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Abstract

The automatic consolidation of legal texts
with the integration of its successive
amendments and corrigenda might have an
important practical impact on public insti-
tutions, citizens and organizations. This
process involves two steps: a) the clas-
sification of the textual modifications in
amendment acts and b) the integration
within a single document of such mod-
ifications. In this work we propose a
methodology to solve step a) by exploiting
Machine Learning and Natural Language
Process techniques on the Italian versions
of European Regulations: our results sug-
gest that the methodology we propose is
a reliable first milestone toward the auto-
matic consolidation of legal texts.

1 Introduction

Consolidation consists of the integration in a le-
gal act of its successive amendments and corri-
genda.1 Consolidated texts are very important for
legal practitioners. However, their maintenance is
a tedious task. Some regulatory publishers such as
Normattiva2 provide continuously updated consol-
idated texts, others such as Eur-Lex3 do times to
times, some other do not. The automation of this
process could let institutions to save resources and
practitioners to access continuously updated con-
solidated documents. This achievement would let
organizations stay compliant with the normative
more easily. The consolidation process involves
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1Eur-Lex, About consolidation, https://bit.ly/2
VFyGhv

2Normattiva, https://www.normattiva.it/
3Eur-Lex, https://eur-lex.europa.eu/

two main steps: a) the identification and classifi-
cation of the textual modifications in amendment
acts; b) the integration within a single document of
the textual modifications identified in the previous
step. The first step can be expressed as the auto-
matic classification of textual modifications inside
a legal document. In this work, we focus on step
a).
Several authors tried to solve this task using stan-
dard Natural Language Processing (NLP) tech-
niques. Ogawa et al. (2008) showed that amend-
ment clauses described in the Japanese statutes
can be formalized in terms of sixteen regular ex-
pressions. Lesmo et al. (2009) tried to identify
and classify integrations, substitutions and dele-
tions using a three-step approach: 1) prune text
fragments that do not convey relevant informa-
tion, 2) perform the syntactic analysis of the re-
trieved sentences, 3) semantically annotate the
provision using a rule-based approach based on
tree. In this last step, they also used a knowl-
edge base that describes the provisions taxonomy
(Arnold-Moore, 1997).4 Brighi et al. (2008) and
Spinosa et al. (2009) followed a similar approach.
In both cases, semantic analysis is carried out on
the syntactically pre-processed text using a rule-
based approach. The difference is related to the
starting point of the semantic analysis. The for-
mer’s system relied on a deep semantic analysis of
the textual modifications. The latter started from
the shallow syntactically parsed text. Garofalakis
et al. (2016) presented a semi-automatic system
for the consolidation of Greek legislative texts
based on regular expressions. Francesconi and
Passerini (2007) defined a module that automat-
ically classifies paragraphs into provision types.
Each paragraph is represented using Bag of words
either with TF-IDF weighting (Salton and Buck-

4A legislative provision represents the meaning of a law
part from a legal point of view. Obligations, definitions and
modifications are specific types of provision.



ley, 1988) or binary weight. The authors showed
an experimental comparison of the different repre-
sentation methods using the Naive Bayes and Mul-
ticlass Support Vector Machine (MSVM) models.
This paper describes our approach in the classifi-
cation of textual modifications, namely substitu-
tion, addition, repeal and abolition. The proposed
approach is based on standard statistical NLP tech-
niques (Manning and Schutze, 1999). Our method
involves i) the use of XML-based standards for the
annotation of legislative documents, ii) the con-
struction of the dataset assigning a label to each
word according to the tagging format used, and
iii) the implementation of NLP models to iden-
tify and classify textual modifications. We carried
out a systematic comparison among several fea-
ture extraction techniques and models. The main
contribution of this paper is the application of ma-
chine learning models to classify textual modifica-
tions. In contrast to rule-based or regular expres-
sion techniques, our models do not need expert
knowledge about the application domain’s proper-
ties. They try to extract formulas used to introduce
a textual modification without the need for an ex-
plicit definition of all the formulas. Our approach
leads to lower maintenance costs and hopefully in-
creased robustness of the system.

