling
and simulation of self-organising systems should be individ-
ualised, and thus, be made accessible to non-programmers.
This is especially urgent due to the increasing degree of
digitization of our everyday environments. Based on a
short outlook on an application use case of interactive self-
organisation in a scientific wetlab, we explained the high
priority challenges in research and development of standard-
isation of representations, innovation of user interfaces, and
computational scalability.

References
Abar, S., Theodoropoulos, G. K., Lemarinier, P., and O’Hare,

G. M. (2017). Agent based modelling and simulation tools:
A review of the state-of-art software. Computer Science Re-
view, 24:13–33.

Andrews, P. S., Polack, F. A., Sampson, A. T., Stepney, S., and
Timmis, J. (2010). The cosmos process version 0.1: A pro-
cess for the modelling and simulation of complex systems.
Department of Computer Science, University of York, Tech.
Rep. YCS-2010-453.

Aster, R. C., Borchers, B., and Thurber, C. H. (2011). Parameter
estimation and inverse problems. Academic Press.

Azuma, R. T. et al. (1997). A survey of augmented reality. Pres-
ence, 6(4):355–385.

Backlund, P., Engström, H., Johannesson, M., and Lebram, M.
(2008). Games for traffic education: An experimental study
of a game-based driving simulator. Simulation & Gaming.

Banks, J. et al. (1998). Handbook of simulation. Wiley Online
Library.

Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014). The state
of the art in visualizing dynamic graphs. In Proceedings of
the Eurographics Conference on Visualization, Swansea, UK.
IEEE.



Bell, P. C. and O’keefe, R. M. (1987). Visual interactive
simulation—history, recent developments, and major issues.
Simulation, 49(3):109–116.

Brenner, S. C. and Carstensen, C. (2004). Finite element methods.
Encyclopedia of computational mechanics.

Bucher, K., Blome, T., Rudolph, S., and von Mammen, S. (2019).
Vreanimate ii: training first aid and reanimation in virtual
reality. Journal of Computers in Education, 6(1):53–78.

Burnett, M. M., Goldberg, A., and Lewis, T. G. (1995). Visual
object-oriented programming: concepts and environments.
Manning Publications Co.

Cebulla, J., Kim, E., Rhie, K., Zhang, J., and Pathak, A. P. (2014).
Multiscale and multi-modality visualization of angiogenesis
in a human breast cancer model. Angiogenesis, 17(3):695–
709.

Citrin, W., Doherty, M., and Zorn, B. (1995). The design of a com-
pletely visual object-oriented programming language. Visual
Object-Oriented Programming: Concepts and Environments.
Prentice-Hall, New York.

Computational Algebra Group (2015). The Magma Handbook,
V2.21. Computational Algebra Group, University of Sidney.

Czaczkes, T. J., Grüter, C., and Ratnieks, F. L. (2015). Trail
pheromones: An integrative view of their role in social insect
colony organization. Annual review of entomology, 60:581–
599.

Davison, T. and Denzinger, J. (2012). The huddle: Combining ai
techniques to coordinate a player’s game characters. In Com-
putational Intelligence and Games (CIG), 2012 IEEE Con-
ference on, pages 203–210. IEEE.

Denzinger, J. and Kordt, M. (2000). Evolutionary on-line learning
of cooperative behavior with situation-action-pairs. In Pro-
ceedings of the 4th International Conference on Multi-Agent
Systems (ICMAS 2000), pages 103–110, Boston, MA, USA.

Denzinger, J. and Winder, C. (2005). Combining coaching and
learning to create cooperative character behavior. In Pro-
ceeding of the Symposium on Computational Intelligence and
Games, Essex University, Colchester, Essex. IEEE.

Derényi, I. and Vicsek, T. (1994). Cooperative transport of Brow-
nian particles. J. Phys. I (France) Phys Rev Lett, 75:374.

Dimigen, O. and Reinacher, U. (2012). Active vision plugin: An
open-source matlab tool for saccade-and fixation-related eeg
analysis. In Perception, volume 41, pages 246–246, London,
UK. Pion Ltd.