2 Data

We extracted the data from Daitomic5, a product
that contains all the regulations from a set of legal
sources encoded automatically in Akoma Ntoso
standard format (Palmirani and Vitali, 2011). We
collected from this product all the Italian versions
of the amendment documents originally extracted
from Eur-Lex and we randomly sampled 260 legal
documents for manual labelling.
Accordingly to the Eur-Lex web service specifica-
tions6, we identified seven different types of tex-
tual modifications:

• replacement annotates a substitution which
may concern a part of a sentence (expression,
word, date, amount) or a whole subdivision
of the document (article, paragraph, indent).
Usually, this type of textual modification in-
cludes also the following subcategories:

– from annotates the replaced words
(“novellando”).

5Daitomic, https://www.daitomic.com/
6Eur-Lex, How to use the webservice?, https://bit.

ly/393qt9Z

– to annotates the words that replace the
previous ones (“novella”).

• replacement ref is a type of replacement. We
use it to handle textual modifications that in-
clude attachments.

• addition annotates textual modifications that
add or complete a part of a legal document.

• repeal indicates the removal or reversal of a
law. It is used to invalidate its provisions al-
together.

• abolition indicates the removal of a law part.
It is used to replace the law with an updated,
amended or related law. This textual mod-
ification could just involve single words or
whole subdivision as in the replacements.

Category Total
replacement 308

from 95
to 95

replacement ref 34
addition 96
repeal 93

abolition 92

Table 1: Total number of textual modifications for
each category

Table 2 reports an example for each of the men-
tioned categories. Table 1 shows the total number
of textual modifications per category. The number
of replacements examples is greater than that the
others types of modifications because substitutions
can be introduced by different formulas that deter-
mine their specific meaning. Indeed, from a pre-
liminary experiment, we understood that there is
a relationship of proportionality between the num-
ber of formulas used to introduce textual modifica-
tions and the number of examples needed to train
the models. For this reason, we needed a different
number of examples for each category to train our
models.
Given the differences among the nature of each
modification type, we preferred to split the orig-
inal problem into five subtasks, namely:

1. replacement classification that also contains
the replacement ref category;

2. addition classification;



3. repeal classification;

4. abolition classification;

5. from to classification.

The manual annotation consisted in assigning one
label at each token of the selected document for
each subtask that indicates if it represents or not
a textual modification. We defined three different
tagging formats: Inside-Outside-Beginning (IOB),
Inside-Outside (IO), Limit-Limit(LL). The first
two tagging formats are standard.7 The last one,
instead, uses the prefix “L-” to indicate that the to-
ken is either the beginning or end of a textual mod-
ification. We adopted a specific tagging format for
each model based on our preliminary results. The
tagging format was one of the most critical choices
to improve model performance.
The dataset used for the last subtask is different.
Indeed, the from and to tags are always enclosed
within the replacement tags. We could not use any
of our tagging formats because their syntax does
not permit any nesting (Dai, 2018). Therefore,
we decided to change the dataset itself to train the
models. We considered only the tokens inside the
sentences representing a replacement and tagged
them using the aforementioned tagging formats.
In this way, we avoided the nesting issue.

2.1 Preprocessing

Each model needs a different preprocessing
method to process the raw text legal documents,
depending on the feature extractor used. There are
only a few preprocessing operations common to
all models:

1. substitution of the special characters ≪ and
≫ with the quote marks;

2. substitution of words between quote marks
with the special token QUOTES TEXT. This
step has allowed us to limit the number of to-
kens in each paragraph. The words between
quote marks often represent a whole article
(for example to substitute or to add). We de-
cided to substitute these words with a special
token because they are redundant for our task.
This consideration permits us to improve the
performances of all models. In the from and
to subtask, we avoided substituting the text

7Breckbaldwin, Coding Chunkers as Taggers: IO, BIO,
BMEWO, and BMEWO+, https://bit.ly/3DzuqBc

between quotes because it has led to a perfor-
mance improvement.

3 Experiments

For each task, we gathered the documents that
contain one or more occurrences of that specific
modification. Then, we split the dataset into a
training and a test set. More precisely, we used the
80/20 ratio adopting a stratified technique (Trost,
1986). We used the training set to validate the hy-
perparameters of each model. Once computed the
final models, we made use of the test set to mea-
sure their generalization ability. It is important to
emphasise that we never used the internal test set
before the definition of the final models.
The general pipeline is composed of the following
steps:

1. The annotated documents are tokenized.

2. Each token is associated with one label for
each category following the tagging formats
previously defined.

3. From each token, we extract its represen-
tation using either hand-crafted features or
character level N-grams or word embeddings.
Depending on the model used, both tagging
format and features extraction change.