Dror, R. O., Dirks, R. M., Grossman, J., Xu, H., and Shaw, D. E.
(2012). Biomolecular simulation: a computational micro-
scope for molecular biology. Annual review of biophysics,
41:429–452.

Duboule, D. (1995). Guidebook to the homeobox genes. Oxford
Univ. Press, New York, NY (United States).

Dunleavy, M. and Dede, C. (2014). Augmented reality teaching
and learning. In Handbook of research on educational com-
munications and technology, pages 735–745. Springer.

Eaton, J. W. (2006). GNU Octave: A high-level interactive lan-
guage for numerical computations, 3rd ed. e Free Software
Foundation, Inc., Boston, USA.

Eissing, T., Kuepfer, L., Becker, C., Block, M., Coboeken, K.,
Gaub, T., Goerlitz, L., Jaeger, J., Loosen, R., Ludewig, B.,
Meyer, M., Niederalt, C., Sevestre, M., Siegmund, H.-U.,
Solodenko, J., Thelen, K., Telle, U., Weiss, W., Wendl, T.,
Willmann, S., and Lippert, J. (2011). A computational sys-
tems biology software platform for multiscale modeling and
simulation: integrating whole-body physiology, disease biol-
ogy, and molecular reaction networks. Frontiers in Physiol-
ogy, 2(1–10).

Epstein, J. M. and Axtell, R. (1996). Growing artificial societies:
social science from the bottom up. Brookings Institution
Press.

Foley, J. D., Wallace, V. L., and Chan, P. (1984). The human fac-
tors of computer graphics interaction techniques. Computer
Graphics and Applications, IEEE, 4(11):13–48.

Fouquet, D., Costa-Leonardo, A., Fournier, R., Blanco, S., and
Jost, C. (2014). Coordination of construction behavior in the
termite procornitermes araujoi: structure is a stronger stimu-
lus than volatile marking. Insectes sociaux, 61(3):253–264.

Gilbert, S. F. (2013). Developmental Biology. Sinauer Associates,
Inc, 10th edition.

Gregory, J. (2009). Game engine architecture. CRC Press.

Harper, R. (2003). Inside the smart home. Springer Science &
Business Media.

Hosseini, S. M. and Feng, J. J. (2009). A particle-based model for
the transport of erythrocytes in capillaries. Chemical Engi-
neering Science, 64(22):4488–4497.

Husselmann, A. and Hawick, K. (2012). Spatial data structures,
sorting and gpu parallelism for situated-agent simulation and
visualisation. Technical report, Tech. Rep. CSTN-156, Com-
puter Science, Massey University.

Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and the
reality gap: The use of simulation in evolutionary robotics.
In Advances in artificial life, pages 704–720. Springer.

Jones, M. M. (1967). On-line simulation. In Proceedings of the
1967 22Nd National Conference, ACM ’67, pages 591–599,
New York, NY, USA. ACM.

Klein, J. (2008). breve: a 3d simulation environment for
multi-agent simulations and artificial life. http://www.
spiderland.org/.

Klopfer, E., Scheintaub, H., Huang, W., and Wendel, D. (2009).
Starlogo tng: Making agent-based modeling accessible and
appealing to novices. Artificial Life Models in Software,
pages 151–182.

Kolling, A., Nunnally, S., and Lewis, M. (2012). Towards human
control of robot swarms. In Proceedings of the seventh an-
nual ACM/IEEE international conference on human-robot in-
teraction, pages 89–96. ACM.

Kravari, K. and Bassiliades, N. (2015). A survey of agent plat-
forms. Journal of Artificial Societies and Social Simulation,
18(1):11.

http://www.spiderland.org/
http://www.spiderland.org/


Li, B., Sun, X., Leung, H., and Zhang, S. (2013). A survey of code-
based change impact analysis techniques. Software Testing,
Verification and Reliability, 23(8):613–646.

Lin, M. and Gottschalk, S. (1998). Collision detection between
geometric models: A survey. In Proc. of IMA Conference on
Mathematics of Surfaces, volume 1, pages 602–608.

Lipson, H. and Kurman, M. (2013). Fabricated: The new world of
3D printing. John Wiley & Sons.

Magnenat-Thalmann, N., Ratib, O., and Choi, H. F. (2014). 3D
Multiscale Physiological Human. Springer.

Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Stef-
fensen, J. F., and Domenici, P. (2015). Fish swimming in
schools save energy regardless of their spatial position. Be-
havioral Ecology and Sociobiology, 69(2):219–226.

McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., and
Schmidt, B. (2006). Speaking swarmish: Human-robot inter-
face design for large swarms of autonomous mobile robots.
In AAAI Spring Symposium: To Boldly Go Where No Human-
Robot Team Has Gone Before, pages 72–75.

Mikulka, J. (2014). Matlab extension for 3dslicer: A robust
mr image processing tool. In Progress in Electromagnet-
ics Research Symposium, Proceedings, pages 1875–1860,
Guangzhou, China.

Minar, N., Burkhart, R., Langton, C., and Askenazi, M. (1996).
The swarm simulation system: A toolkit for building multi-
agent simulations. Technical report, Santa Fe Institute, Santa
Fe, New Mexico, USA.

Mota, M. P., Monteiro, I. T., Ferreira, J. J., Slaviero, C., and
de Souza, C. S. (2013). On signifying the complexity of inter-
agent relations in agentsheets games and simulations. In Pro-
ceedings of the 31st ACM international conference on Design
of communication, pages 133–142. ACM.

Müller, B., Balbi, S., Buchmann, C. M., De Sousa, L., Dressler,
G., Groeneveld, J., Klassert, C. J., Le, Q. B., Millington,
J. D., Nolzen, H., et al. (2014). Standardised and trans-
parent model descriptions for agent-based models: Current
status and prospects. Environmental Modelling & Software,
55:156–163.

Müller, M., Charypar, D., and Gross, M. (2003). Particle-based
fluid simulation for interactive applications. In Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 154–159. Eurographics Associa-
tion.

Müller-Schloer, C., Schmeck, H., and Ungerer, T., editors (2011).
Organic Computing - A Paradigm Shift for Complex Systems.
Autonomic Systems. Birkhäuser Verlag.

Naghsh, A. M., Gancet, J., Tanoto, A., and Roast, C. (2008). Anal-
ysis and design of human-robot swarm interaction in firefight-
ing. In Robot and Human Interactive Communication, 2008.
RO-MAN 2008. The 17th IEEE International Symposium on,
pages 255–260. IEEE.

Nguyen, T. A. and Aiello, M. (2013). Energy intelligent build-
ings based on user activity: A survey. Energy and buildings,
56:244–257.

Nickerson, D. P., Ladd, D., Hussan, J. R., Safaei, S., Suresh, V.,
Hunter, P. J., and Bradley, C. P. (2014). Using cellml with
opencmiss to simulate multi-scale physiology. Frontiers in
bioengineering and biotechnology, 2.

Nicolis, G. and Rouvas-Nicolis, C. (2007). Complex systems.
Scholarpedia, 2(11):1473.

Noble, D. (2006). The music of life. Oxford University Press.

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M.,
Bragen, M., and Sydelko, P. (2013). Complex adaptive sys-
tems modeling with repast simphony. Complex adaptive sys-
tems modeling, 1(1):1–26.

Parmentier, T., Dekoninck, W., and Wenseleers, T. (2015).
Context-dependent specialization in colony defence in the red
wood ant formica rufa. Animal Behaviour, 103:161–167.

Parry, H. R. and Bithell, M. (2012). Large scale agent-based
modelling: A review and guidelines for model scaling. In
Agent-based models of geographical systems, pages 271–
308. Springer.

Polack, F. A. C. (2010). Proposals for validation of simulations
in science. In Proceedings of the 2010 Workshop on Complex
Systems Modelling and Simulation, pages pp. 51–74, Odense,
Denmark. Luniver Press.

Pollini, L., Niccolini, M., Rosellini, M., and Innocenti, M. (2009).
Human-swarm interface for abstraction based control. In
Proceedings of the AIAA Guidance, Navigation, and Control
Conference, Chicago, IL, USA, pages 10–13.

Preim, B. and Dachselt, R. (2015). Interaktive Systeme: Band 2:
User Interface Engineering, 3D-Interaktion, Natural User In-
terfaces. Springer-Verlag.