4. We execute the model selection phase ex-
ploiting K-fold cross-validation. In our ex-
periments, we set the K parameter to 3 so
that validation sets size is reasonable. The
purpose of this step is to find the best hyper-
parameters of each model.

5. For each subtask, we chose the model with
the best performance in the previous step.

6. After choosing the best configuration of each
model, we computed and compared their per-
formances over the test set.

3.1 Feature Extraction
We applied several feature extraction techniques to
figure out which one was the most effective. In this
section, we will explain these techniques with an
in-depth description. Considering the nature of the
task, all the features are extracted at the word level.
We define different sets of features according to
the models’ needs. We logically divided our fea-
tures into hand-crafted features, n-gram features
and word embeddings.



replacement
All’articolo 7 della decisione 2005/692/CE, la data del
<replacement> ≪ <from> 31 dicembre 2010 </from> ≫

è sostituita da ≪ <to> 30 giugno 2012 </to> ≫ </replacement>.

replacement ref
L’allegato II al regolamento (CE) n. 998/2003 è sostituito dal testo dell’
< replacement ref > allegato </replacement ref> al presente regolamento.

addition
È aggiunto il seguente allegato:
<addition> “ALLEGATO III [...]” </addition>

repeal Il regolamento (CEE) n. 160/88 è abrogato. <repeal></repeal>
abolition nel titolo i termini <abolition>“raccolti nel 1980” </abolition>sono soppressi

Table 2: Annotations examples

In the following we list the hand-crafted features
extracted and their meaning:

• is upper: boolean value indicating whether
the token is in uppercase

• is lower: boolean value indicating whether
the token is in lowercase

• is title: boolean value indicating whether the
token is in titlecase

• is alpha: boolean value indicating whether
the token consists of alphabetic characters

• is digit: boolean value indicating whether the
token consists of digits

• is punct: boolean value indicating whether
the token is a punctuation mark

• pos val cg: coarse-grained part-of-speech
from the Universal POS tag set (Kumawat
and Jain, 2015): the text has been POS tagged
with SpaCy Italian model8

• is alnum: boolean value indicating whether
all characters in the token are alphanumeric
(either alphabets or numbers)

• word lower: token in lowercase

• word[-3:]: last three characters of the token

• word[-2:]: last two characters of the token

Then, we decided to use a more complex represen-
tation. We used a Count Vectorizer (Sarlis and
Maglogiannis, 2020) computed over all the Ital-
ian legal documents contained in EUR-Lex at the
date we created it. It converts a collection of text
documents to a matrix of n-gram counts. From

8Spacy, Models, https://spacy.io/models/it

each set of words, it produces a sparse vector rep-
resentation that captures a large number (376037)
of character n-grams features.
Finally, we decided to use a word embedding
lexicon as it has been shown that provides good
performances in other Italian tasks (De Mattei
et al., 2018; Cimino et al., 2018). We tested a
few different in-domain and general purpose em-
beddings lexicons trained using both fastText (Bo-
janowski et al., 2017) and word2vec (Mikolov et
al., 2013), we obtained the best results with fast-
Text pretrained Italian model (Grave et al., 2018).
The features extracted from each token do not con-
tain enough information to discriminate the true
amendment class. For this reason, we decided
to introduce the sliding window concept (Diet-
terich, 2002). It represents a set of tokens that pre-
cede and/or follow each token, like a “window”
with a fixed size that moves forward through the
text. For each feature extraction technique, we
introduced two parameters, window size and
is bilateral window. The former indicates
the dimension of the window. The latter is a
boolean value indicating whether the window con-
siders only the preceding tokens (False) or both
preceding and following tokens (True). For exam-
ple, the sentence “È aggiunto il seguente allegato”
with a bilateral sliding window of size 1, becomes
〈(PAD, È, aggiunto), (È, aggiunto, il), (aggiunto,
il, seguente), (il, seguente, allegato), (seguente, al-
legato, PAD)〉 where PAD indicates the padding
value. The introduction of the sliding window has
made it possible to improve the evaluation metric
of all models.

3.2 Models

We want to find a fully automatic approach based
on the extraction of interesting features. For this
reason, we developed a systematic comparison



among three models: Support Vector Machine
(SVM) with n-gram features, Conditional Ran-
dom Field (CRF) with hand-crafted features and
a Neural Network (NN) that uses word embed-
dings. This latter model is a rather general con-
volutional network architecture. The inputs of our
NLP tasks are the words that compose the slid-
ing window represented as a matrix. Each row
of the matrix corresponds to the word embedding
representation of one token. We decided to use a
convolutional layer given its efficiency in terms of
both representation and speed; it permits us to cap-
ture local and position-invariant features (Yin et
al., 2017) useful for our purpose. Then, we added
a Batch Normalization layer. It significantly re-
duces the training time in feedforward neural net-
works (Ba et al., 2016). During the experiment
phase, we observed that layer normalization of-
fers a speedup over the baseline model without
normalization and it stabilizes the training of the
model. We have also tried to use a Bidirectional
Long Short-Term Memory based model with an
additional CRF layer (Bi-LSTM-CRF) to solve
our task (Huang et al., 2015). Its application leads
to poor performance in terms of scores and speed.
The results obtained show the need to solve our
task using simple models that are able to discover
local patterns.

4 Results

The objective of the evaluation was to define a
systematic comparison among the models’ perfor-
mance with respect to F1 macro, precision and re-
call. In the model selection step, we used the F1
macro score as the evaluation metric since the fre-
quency distribution of the labels turned out to be
strongly unbalanced in all the subtasks.
After some preliminary experiments, we fixed the
sliding window size and the tagging format for
each model. We found that both the CRF and NN
models are more inclined to use a bigger sliding
window size (5) than the SVM models (1) from
a performance-based perspective. We think this
difference comes from the Curse of Dimensional-
ity problem that could be encountered in the SVM
models (Bengio et al., 2005). Concerning the tag-
ging format, we adopted the LL tagging for all the
models. Our experiments show that it increases
the f1 score of about 20 percentage points.
Table 3 reports the mean results among the 3-fold
obtained by the best configuration of each model.

The CRF outperforms other models in almost all
the subtasks. We think that it is due to the na-
ture of this model. Indeed, CRFs naturally con-
sider state-to-state dependencies and feature-to-
state dependencies (Lafferty et al., 2001). Once

Subtask SVM CRF NN
Replacement 0.868 0.881 0.841

Addition 0.825 0.852 0.796
Repeal 0.915 0.938 0.924

Abolition 0.823 0.878 0.939
From To 0.748 0.873 0.800

Table 3: Average results in terms of F1 macro
score obtained in the validation phase

completed the model selection phase, we chose the
best model and its configuration for each subtask.
We considered both the mean and standard devi-
ation of the f1 metric among the folds. Then, we
re-trained the best model on the whole training set.
Table 4 reports the results and the average score of
the precision, recall and F1 metrics over the in-
ternal test set. The precision score is higher than
recall in all except one subtask which may be good
for an application perspective.

Model Prec. Rec. F1
Replacement CRF 0.949 0.864 0.902

Addition CRF 0.790 0.865 0.823
Repeal CRF 0.937 0.912 0.924

Abolition NN 0.951 0.912 0.931
From To CRF 0.977 0.841 0.899

Table 4: Precision, recall and F1 scores of the best
model for each subtask

The models’ performances are improved com-
pared to the results achieved in the model selec-
tion phase, probably thanks to the larger training
set provided.

5 Conclusion

We presented and analysed a machine-learning ap-
proach to the problem of the classification of tex-
tual modifications. We compared different tag-
ging formats, feature extractor techniques and ma-
chine learning models. Our experiments show that
the sliding window approach, combined with char
count vectorizer or word embeddings, allows the
models to capture most of the formulas that in-
troduce textual modifications. Following Occam’s



razor principle, we defined simple models that ob-
tained good performances in all the subtasks. Our
approach does not need any expertise in the law
field since it tries to formalized rules to identify
textual modifications. We use different NLP tech-
niques to extract hidden features from the words
inside a window.
Results validate our approach in terms of both cor-
rectness and stability. They represent the first step
to build a fully automatic model capable to iden-
tify and integrates textual modifications.
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