Redfern, D. (2012). The maple handbook: maple V release 4.
Springer Science & Business Media.

Redfern, D. and Campbell, C. (2012). The MATLAB R© 5 Hand-
book. Springer Science & Business Media.

Repenning, A. (1993). Agentsheets: a tool for building domain-
oriented visual programming environments. In Proceedings
of the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems, CHI ’93, pages 142–143,
New York, NY, USA. ACM.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics, 21(4):25–34.

Ritter, F. E., Schoelles, M. J., Quigley, K. S., and Klein, L. C.
(2011). Determining the Number of Simulation Runs: Treat-
ing Simulations as Theories by Not Sampling Their Behavior,
pages 97–116. Springer London, London.

Rothrock, L. and Narayanan, S. (2011). Human-in-the-loop Simu-
lations: Methods and Practice. Springer.

Salazar-Ciudad, I., Jernvall, J., and Newman, S. (2003). Mech-
anisms of pattern formation in development and evolution.
Development, 130(10):2027–2037.

Salmon, P. C. and Meissner, P. L. (2015). Mobile bot swarms:
They’re closer than you might think! Consumer Electronics
Magazine, IEEE, 4(1):58–65.



Satyanarayanan, M. (2001). Pervasive computing: vision and chal-
lenges. Personal Communications, IEEE, 8(4):10–17.

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural
laws from experimental data. Science, 324(5923):81–85.

Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., and
Diller, E. (2015). Biomedical applications of untethered mo-
bile milli/microrobots. Proceedings of the IEEE, 103(2):205–
224.

Slack, J. M. (2009). Essential developmental biology. John Wiley
& Sons.

Spector, L., Klein, J., Perry, C., and Feinstein, M. (2005). Emer-
gence of collective behavior in evolving populations of fly-
ing agents. Genetic Programming and Evolvable Machines,
6(1):111–125.

Spicher, A., Michel, O., and Giavitto, J.-L. (2004). A topological
framework for the specification and the simulation of discrete
dynamical systems. Cellular Automata, pages 238–247.

Spicher, A., Michel, O., and Giavitto, J.-L. (2011). Interaction-
based simulations for integrative spatial systems biology. In
Dubitzky, W., Southgate, J., and Fuß, H., editors, Under-
standing the Dynamics of Biological Systems, pages 195–
231. Springer New York.

Steele, J. and Iliinsky, N. (2010). Beautiful visualization. O’Reilly
Media, Inc.

Sycara, K., Lebiere, C., Pei, Y., Morrison, D., Tang, Y., and Lewis,
M. (2015). Abstraction of analytical models from cogni-
tive models of human control of robotic swarms. In Pro-
ceedings of International Conference on Cognitive Modeling
(ICCM), pages 13–19, Groningen, the Netherlands. Univer-
sity of Groningen.

Tarantola, A. (2005). Inverse problem theory and methods for
model parameter estimation. siam.

Tesfatsion, L. (2006). Handbook of Computational Economics,
volume 2, chapter Agent-Based Computational Economics:
A Constructive Approach to Economic Theory, pages 831–
880. Elsevier.

The Sage Development Team (2015). Sage Tutorial, Release 6.9.
The Sage Development Team.

Théry, M. and Bornens, M. (2006). Cell shape and cell division.
Current opinion in cell biology, 18(6):648–657.

Tisue, S. and Wilensky, U. (2004). Netlogo: Design and imple-
mentation of a multi-agent modeling environment. In Agent
2004: Conference on Social Dynamics, Chicago, IL.

Tomforde, S. (2012). Runtime adaptation of technical sys-
tems: An architectural framework for self-configuration and
self-improvement at runtime. Südwestdeutscher Verlag für
Hochschulschriften. ISBN: 978-3838131337.

Topol, E. J. (2014). Individualized medicine from prewomb to
tomb. Cell, 157(1):241–253.

Trenti, M. and Hut, P. (2008). N-body simulations (gravitational).
3(5):3930.

Turk, M. (2014). Multimodal interaction: A review. Pattern Recog-
nition Letters, 36:189–195.

Vaquero, R. M. M., Rzepecki, J., Friese, K.-I., and Wolter, F.-E.
(2014). Visualization and user interaction methods for mul-
tiscale biomedical data. In 3D Multiscale Physiological Hu-
man, pages 107–133. Springer.

von Mammen, S. (2016a). Interactive self-organisation. Habilita-
tion Thesis, University of Augsburg.

von Mammen, S. (2016b). Self-organisation in games, games on
self-organisation. In Games and Virtual Worlds for Serious
Applications (VS-Games), 2016 8th International Conference
on, pages 1–8. IEEE.

von Mammen, S. and Jacob, C. (2008). The spatiality of swarms
— quantitative analysis of dynamic interaction networks. In
Proceedings of Artificial Life XI, pages 662–669. MIT Press.

von Mammen, S. and Jacob, C. (2009). The Evolution of Swarm
Grammars: Growing Trees, Crafting Art and Bottom-Up De-
sign. IEEE Computational Intelligence Magazine.

von Mammen, S., Müller, A., Latoschik, M. E., Botsch, M.,
Brukamp, K., Schröder, C., and Wacker, M. (2019). Via vr: A
technology platform for virtual adventures for healthcare and
well-being. In 2019 11th International Conference on Vir-
tual Worlds and Games for Serious Applications (VS-Games),
pages 1–2. IEEE.

von Mammen, S., Schellmoser, S., Jacob, C., and Hähner, J.
(2016). The Digital Patient: Advancing Medical Research,
Education, and Practice, chapter 11. Modelling & Under-
standing the Human Body with Swarmscript, pages 149–170.
Wiley.

von Mammen, S. and Steghöfer, J.-P. (2014). The Computer after
Me: Awareness and Self-Awareness in Autonomic Systems,
chapter Bring it on, Complexity! Present and future of self-
organising middle-out abstraction. World Scientific Publish-
ing.

von Mammen, S., Weber, M., Opel, H., and Davison, T. (2015).
Interactive multi-physics simulation for endodontic treat-
ment. In Modeling and Simulation in Medicine Symposium
at SpringSim 2015, pages 36–41. Curran Associates, Inc.

Wahby, M., Divband Soorati, M., von Mammen, S., and Hamann,
H. (2015). Evolution of controllers for robot-plant bio-
hybdrids: A simple case study using a model of plant growth
and motion. In Proceedings of 25. Workshop Computational
Intelligence, pages 67–86, Dortmund. KIT Scientific Publish-
ing.

Wang, L.-S., Krishnaprasad, P. S., and Maddocks, J. (1990).
Hamiltonian dynamics of a rigid body in a central gravita-
tional field. Celestial Mechanics and Dynamical Astronomy,
50(4):349–386.

Weiser, M. (1993). Ubiquitous computing. Computer, 26(10):71–
72.

Whalley, P. (2006). Representing parallelism in a control lan-
guage designed for young children. In Visual Languages and
Human-Centric Computing, 2006. VL/HCC 2006. IEEE Sym-
posium on, pages 173 –176.



Williams, B. (2006). Microsoft Flight Simulator as a training aid:
a guide for pilots, instructors, and virtual aviators. Aviation
Supplies & Academics.

Winikoff, M., Yadav, N., and Padgham, L. (2018). A new hierarchi-
cal agent protocol notation. Autonomous Agents and Multi-
Agent Systems, 32(1):59–133.

Wolfram, S. (2003). The Mathematica Book, Fifth Edition. Wol-
fram Media Inc.

Wooldridge, M. (2008). An introduction to multiagent systems.
Wiley. com.

Xu, Q., Jamniczky, H., Hu, D., Green, R. M., Marcucio, R. S.,
Hallgrimsson, B., and Mio, W. (2015). Correlations between
the morphology of sonic hedgehog expression domains and
embryonic craniofacial shape. Evolutionary Biology, pages
1–8.


	Swarms and Interactive Self-Organisation
	Development Life Cycle
	Individualised, Agent-based and Interactive
	Individualising Simulation
	Modelling, Bottom-Up, Agent-Based
	Interactive Simulation & Self-Organisation

	Wetlab Application Scenario
	Challenges
	Standardising Representations
	Innovating User Interfaces
	Reaching Application-Relevant Scales

	Summary

